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RESUMO 

 

A interação entre microrganismos e plantas desempenha um papel 

fundamental no desenvolvimento vegetal e na adaptação ao ambiente. Dentre 

esses microrganismos, as bactérias promotoras do crescimento vegetal 

(BPCV) são amplamente estudadas por sua capacidade de aumentar a 

produtividade agrícola de maneira sustentável. Além dos efeitos diretos na 

fisiologia vegetal, modificações epigenéticas, especialmente a metilação do 

DNA, essas bactérias podem influenciar essa interação ao regular a expressão 

gênica e as respostas adaptativas das plantas. Neste estudo, investigamos 

como a hipometilação do DNA em raizes de plântulas de milho afeta sua 

resposta à inoculação com Herbaspirillum seropedicae, analisando os impactos 

no crescimento, metabolismo e microbioma radicular. Nossos resultados 

demonstraram que o agente hipometilante 5-azaC não interfere no crescimento 

da bactéria, mas causa alterações fenotípicas significativas, especialmente nas 

raízes das plântulas. A inoculação bacteriana resultou em crescimento em 

todos os parâmetros avaliados nas plântulas. A microscopia revelou que a 

colonização bacteriana ocorre preferencialmente na zona pelúcida das raízes, 

enquanto a quantificação indicou maior acúmulo de bactérias nas raízes 

tratadas com 5-azaC. A análise da metilação global revelou que a bactéria 

modula a metilação da citosina de forma semelhante ao 5-azaC, sugerindo que 

a inoculação com a bactéria pode influenciar mecanismos epigenéticos da 

planta. A expressão diferencial de genes relacionados à metilação do DNA, 

regulação epigenética, crescimento celular e resposta ao estresse reforça a 

influência da hipometilação na interação planta-microrganismo. Além disso, a 

análise do bacterioma revelou que o 5-azaC altera significativamente a 

composição da comunidade microbiana radicular, enquanto a inoculação 

bacteriana tende a restaurar a microbiota para um estado semelhante ao 

controle, embora ainda apresente algumas modificações. A análise proteômica 

identificou 1.818 proteínas nos diferentes tratamentos, destacando 

modificações significativas nas vias metabólicas, como no metabolismo do 

carbono e na via do citrato. Essas modificações indicam como a hipometilação 

do DNA, combinada com a interação com H. seropedicae, pode influenciar 

profundamente os mecanismos celulares e vias metabólicas. Esses achados 
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ampliam o entendimento sobre os efeitos epigenéticos na interação planta-

bactéria e proporcionar novos insights para o desenvolvimento de estratégias 

mais eficientes e sustentáveis. 

 

Palavras chaves: Interação planta-microrganismo; Hipometilação do DNA; 

Regulação epigenética; 5-azacitidina; Microbioma. 

 

ABSTRACT 

 

The interaction between microorganisms and plants plays a fundamental role in 

plant development and environmental adaptation. Among these 

microorganisms, plant growth-promoting bacteria (PGPB) are widely studied for 

their ability to sustainably enhance agricultural productivity. In addition to their 

direct effects on plant physiology, these bacteria can influence this interaction 

through epigenetic modifications, especially DNA methylation, by regulating 

gene expression and adaptive responses in plants. In this study, we 

investigated how DNA hypomethylation in maize seedling roots affects their 

response to inoculation with Herbaspirillum seropedicae, analyzing the impacts 

on growth, metabolism, and root microbiome. Our results demonstrate that the 

hypomethylating agent 5-azaC does not interfere with bacterial growth but 

causes significant phenotypic changes, especially in seedling roots. Bacterial 

inoculation promoted growth in all evaluated seedling parameters. Microscopy 

revealed that bacterial colonization occurs preferentially in the root hair zone, 

while quantification indicated a higher accumulation of bacteria in roots treated 

with 5-azaC. Global methylation analysis revealed that the bacterium modulates 

cytosine methylation similarly to 5-azaC, suggesting that bacterial inoculation 

may influence the plant's epigenetic mechanisms. The differential expression of 

genes related to DNA methylation, epigenetic regulation, cell growth, and stress 

response reinforces the influence of hypomethylation on plant-microbe 

interaction. Additionally, bacteriome analysis revealed that 5-azaC significantly 

alters the composition of the root microbial community, while bacterial 

inoculation tends to restore the microbiota to a state similar to the control, 
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although some modifications persist. Proteomic analysis identified 1,818 

proteins across different treatments, highlighting significant changes in 

metabolic pathways, such as carbon metabolism and the citrate cycle. These 

modifications indicate how DNA hypomethylation, combined with interaction 

with H. seropedicae, can profoundly influence cellular mechanisms and 

metabolic pathways. These findings expand the understanding of epigenetic 

effects in plant-bacteria interactions and provide new insights for developing 

more efficient and sustainable strategies. 

Keywords: Plant-microbe interaction; DNA hypomethylation; Epigenetic 

regulation; 5-azacytidine; Microbiome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

1. INTRODUÇÃO 

 

A interação entre microrganismos e plantas é mais antiga do que a existência 

da raça humana, uma vez que ambas as espécies existem há muito mais tempo. 

Desde o início dos tempos, essas duas formas de vida têm se comunicado de 

maneira complexa e eficiente. No entanto, inicialmente não percebemos a perfeição 

dessa comunicação e muitas vezes observamos as bactérias como organismos não 

benéficos, associando-as apenas a patologias e problemas (BERG et al., 2017; 

DELAUX; SCHORNACK, 2021). 

Com o avanço da ciência, compreendemos que nem todas as bactérias 

causam malefícios; na verdade, muitas delas são benéficas para o crescimento e a 

saúde das plantas (RODRIGUEZ et al., 2019). Essas bactérias promotoras de 

crescimento vegetal (BPCV) desempenham papéis fundamentais, como a fixação de 

nitrogênio, a solubilização de fósforo e produção de hormônios que estimulam o 

desenvolvimento radicular e foliar (TIMOFEEVA; GALYAMOVA; SEDYKH, 2023). 

Apesar dos avanços no conhecimento, ainda entendemos muito pouco sobre 

como essa comunicação tão antiga, estabelecida e refinada ocorre dentro das 

plantas. A interação microrganismo-planta é um mecanismo intrincado com sinais 

químicos e físicos que permite às plantas não apenas crescerem, mas também se 

adaptam a diversos estresses ambientais como seca, alta salinidade e temperaturas 

extremas (RODRIGUEZ et al., 2019; SHARIFI; RYU, 2021). 

Entender essa interação vai além de um interesse acadêmico, é uma busca 

pela compreensão dos mecanismos fundamentais da vida. Ao decifrar como as 

plantas e seus microrganismos associados se comunicam e cooperam, podemos 

desenvolver novas estratégias agrícolas mais sustentáveis, melhorar a produtividade 

das culturas e reduzir a necessidade de insumos químicos nocivos ao meio 

ambiente (SINGH et al., 2020). 

Assim, a exploração dessa relação simbiótica e mutualística entre plantas e 

microrganismos representa uma das fronteiras mais promissoras da biologia vegetal, 

oferecendo insights valiosos para a ciência, agricultura e sustentabilidade global. 

 

 

 

 



 
 

 

1.1. Bactérias Promotoras de Crescimento Vegetal (BPCVs) 

 

As bactérias promotoras de crescimento vegetal (BPCVs) são microrganismos 

que interagem com as plantas e desempenham um papel crucial no estímulo ao 

crescimento e promoção da saúde das plantas (CHENG; ZHANG; HE, 2019). Essas 

bactérias são conhecidas por seus diversos mecanismos de ação que favorecem o 

desenvolvimento vegetal, sendo cada vez mais valorizadas na agricultura 

sustentável (CHENG; ZHANG; HE, 2019; SRIVASTAVA et al., 2022). 

Algumas BPCVs como Rhodotorula mucilaginosa e Arthrobacter spp. são 

bactérias eficazes na fixação de nitrogênio, reduzindo a necessidade de adição de 

fertilizantes químicos e colaborando para o crescimento de plantas como o trigo 

(Triticum spp.) (AASFAR et al., 2024). Este processo de fixação de nitrogênio é 

essencial para a disponibilizar esse nutriente, fundamental para o crescimento e 

produtividade das culturas agrícolas. Bactérias como Azospirillum, Pseudomonas e 

Burkholderia podem ser usadas para substituir fertilizantes, uma vez que as 

bactérias fixadoras de nitrogênio formam relações simbióticas com as espécies de 

plantas leguminosas, estabelecendo-se nas raízes e fornecendo nitrogênio 

diretamente para a planta hospedeira (CHENG; ZHANG; HE, 2019). 

Outra importante função das BPCVs é a solubilização de fósforo como as 

bactérias Pantoea sp. e Burkholderia cepacia que são capazes de solubilizar formas 

insolúveis de fósforo presentes no solo, tornando-o disponível para absorção pelas 

plantas (LUO et al., 2024). O fósforo é um nutriente vital para vários processos 

fisiológicos, incluindo a fotossíntese, transferência de energia e a formação de 

ácidos nucleicos e a sua solubilização é uma estratégia eficaz para melhorar a 

absorção de nutrientes pelas plantas, reduzindo a dependência de fertilizantes 

(DADAŞOĞLU; DADAŞOĞLU; ORHAN, 2023; RANDIVE; AGNIHOTRI; BHAGAT, 

2024). 

As BPCVs podem também produzir fitohormônios, como o ácido indolacético 

(IAA), que estimula o crescimento radicular e foliar, promovendo o crescimento das 

raízes e brotos das plantas (FANAI et al., 2024). Esses hormônios são essenciais 

para o desenvolvimento das plantas, pois estão envolvidos com a regulação de 

processos tais como a divisão celular, elongação dos caules e formação de raízes 

laterais (FANAI et al., 2024; RANDIVE; AGNIHOTRI; BHAGAT, 2024). 



 
 

 

Ainda, além de promover o crescimento vegetal, as BPCVs têm a capacidade 

de proteger as plantas contra patógenos. Elas produzem substâncias 

antimicrobianas que inibem o crescimento de microrganismos prejudiciais e 

competem com eles por espaço e nutrientes, o que ajuda a reduzir a incidência de 

doenças e contribui para a saúde geral das plantas (BERG, 2009; RODRIGUEZ et 

al., 2019; NOMAN et al., 2020). 

As BPCVs podem contribuir nas respostas das plantas frente a estresses 

abióticos, como seca, alta salinidade e temperaturas extremas. As bactérias 

produzem compostos que aumentam a resistência das plantas tais como osmólitos 

compatíveis e componentes, antioxidantes que contribuem para a manutenção do 

equilíbrio osmótico e proteção contra danos causados pelo estresse oxidativo 

(RODRIGUEZ et al., 2019; TRIVEDI et al., 2020). 

O uso de BPCVs na agricultura está ganhando destaque como uma estratégia 

ecológica e sustentável para aumentar a produtividade das culturas, ao mesmo 

tempo que reduz a dependência de fertilizantes químicos e pesticidas. A aplicação 

dessas bactérias no solo ou como inoculantes de sementes tem mostrado resultados 

promissores no aumento do rendimento das colheitas e na melhoria da saúde do 

solo (CHAUDHARY et al., 2023). 

 

1.1.1  Herbaspirillum seropedicae: Bactéria Promotora de Crescimento 

Vegetal 

 

Herbaspirillum seropedicae é uma bactéria diazotrófica endofítica, gram-

negativa, conhecida por sua capacidade de fixar nitrogênio atmosférico e promover o 

crescimento das plantas com milho (Zea mays), arroz (Oryza sativa), sorgo 

(Sorghum bicolor), cana-de-açúcar (Saccharum officinarum), banana (Musa) e 

abacaxi (Ananas comosus)(TADRA-SFEIR et al., 2011). A fixação de nitrogênio por 

H. seropedicae vem mostrando a menor necessidade de fertilizantes nitrogenados, e 

assim, promovendo práticas agrícolas mais sustentáveis (CHUBATSU et al., 2012; 

WALLER et al., 2021). 

Como as demais bactérias acima citadas, H. seropedicae está envolvida com 

a produção de hormônios vegetais, como auxinas e citocininas, que aumentam a 

absorção de nutrientes e melhoraram a eficiência fotossintética, resultando em maior 

saúde vegetal e produtividade (BRUSAMARELLO-SANTOS et al., 2017) e vem 
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mostrando a capacidade de minimizar os efeitos de alguns estresses ambientais, 

aumentando sua capacidade de sobrevivência em condições adversas (AGTUCA et 

al., 2020; IRINEU et al., 2022).  

H. seropedicae é uma bactéria promissora para a agricultura sustentável, 

devido à sua capacidade de fixar nitrogênio, promover o crescimento das plantas e 

ajudar na adaptação a estresses ambientais. A pesquisa contínua sobre esta 

bactéria pode levar a novas estratégias agrícolas que beneficiem tanto os 

agricultores quanto o meio ambiente (ALVES et al., 2021). 

 

1.1.1.1 Interação de H. seropedicae com raízes de Milho 

 

A inoculação de raízes de plantas de milho com H. seropedicae tem mostrado 

melhoras notáveis no crescimento das raízes e da parte aérea dessas plantas. 

Essas melhorias se traduzem em um aumento da biomassa e produtividade, 

benefícios observados em diferentes genótipos e sob diversas condições (ÁVILA et 

al., 2020; ALVES et al., 2021; IRINEU et al., 2022). O uso de H. seropedicae 

aumenta a eficiência do uso de nitrogênio pelas plantas, promovendo um uso mais 

sustentável dos recursos, especialmente em condições de baixa fertilização 

nitrogenada (DE OLIVEIRA ARAUJO et al., 2014; MEHNAZ, 2017).  

Os mecanismos de ação de H. seropedicae incluem a modulação dos níveis 

hormonais e aumento da assimilação de nitrogênio e carbono, que contribuem para 

o crescimento inicial das plantas (IRINEU et al., 2022). A interação entre diferentes 

genótipos de milho e a bactéria é variável, indicando que a diversidade genética do 

milho pode ser explorada para maximizar essas interações (DE OLIVEIRA ARAUJO 

et al., 2014; BRUSAMARELLO-SANTOS et al., 2017).  

Do ponto de vista agronômico, a combinação da inoculação com H. 

seropedicae e fertilização nitrogenada tem o potencial de reduzir significativamente a 

necessidade de fertilizantes químicos, promovendo práticas agrícolas mais 

sustentáveis (DE OLIVEIRA ARAUJO; MERCANTE; VITORINO, 2015; ALVES et al., 

2021). A eficácia da inoculação pode variar de acordo com as condições de 

nitrogênio no solo, sendo mais benéfica em ambientes de baixo nitrogênio (WALLER 

et al., 2021; KUANG et al., 2022). Essa abordagem integrada não só aumenta a 

produtividade das culturas, mas também contribui para a saúde do solo e 

conservação do meio ambiente. 



 
 

 

 

1.2.  Produção de milho no Brasil 

O milho (Zea mays) é um dos principais cereais cultivados no Brasil, 

desempenhando um papel fundamental na economia e na segurança alimentar do 

país (DE OLIVEIRA DUARTE; MATTOSO; GARCIA, 2021). O Brasil é o terceiro 

maior produtor mundial de milho, ficando atrás somente dos Estados Unidos e China 

respectivamente (BRASIL, 2024). A cultura do milho é essencial para diversos 

setores, incluindo a alimentação humana, uma vez que o mesmo é uma fonte de 

energia e nutrientes, com 72% de amido, 10% de proteína e 4% de gordura,  um 

alimento ideal para regiões com deficiências de micronutrientes (RANUM; PEÑA-

ROSAS; GARCIA-CASAL, 2014), a produção de ração animal e a indústria de 

biocombustíveis (POPP et al., 2016; SHURSON, 2017). 

Mesmo o Brasil sendo uns dos maiores produtores, há muitas perdas anuais 

de milho e arroz são significativas, resultando em um prejuízo econômico estimado 

em US$1,7 bilhão (ABBADE, 2021). Apesar dos avanços, a produção de milho no 

Brasil enfrenta desafios significativos, incluindo variações climáticas, pragas, 

doenças e oscilações no mercado internacional (BECERRA-SANCHEZ; TAYLOR, 

2021). Em Santa Catarina o vírus do rayado fino do milho, que foi recentemente 

identificado, indicando a necessidade de monitoramento e controle mais rigorosos 

(ALBUQUERQUE et al., 2022). 

A sustentabilidade da cultura também tem sido uma preocupação crescente, 

incentivando pesquisas sobre práticas agrícolas mais eficientes, como o manejo 

integrado de pragas (MIP) e a utilização de estratégias epigenéticas para melhorar a 

adaptação do milho a condições adversas. O MIP é crucial para a sustentabilidade 

agrícola, pois reduz o uso de pesticidas químicos, minimizando impactos ambientais 

e riscos à saúde humana (BARZMAN et al., 2015; ANDERSON et al., 2019; BAKER; 

GREEN; LOKER, 2020). 

Uso de culturas geneticamente modificadas como o milho Bt, são integradas 

ao MIP para controlar pragas de forma mais eficiente, reduzindo a necessidade de 

inseticidas convencionais (ANDERSON et al., 2019; GASSMANN; REISIG, 2023; 

BRYANT et al., 2024) . No entanto, a resistência das pragas a essas culturas é um 

desafio contínuo (GASSMANN; REISIG, 2023; BRYANT et al., 2024).O MIP pode 

reduzir significativamente o uso de inseticidas (até 95%) enquanto mantém ou 

aumenta a produtividade, como demonstrado em experimentos com milho e 
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melancia 8. No entanto, a resistência das pragas e a necessidade de refúgios não-Bt 

são desafios que precisam ser geridos (GLASER; MATTEN, 2003; BRYANT et al., 

2024). 

As estratégias epigenéticas estão sendo exploradas para melhorar a 

resiliência do milho a condições adversas, como mudanças climáticas e estresse 

ambiental. Essas estratégias podem complementar o MIP ao aumentar a capacidade 

das plantas de resistir a pragas e doenças sem depender exclusivamente de 

modificações genéticas ou pesticidas (ANDERSON et al., 2019; FAHAD et al., 2021). 

 

1.3. Metilação do DNA em Plantas 

 

A genética e a epigenética são duas áreas de estudo que investigam 

alterações hereditárias na atividade e função dos genes. Enquanto a genética se 

concentra nas mudanças na sequência de DNA, a epigenética busca compreender 

os processos que alteram a leitura do DNA, mas sem modificação da sua sequência. 

Isso envolve modificações químicas como a metilação do DNA, modificações pós-

traducionais das histonas e RNAs não codificantes, modificações epigenéticas 

hereditárias que podem influenciar o fenótipo da planta. O dinamismo e a 

plasticidade do epigenoma desempenham um papel importante no desenvolvimento 

e evolução das plantas em resposta ao ambiente em que estão inseridas (MOORE; 

LE; FAN, 2013; LUCIBELLI; VALOROSO; ACETO, 2022). 

A metilação do DNA consiste na adição de um grupamento metil nas citosinas 

da região alvo do DNA que está envolvida no controle da expressão gênica e, 

portanto, é um importante regulador da estrutura e organização funcional da 

cromatina (MOORE; LE; FAN, 2013; MENG et al., 2015; FEINBERG; LEVCHENKO, 

2023). 

No tecido vegetal, a metilação do DNA ocorre em regiões simétricas, como 

CG, não-CG e CHG, além de contextos assimétricos, como CHH, onde H representa 

qualquer nucleotídeo, exceto guanina (HENDERSON; JACOBSEN, 2007; ZHANG; 

LANG; ZHU, 2018; SUN et al., 2022). Durante o processo de metilação do DNA, um 

grupo metil (-CH3) é transferido para a base do DNA, principalmente para a citosina 

(C) adjacente a uma guanina (G) no carbono 5 C5, resultando na formação da 5-

metilcitosina (5mC). A posição 5 da C desempenha um papel crucial na regulação 
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epigenética e na expressão de genes nucleares, além de contribuir para a 

estabilidade do genoma (ZHANG; LANG; ZHU, 2018; SUN et al., 2022). 

Em plantas, a via de metilação do DNA dependente de RNA, RdDM (RNA-

directed DNA methylation) se dá por meio de moléculas de RNA não 

codificantes  que adicionam diretamente a metilação do DNA alvo, e pode ocorrer de 

duas formas: canônica e não canônica. A forma canônica envolve a interação de 

várias proteínas e enzimas responsáveis por transcrever pequenos RNAs e clivá-los 

em fitas simples de RNA, resultando na metilação do DNA. Já a forma não canônica 

é menos comum e está relacionada à metilação de elementos móveis recém-

transpostos do DNA (HENDERSON; JACOBSEN, 2007; YANG et al., 2016; 

LUCIBELLI; VALOROSO; ACETO, 2022). 

A metilação do DNA em plantas tem um impacto significativo no 

desenvolvimento e na resposta a estresses ambientais. Estudos têm mostrado que a 

metilação diferencial do DNA pode regular a expressão de genes envolvidos na 

resposta à seca, salinidade e outras condições adversas, permitindo que as plantas 

se adaptem melhor ao seu ambiente (ZHANG; LANG; ZHU, 2018; SUN et al., 2022) 

 

1.3.1. Metilação do DNA e a Interação Planta-Bactéria 

 

Alterações dos padrões de metilação do DNA podem modular a capacidade 

das plantas de reconhecer e responder a diferentes tipos de bactérias (CHEN et al., 

2022; MARTIN et al., 2024). A colonização de BPCV nas raízes de plantas, como 

com H. seropedicae promove benefícios tais como a disponibilidade de nutrientes 

essenciais e mecanismos de biocontrole (RONCATO-MACCARI et al., 2003; 

OLANREWAJU; BABALOLA, 2019; GUPTA; SCHILLACI; ROESSNER, 2022).  

Estudos sugerem que a metilação do DNA possui um importante papel na 

regulação da interação planta-bactéria, influenciando a secreção de compostos, que 

promovem o crescimento de bactérias benéficas, e modulando a expressão de 

genes de defesa em resposta a patógenos (DOWEN et al., 2012; VÍLCHEZ et al., 

2020). Por exemplo, a desmetilação (eliminação de um grupo metilo, -CH3) ativa do 

DNA em Arabidopsis thaliana controla a secreção de mio-inositol pelas raízes, 

promovendo o crescimento da planta através da interação com a bactéria benéfica 

Bacillus megaterium. Este processo é essencial para a colonização e atração 

preferencial de B. megaterium, sugerindo um mecanismo epigenético conservado 



 
 

 

que regula a mutualidade entre plantas e rizobactérias promotoras de crescimento 

(VÍLCHEZ et al., 2020; CHEN et al., 2023). 

Na interação planta-bactéria patogênica, a metilação do DNA pode modular a 

resposta da planta, influenciando a expressão de genes e mecanismos de defesa. A 

metilação diferencial de genes relacionados à imunidade pode determinar a 

capacidade da planta de reconhecer e responder a diferentes tipos de patógenos, 

ajustando a intensidade e duração da resposta imune (MARINUS; CASADESUS, 

2009; TIRNAZ; BATLEY, 2019).  

Em patógenos como Agrobacterium tumefaciens, a metilação do DNA, 

mediada pela metiltransferase CcrM é crucial para a manutenção do genoma e afeta 

a motilidade, formação de biofilme e viabilidade celular. A metilação influência 

também a expressão de genes essenciais para a replicação e regulação do ciclo 

celular, demonstrando uma conexão direta entre a metilação do DNA e a 

patogenicidade (TIRNAZ; BATLEY, 2019; MARTIN et al., 2024).  

A metilação dinâmica do DNA responde a estresses bióticos, como a 

exposição a patógenos bacterianos, e resulta em regiões metiladas diferencialmente 

que estão associadas a genes diferencialmente expressos. Em A. thaliana, essas 

mudanças epigenéticas podem regular genes vizinhos em resposta ao estresse, 

destacando a importância da metilação do DNA na resposta imune das plantas. 

Alterações na metilação do DNA podem ajudar as plantas a "lembrar" de infecções 

passadas, permitindo uma resposta mais rápida e eficaz a futuros ataques 

patogênicos (DOWEN et al., 2012).  

Além disso, a interação com bactérias benéficas pode, por sua vez, influenciar 

o epigenoma da planta. Estudos têm mostrado que a colonização por bactérias 

promotoras de crescimento pode levar a mudanças epigenéticas, como a metilação 

do DNA, que beneficiam a planta a longo prazo, melhorando sua capacidade de 

adaptação a estresses ambientais e aumentando sua produtividade (CHEN et al., 

2022). 

 

 

 

 

 

 



 
 

 

2. OBJETIVO 

 

2.1. Objetivo geral 

 

Caracterizar os efeitos da modulação epigenética induzida por inibidor 

químico de metilação do DNA durante a interação entre raízes de plantas de milho e 

a bactéria Herbaspirillum seropedicae. 

 

2.2. Objetivos específicos 

 

• Medir variações no crescimento de H. seropedicae e desenvolvimento de 

plântulas de milho após tratamento com 5-azaC. 

• Quantificar a colonização bacteriana durante a interação H. seropedicae milho 

submetida ao tratamento com 5-azaC. 

• Caracterizar a colonização e distribuição de H. seropedicae em plântulas de 

milho sob hipometilação do DNA de células radiculares. 

• Determinar a expressão diferencial de genes em raízes de milho submetidas 

ao tratamento com 5-azaC por RT-qPCR. 

• Obter biblioteca metagenômica do microbioma radicular de milho após 

tratamento com 5-azaC e interação com H. seropedicae. 

• Determinar perfil proteômico das raízes de milho sob hipometilação induzida 

por 5-azaC e interação com H. seropedicae. 
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ABSTRACT 

The interaction between microorganisms and plants plays a fundamental role in plant 

development and environmental adaptation. Among these microorganisms, plant 

growth-promoting bacteria (PGPB) are widely studied for their ability to enhance 

agricultural productivity and sustainably. Beyond their direct effects on plant 

physiology, epigenetic modifications, particularly DNA methylation that can regulate 

gene expression and induce plant adaptive responses. This study investigates how 

DNA hypomethylation affects early interaction of maize (Zea mays) and plant-growth 

promoting bacteria - Herbaspirillum seropedicae-, with the focus on differences in 

plant growth, metabolism, and root microbiome. Our results demonstrate that the 

hypomethylating agent 5-azacytidine (5-azaC) does not interfere with bacterial 

growth, but induces significant phenotypic changes in maize, particularly in root 

morphology. Bacterial inoculation led to the enhancement of plant growth across all 

measured biometric parameters. Microscopy analyses revealed preferential bacterial 

colonization in the mucilage zone of maize roots, while quantification assays 

indicated higher accumulation of bacteria in roots treated with 5-azaC. Global 

methylation analysis showed that H. seropedicae modulates cytosine methylation in 

a manner like 5-azaC, suggesting that bacterial inoculation can impact plant 

epigenetic mechanisms. Analysis of differential expression of genes related to DNA 

methylation machinery supports the role of hypomethylation in shaping plant-microbe 

interactions. Moreover, bacteriome profiling demonstrated that 5-azaC significantly 



 
 

 

alters the root microbial community, while bacterial inoculation tends to restore 

microbiota composition to a state resembling the control, although with some 

persistent modifications. Proteomic analysis identified 1,818 proteins across different 

treatments, revealing significant alterations in metabolic pathways, particularly 

carbon metabolism and the citric acid cycle. These changes highlight how DNA 

hypomethylation, in combination with H. seropedicae interaction, can profoundly 

deploy cellular mechanisms and metabolic processes, offering new insights into early 

plant-microbe interactions. These findings enhance our understanding of epigenetic 

regulation in plant-bacterium interactions and may contribute to the development of 

more effective and sustainable agricultural approaches. 

 

Keywords: Plant-microorganism interaction; DNA hypomethylation; Epigenetic 

regulation; 5-azacitidine; Microbiome. 

 

3.1.1.  INTRODUCTION 

 

The increasing demand for environmentally friendly agricultural practices has 

driven the search for alternatives that reduce reliance on chemical fertilizers and 

mitigate their ecological impact [1]. One of the most promising solutions in this 

context is the use of bioinputs, which encompasses a range of biological agents and 

natural compounds that can enhance plant growth and productivity while maintaining 

environmental sustainability. Among bioinputs, plant growth-promoting bacteria 

(PGPB) have gained noteworthy attention due to their ability to improve crop yield 

and resilience through various mechanisms [2–4]. 

Plant growth-promoting bacteria (PGPB) have emerged as key contributors to 

sustainable agriculture by facilitating nitrogen fixation, phosphate solubilization, and 

the production of phytohormones that enhance root and shoot development [5,6]. 

These microorganisms interact with plants at the molecular level, triggering 

physiological responses that lead to increased stress tolerance and overall growth 

improvement [7]. 

At a molecular level, PGPB-mediated plant growth regulation involves complex 

signaling pathways, gene expression modulation, and metabolic adjustments. The 

interaction between plants and PGPB can induce changes in gene regulatory 
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networks, influencing key biological processes such as nutrient uptake, hormone 

production, and defense responses [7,8]. 

Maize (Zea mays) is a critical staple crop for global food security, providing 

essential calories and nutrients for both human and livestock consumption. It plays a 

significant role in the diets of billions, particularly in developing regions[9–11]. As a 

model cereal with a well-annotated genome, maize also offers unique opportunities 

to investigate epigenetic regulation in response to microbial interactions[12,13]  

In recent years, numerous studies have investigated the effectiveness of 

PGPB, linking their beneficial effects to direct mechanisms such as biofertilization, 

biostimulation, biocontrol, and abiotic stress mitigation [14–16]. Despite these 

advances, a crucial aspect has been little explored: the molecular and epigenetic 

modifications induced by plant-PGPB interactions [7]. 

Epigenetic modifications, which regulate gene expression without altering DNA 

sequence, play a fundamental role in plant development and adaptation to 

environmental conditions. Among these modifications, DNA methylation is one of the 

most extensively studied, as it directly influences transcriptional activity and plant 

responses to external stimuli, including interactions with beneficial microbes 

[7,17,18]. 

In plants, DNA methylation occurs in three distinct sequence contexts: 

cytosine-guanine (CG), cytosine-H-guanine (CHG), and cytosine-H-H (CHH), where 

H represents adenine (A), cytosine (C), or thymine (T). The molecular mechanisms 

involved in the maintenance of these methylation patterns are well characterized 

[7,19,20]. CG methylation is maintained by METHYLTRANSFERASE 1 (MET1), CHG 

methylation is controlled by CHROMOMETHYLASE 2 (CMT2) or 3, while CHH 

methylation is regulated by DOMAINS REARRANGED METHYLASE 2 (DRM2) or 

CMT2. Conversely, active DNA demethylation is catalyzed by DNA glycosylases, 

including repressor of silencing 1 (ROS1), demeter (DME), and demeter-like 

enzymes [21]. 

This epigenetic regulation not only affects transcriptional activity [18,22] but 

also plays a crucial role in morphological development and phenotypic plasticity 

[23,24]. Population-wide studies have shown that DNA methylation patterns vary 

among individuals within a species, leading to extensive phenotypic differences, 

including biomass accumulation, disease resistance, and environmental adaptation 
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[25,26]. These variations can be decisive for plant survival and productivity under 

diverse stress conditions [27–30]. 

Previous studies with Arabidopsis thaliana have demonstrated that PGPB can 

modulate DNA methylation patterns, influencing root architecture and stress 

responses, allowing plants to adapt to environmental fluctuations [6,30]. Similar 

effects have been observed in crops such as Phytolacca americana, where 

epigenetic modifications induced by PGPB enhance nutrient uptake and drought 

tolerance. Additionally, PGPB-driven epigenetic modifications correlate with 

increased biomass production and pathogen resistance [6,7]. 

Given these insights, understanding how DNA methylation modulates plant-

PGPB interactions is essential for advancing agricultural biotechnology to developing 

sustainable crop improvement strategies. This study aims to elucidate the epigenetic 

mechanisms underlying the response of hypomethylated maize roots to PGPB 

inoculation, exploring the impact of this interaction on plant growth, metabolism, and 

adaptation. 

 

3.1.2. MATERIALS AND METHODS 

  

3.1.2.1. Bacterial growth assessment 

 

Herbaspirillum seropedicae strain RAM10 growth in the presence of the DNA 

methylation inhibitor 5-azacytidine (5-azaC) was assessed using a 96-well microplate 

assay. Bacterial cultures were initially grown in liquid DYGS medium (2 g of glucose, 

2 g of malic acid, 1.5 g of bacteriological peptone, 2 g of yeast extract, 0.5 g of 

K₂HPO₄, and 0.5 g of MgSO₄·7H₂O, 1.5 g of glutamic acid, adjusted to pH 6.0.)  at 

30°C with agitation at 120 rpm until reaching an optical density at 600 nm (OD₆₀₀) of 

1.0. For the assay, an inoculum corresponding to 10% of the final volume was added 

to each well, containing DYGS medium and different concentrations of 5-azaC (2.5, 

25, and 250 µM). A control without 5-azaC was included to evaluate bacterial growth 

in the absence of the hypomethylating agent. Bacterial growth was monitored hourly 

by measuring OD₆₀₀ over a period of 16 hours using a microplate spectrophotometer, 

with incubation at 30°C under continuous shaking at 120 rpm. 
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3.1.2.2. Plant growth 

 

The seeds of Zea mays (UENF 506-11) were superficially sterilized with 70% 

ethanol for 5 minutes, followed by immersion in 1.5% sodium hypochlorite for 30 

minutes. The seeds were then washed 6 times with ultrapure water and left to soak 

for 6 hours. For germination, the seeds were sown in Petri dishes (150 × 25 mm) 

containing 20 mL of agar agar medium (5 g/L agar, pH adjusted to 6), sterilized in an 

autoclave at 120°C for 15 minutes. The dishes were incubated in B.O.D at 27°C with 

a 12/12h photoperiod and light intensity of 100 µmol m-2 s -1 for 4 days. After this 

period, the seedlings were transferred to test tubes (25 × 150 mm) containing three 

glass spheres (1.6 cm diameter) and 10 mL of Murashige and Skoog (MS) medium at 

½ strength, with pH adjusted to 5.8. The medium was sterilized in an autoclave at 

120°C for 15 minutes, and the seedlings were maintained in B.O.D at 27°C with a 

12/12h photoperiod and light intensity of 100 µmol m-2 s -1 for an additional 3 days, 

adding up to 7 days of culture. 

 

3.1.2.3. Methylation Inhibitor Treatment 

 

A stock solution of 5-azacitidine (5-azaC) was prepared at 100 mM, dissolved 

in dimethyl sulfoxide (DMSO). From this stock solution, a 10 mM solution of 5-azaC 

was prepared in ultrapure water. The 5-azaC solution was added to both the agar 

agar and MS media at the desired concentrations. The treatment with 5-azaC was 

applied in three stages: (i) during seed germination, where seeds were sown in Petri 

dishes containing agar agar medium with 0.25, 2.5 and 25µM 5-azaC; (ii) when 

transferring the seedlings to MS medium containing 0.25, 2.5 and 25µM 5-azaC; (iii) 

when the seedlings were inoculated with bacteria, the MS medium was also 

supplemented with 0.25, 2.5 and 25µM 5-azaC. 

 

3.1.2.4. Bacterial Growth and Inoculation 

 

The H. seropedicae strain RAM10, containing the GFP:Tn5 marker in its 

chromosomal DNA, was cultivated in DYGS liquid medium at 30°C for 24 hours 

shaking at 120 rpm. After bacterial growth, 5-days-old maize seedlings were 



 
 

 

inoculated with the bacterial solution, adjusting the final concentration to 2 × 10^6 

bacteria/mL. 

 

3.1.2.5. Bacterial inoculation and methylation inhibition assay 

 

The seedlings were distributed into the following experimental conditions: 5-

azaC treatment (A), where seedlings were treated with 5-azaC during germination 

and growth, without bacterial inoculation; inoculation with H. seropedicae (B), where 

seedlings were inoculated with H. seropedicae without 5-azaC treatment; 5-azaC 

treatment and inoculation with H. seropedicae (AB), where seedlings were treated 

with 5-azaC during germination and growth and later inoculated with H. seropedicae; 

and the Control (C), where maize seedlings were neither treated with 5-azaC nor 

inoculated with H. seropedicae. To better illustrate the experimental design and 

methodology, a schematic representation was also created (Figure 1). 

 

 

Figure 1. Schematic representation of the experimental design, highlighting the different 
treatment conditions applied to maize seedlings. 

 

3.1.2.6. Biometric Variable Analysis 

 

The experiment was conducted using a completely randomized design (CRD), 

with twenty biological replicates for each treatment (C, B, A, AB). The seedlings were 



 
 

 

subjected to biometric evaluations, which included measurements of the length (cm) 

of root and aerial segment fresh and dry weight of the plant. 

 

3.1.2.7. Nucleic Acid Extraction and cDNA Synthesis 

 

Genomic DNA from maize roots was extracted using the CTAB 

(Cetyltrimethylammonium bromide) method[31,32]. Total RNA was extracted using 

Trizol® (Invitrogen), following the manufacturer’s instructions. Nucleic acid 

concentration and purity were assessed using a NanoDrop™ 2000/2000c 

spectrophotometer (Thermo Fisher Scientific). DNA and RNA integrity was verified by 

electrophoresis on a 1% agarose gel stained with ethidium bromide. cDNA was 

synthesized from 5 µg of RNA using the GoScript™ Reverse Kit (Promega), following 

the manufacturer’s protocol. 

 

3.1.2.8. RT-qPCR Analysis 

 

The quantification of H. seropedicae followed the protocol described by Da 

Silva[33], with modifications. For gene expression analysis, RT-qPCR reactions were 

performed using SYBR Green PCR Master Mix (Applied Biosystems). Amplifications 

were carried out using the Applied Biosystems StepOne™ Real-Time PCR System, 

following the manufacturer’s recommendations, in 96-well plates with a final volume 

of 10 µL. Each reaction contained 0.75 μL of each primer (forward and reverse), 7.5 

μL of SYBR Green, 3 μL of cDNA, and 3 μL of ultrapure water. Primers were 

designed using the OligoAnalyzer tool from Integrated DNA Technologies (IDT) 

(Table S1). Relative gene expression was quantified using the 2^−ΔΔCT method, as 

described by[34]. 

 

 

 

3.1.2.9. Fluorescence and Scanning Electron Microscopy (SEM) 

 

In order to observe bacteria inoculated. For fluorescence microscopy entire 

roots were placed on glass slides with sterile distilled water and observed under an 

ECLIPSE Ni (Nikon) fluorescence microscope, equipped with specific filters for GFP 
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detection (BP 460-490 nm; LP 510-550 nm) and a Prime Vision FL digital 

photography to image capture system. Observations were performed on longitudinal 

sections of the pellucid zone of maize roots condictions C, B, A and AB 

For maize roots were cut into 1 cm long segments, including the root cap, 

elongation zone, and root hair zone, and immediately fixed in Karnovsky’s solution 

(4% formaldehyde, 2.5% glutaraldehyde, 0.1 M sodium cacodylate buffer, pH 7.4). 

Samples were then washed with the same buffer (3 times for 10 min), dehydrated in 

an ethanol series (15%, 30%, 50%, 70%, 90%, and 2x 100% for 10 min each), and 

dried in a critical point drying device (Baltec CPD 030). The segments were mounted 

on aluminum stubs, sputter-coated with ionized platinum (Bal-tec SCD 050), and 

visualized using the scanning electron microscopy (SEM) Zeiss EVO 40 SEM at 15 

kV.  

 

3.1.2.10. DNA Methylation Analysis 

 

The DNA extracted from the roots of the different treatments (C, B, A, and AB) 

was digested into nucleosides using the Nucleoside Digestion Mix from New England 

Biolabs. The reaction mixture was prepared as follows: 1 µl of DNA, 2 µl of 

Nucleoside Digestion Mix Reaction Buffer (10X), and 1 µl of Nucleoside Digestion 

Mix, with the volume adjusted to 20 µl. The mixture was incubated in a thermomixer 

at 37°C for 24 hours. After this period, the reaction was heated at 70°C for 10 

minutes and then centrifuged at 10,000 rpm for 10 minutes at 23°C. From the 

resulting solution, 18 µl were transferred to a new microtube, and a 200x dilution was 

prepared for mass spectrometry analysis. The run was conducted as described by 

Adamczyk[35]. 

To assess the cytosine methylation pattern in maize DNA, the isoschizomeric 

enzyme HpaII and MspI were used. Genomic DNA was extracted and diluted in 

ultrapure water to a final concentration of 25 ng/μL. Approximately 250 ng of DNA 

from each sample was digested with 5U of HpaII and MspI (Promega) in the 

presence of 1X reaction buffer and ultrapure water, in a final volume of 50 μL per 

sample, at 37°C for 2 h. Subsequently, the samples were amplified by PCR using 

ISSR markers (Table S2). PCR reactions were performed in a final volume of 25 μL 

containing 5 μL of GoTaq® Flexi buffer (Promega), 0.5 μM primer, 0.15 mM dNTPs, 

1U of Taq DNA polymerase (Promega), 3 mM MgCl₂, and 15 ng of DNA. The 
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amplification program consisted of an initial denaturation step at 94°C for 4 min, 

followed by 45 cycles of denaturation at 94°C for 45 s, annealing at a temperature 

optimized for each primer (Table S2), extension at 72°C for 2 min, and a final 

extension step at 72°C for 7 min. 

PCR products were separated by electrophoresis in 1X TBE buffer and 2% 

agarose gels. The gels were stained with SYBR® Safe DNA Gel Stain (Sigma) and 

visualized using a UV transilluminator. Fragment sizes were estimated using a 100 

bp molecular weight marker (Amresco). For quantification of global DNA methylation, 

PCR amplification patterns were recorded as a binary matrix, where bands of similar 

size were classified as 1 (band present) or 0 (band absent) (Table S3). 

 

3.1.2.11. Quantification of Fluorescent Inoculum Colony Forming Units 

(CFUs) 

 

After seven days of growth under the different conditions (C, B, A, AB), the 

plant roots were collected. For bacterial extraction, one gram of root was macerated 

in sterile 0.85% saline solution and the resulting suspension was then subjected to 

serial dilutions. 

The quantification of colony-forming units (CFUs) was performed using the 

Drop Plate technique [36]. The culture medium used was DYGS solid, prepared with 

the following composition (per 1 L of medium): 2 g of glucose, 2 g of malic acid, 1.5 g 

of bacteriological peptone, 2 g of yeast extract, 0.5 g of K₂HPO₄, 0.5 g of 

MgSO₄·7H₂O, 1.5 g of glutamic acid, and 15 g of agar, adjusted to pH 6.0. 

Serial dilutions were applied to the Petri dishes, which were then incubated at 

30°C for 20 hours in a thermostat. The quantification of CFUs was performed using a 

fluorescence microscope equipped with filters specific for GFP detection (BP 460–

490 nm; LP 510–550 nm). Only the fluorescent colonies were counted, ensuring that 

the quantification was specific to the bacterial inoculum. 

 

3.1.2.12. Metataxonomic Analysis 

 

The DNA extracted from the roots of the different conditions (C, B, A, and AB) 

was sent to the company “Genone” for sequencing of the 16S rRNA gene using the 

Illumina MiSeq platform, with three replicates per condition. The quality and quantity 
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of the extracted DNA were examined using electrophoresis on a 1.8% agarose gel 

and DNA concentration and purity were determined with NanoDrop 2000 UV-Vis 

Spectrophotometer (Thermo Scientific, Wilmington, USA). The hypervariable region 

V3-V4 of the bacterial 16S rRNA gene were amplified with the primer pairs 338F: 5'- 

ACTCCTACGGGAGGCAGCA-3' and 806R: 5'- GGACTACHVGGGTWTCTAAT-3' . 

Both the forward and reverse 16S primers were tailed with sample-specific Illumina 

index sequences to allow for deep sequencing. The PCR was performed in a total 

reaction volume of 10 μl: DNA template 5-50 ng, forward primer (10μM) 0.3 μl, 

reverse primer (10μM) 0.3 μl, KOD FX Neo Buffer 5 μl, dNTP (2 mM each) 2 μl, KOD 

FX Neo 0.2 μl, and finally ddH2O up to 20μL. After with initial denaturation at 95 °C 

for 5 min, followed by 20 cycles of denaturation at 95 °C for 30 s, annealing at 50 °C 

for 30 s, and extension at 72 °C for 40 s, and a final step at 72 °C for 7 min. The 

amplified products were purified with Omega DNA purification kit (Omega Inc., 

Norcross, GA, USA) and quantified using Qsep-400 (BiOptic, Inc., New Taipei City, 

Taiwan, ROC). The amplicon library was paired end sequenced (2×250) on an 

Illumina NovaSeq6000. 

The qualified sequences with more than 97% similarity thresholds were 

allocated to one operational taxonomic unit (OTU) using USEARCH (version 10.0). 

Taxonomy annotation of the OTUs/ASVs was performed based on the Naive Bayes 

classifier in QIIME2[37] using the SILVA database[38,39] (release 138.1) with a 

confidence threshold of 70%. Alpha was performed to identify the complexity of 

species diversity of each sample utilizing QIIME2 software. Beta diversity calculations 

were analyzed by principal coordinate analysis (PCoA) to assess the diversity in 

samples for species complexity. One-way analysis of variance was used to compare 

bacterial abundance and diversity. Linear Discriminant Analysis (LDA) coupled with 

effect size (LEfSe) was applied to evaluate the differentially abundant taxa. 

 

 

3.1.2.13. Label-Free Proteomic Analysis 

 

Roots from maize seedlings subjected to treatments C, B, A, and AB after 

seven days of growth were collected for proteomic analysis. Three biological 

replicates per treatment (300 mg fresh mass) were ground in liquid nitrogen and 

resuspended in 1 mL of extraction buffer (10% TCA/acetone, 20 mM DTT). Samples 
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were vortexed for 30 min at 4°C, incubated at −20°C for 1 h for precipitation, and 

centrifuged (16,000 g, 30 min, 4°C). The pellet was discarded, and the protein 

concentration in the supernatant was determined using the Bradford assay (Bio-Rad) 

with BGG as the standard. 

Proteins were solubilized in 7 M urea and 2 M thiourea solution and digested 

with trypsin using Microcon-30 kDa filter units (Millipore), following the FASP 

protocol[40] with modifications. Peptides were quantified using a NanoDrop 2000c 

spectrophotometer (Thermo Fisher Scientific), and 1 μg was injected into a 

nanoAcquity UPLC system coupled to a SYNAPT G2-Si Q-TOF mass spectrometer 

(Waters, Manchester, UK), as described by Botini et al. (2021). 

Proteomic analysis was performed using ProteinLynx Global SERVER (PLGS) 

v.3.02 (Waters), and label-free quantification was conducted with ISOQuant v.1.7 

(Distler et al., 2014). Differential protein abundance was assessed using a two-tailed 

Student’s t-test, considering proteins as significantly up- or down-accumulated if p ≤ 

0.05 and log₂ fold-change ≥ 0.5 or ≤ −0.5. Functional annotation of differentially 

expressed proteins was performed in ShinyGO 

(https://bioinformatics.sdstate.edu/go/) using KEGG pathway analysis to identify key 

metabolic pathways. 

 

3.1.3. RESULTS 

  

3.1.3.1. Effect of 5-azaC on Bacterial Growth 

  

To determine whether the hypomethylating agent 5-azaC impacts the growth 

of H. seropedicae, bacterial cultures were exposed to different concentrations of the 

compound. The growth dynamics, illustrated in Figure 2, indicate that 5-azaC does 

not alter bacterial proliferation within the tested concentration range. Growth was 

assessed under treatments of 2.5 μM, 25 μM, and 250 μM of 5-azaC, and compared 

to untreated controls. 

These results demonstrate that 5-azaC does not compromise bacterial growth, 

supporting its suitability for studies focused on epigenetic interactions without 

unintended effects on bacterial viability. 
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Figure 2. Growth curves of H. seropedicae treated with 5-azaC (A). Bacteria were exposed to 2.5 
μM, 25 μM, and 250 μM of 5-azaC, and an untreated control group. No significant differences (p > 
0.05) were detected usinng ANOVA analysis. 

 

3.1.3.2. Effect of 5-azaC on Maize Seedling Growth 

  

Aware that the hypomethylating agent 5-azaC has a significant impact on plant 

epigenetic mechanisms without compromising the growth and viability of 

Herbaspirillum seropedicae, we tested different concentrations to identify a condition 

that allows observation of phenotypic alterations associated with hypomethylation 

and plant-bacteria interaction. 

At the concentration of 25 µM, shown in Supplementary Figure S1, root 

development was severely impaired, while the bacteria did not exhibit significant 

changes in hypomethylated treatments (A and AB). This result indicates that high 

doses of 5-azaC primarily affect root architecture, possibly through mechanisms 

linked to the altered expression of root growth-associated epigenetic genes. 

Interestingly, the comparison between control (C) and bacteria-only (B) treatments 

revealed a significant increase in shoot length and fresh and dry masses in treatment 

B, suggesting a growth-promoting effect by the bacteria in the absence of the 

hypomethylating agent. 

Reducing the concentration to 2.5 µM (Fig. 3) resulted in less harmful but yet 

with characteristic effects of the hypomethylating treatment. Under this condition, the 

outcomes plant-bacteria interaction became more evident. A statistically significant 

increase in shoot length and dry mass was observed in treatments A and AB. These 



 
 

 

findings suggest that hypomethylation induced by moderate doses of 5-azaC may 

create favorable conditions for bacteria to promote initial seedling growth, particularly 

in the shoot. Finally, at 0.25 µM (Supplementary Figure S2), the effects of the 

hypomethylating agent were less pronounced compared to higher concentrations. . 

This concentration appears to be insufficient to induce robust epigenetic changes 

that are capable of altering significantly seedling development or enhancing plant-

bacteria interaction. Based on these results, we selected the 2.5 µM concentration for 

subsequent analyses, as it showed characteristic hypomethylation effects and 

demonstrated changes promoted by plant-bacteria interaction, particularly in the 

seedling shoot. 

 

 

Figure 3. Effect of the methylation inhibitor (5-azaC) on maize seedlings development at 7 DAI. 
Treatments included 2,5 µM 5-azaC and inoculation with H. seropedicae for 48 HAI. (A) Image 
showing the effect of the compound on seedling growth (Scale bar = 1 cm). (B, D, F) Measurements of 
shoot length, fresh mass, and dry mass, respectively. (C, E, G) Measurements of root length, fresh 
mass, and dry mass, respectively. Letters (a, b, c, d) indicate significant differences between 
treatments based on Tukey's test. DAI – Days after imbibition; HAI – Hours After Inoculation. In the 
graphs, the labels C, B, A, and AB correspond to Control, Bacteria, 5-azaC, and 5-azaC + and 
Bacteria, respectively. 

 

3.1.3.3. Quantification of DNA Methylation Induced by treatments 

 

To understand the effects of the hypomethylating agent 5-azaC on DNA 

methylation in maize roots, a quantification analysis of global DNA methylation, 

unmethylated cytosines, hemimethylation at CHG sites, and fully methylated CG sites 

was performed, as shown in Figure 4. As expected, a significant reduction in DNA 



 
 

 

methylation was observed in plants treated with 5-azaC, consistent with its reported 

role as a DNA methylation inhibitor. Likewise, the bacterial treatment (Herbaspirillum 

seropedicae) also caused a noticeable reduction in global DNA methylation, 

suggesting that the plant-bacteria symbiosis significantly impacts DNA methylation 

patterns. 

This reduction in DNA methylation correlates with the observed growth 

promotion in bacterial treatment (B), indicating that these epigenetic modifications 

may play a key role in the physiological responses of the plant. Notably, in plants 

treated with both 5-azaC and bacteria (AB), the levels of cytosine methylation were 

significantly lower than in plants treated with 5-azaC alone (A). This suggests an 

additive effect where bacteria may target specific DNA regions for hypomethylation 

that are distinct from those affected by the chemical inhibitor. 

Interestingly, phenotypic differences between treatments A and B (5-azaC and 

bacteria, respectively) were evident, as observed in Figure 3, despite their similar 

levels of hypomethylation. This reinforces the hypothesis that bacterial symbiosis 

induces specific hypomethylation patterns in DNA that are associated with growth 

promotion. 

 

Figure 4. Percentage of cytosine methylation in maize root DNA from seedlings treated with the 
methylation inhibitor 5-azaC at a concentration of 2.5 µM for 7 DAI and inoculated with H. 
seropedicae for 48 HAI. The graph displays global cytosine methylation (A), unmethylated cytosines 
(B), hemimethylation at CHG sites (C), and fully methylated CG sites (D). Treatments are represented 
as follows: C (Control), B (Bacteria), A (5-azaC), and AB (5-azaC + Bacteria). Data are presented as 
mean percentages with standard error. 

 

When comparing the results obtained through mass spectrometry-based DNA 

methylation analysis and those from MS-ISSR, differences in the methylation profiles 

were observed. Specifically, the percentage of unmethylated cytosines (Fig 4B) and 

hemimethylation at CHG sites (Fig 4C) showed distinct patterns of methylation. 

However, fully methylated CG sites (Fig 4D) showed a similar pattern with global 

methylation analysis, particularly in bacterial treatments, suggesting that the bacteria 

inoculation induced specific hypomethylation at gene loci. 



 
 

 

Furthermore, in treatment AB, there is a trend toward intermediate methylation 

patterns between treatments A and B (Fig 4). This is evidenced by a slight decrease 

in unmethylated cytosines and a slight increase in hemimethylation at CHG sites 

compared to treatment A. These results suggest an additive or synergistic interaction 

between 5-azaC and bacterial treatments in modulating DNA methylation patterns, 

particularly at CG-rich regions, which may underpin the observed phenotypic effects. 

 

3.1.3.4. Gene Expression Modulation Induced by treatments 

 

To investigate DNA methylation modulation and its relationship with 

phenotypic characteristics, we performed gene expression analysis in maize seedling 

roots treated with the DNA methylation inhibitor 5-azaC and inoculated with H. 

seropedicae. This analysis focused on genes associated with the maintenance and 

removal of DNA methylation, as well as with epigenetic regulation. 

The DRM2 (DOMAINS REARRANGED METHYLTRANSFERASE 2) gene, 

which encodes a methyltransferase essential for maintaining DNA methylation in 

previously methylated regions, showed significant expression changes across all 

treatments (Fig 5A). A marked decrease in expression was observed in the bacterial 

treatment (B) compared to the control (C). 

The DML (DEMETER-LIKE) gene, responsible for active demethylation and 

epigenetic reprogramming, was differentially expressed in all treatments. Both 

bacterial treatments (B and AB) showed reduced expression levels, suggesting that 

plant-bacteria interaction decreases DML expression (Fig 5B). However, no 

statistically significant changes were observed in the hypomethylation treatment (A). 

The MET (METHYLTRANSFERASE) gene, associated with CpG island 

methylation maintenance, hormonal regulation, stress response, and development, 

exhibited significantly reduced expression, particularly in the bacterial (B) and 

combined bacterial-hypomethylation (AB) treatments (Fig 5C). 

The MBD1 and MBD7 (METHYL-CPG BINDING DOMAIN PROTEINS) genes, 

which encode proteins that bind methylated DNA and are involved in transcriptional 

repression and interactions with other epigenetic factors, exhibited distinct 

expression patterns (Fig 5D.E). MBD1 showed reduced expression in B, A, and AB 

treatments, while MBD7 showed positive regulation in the AB treatment, contrasting 

with the negative regulation observed in B and A treatments. 



 
 

 

Genes involved in RNA processing and epigenetic regulation were also 

assessed. The SAMS (S-ADENOSYLMETHIONINE SYNTHETASE) gene, which 

participates in the biosynthesis of S-adenosylmethionine (SAM), a critical methyl 

donor for DNA, RNA, and protein methylation, exhibited reduced expression in 

treatments B, A, and AB compared to the control (Fig 5F). The SAHH (S-

ADENOSYL-L-HOMOCYSTEINE HYDROLASE) gene, an inhibitor of histone 

deacetylases, did not show any significant expression changes (Fig 5G). The DCL 

(DICER-LIKE) gene, essential for siRNA and miRNA biogenesis, was downregulated 

in all treatments (Fig 5H). The bacterial treatment (B) showed the lowest expression 

levels, while A and AB were also negatively regulated but less so compared to B. 

Furthermore, genes related to RNA directed DNA Methylation (RdDM) 

pathway, cell growth, development, and stress response, such as CLASSY (CLS) 1-2 

and CLASSY 3-4, were analyzed. The CLS 1-2 gene exhibited differential expression 

in all treatments (Fig 5I). Treatment B showed reduced expression, while A and AB 

were positively regulated, with AB showing the highest expression. The CSL 3-4 

gene exhibited increased expression in all treatments compared to the control, with 

treatment A being the most significantly expressed (Fig 5J). 

Finally, genes DNG101 and DNG 103 homologous of AtROS1 tuning the level 

of demethylase activity in response to methylation alterations, thus ensuring 

epigenomic stability, showed significant reductions in expression; DNG 101 exhibited 

decreased expression across treatments B, A, and AB, while DNG 103 also showed 

reduced expression but with less variation between treatments (Fig 5K.L). The AB 

treatment had the highest expression among the treatments for DMG 103. 

 



 
 

 

 

Figure 5. Expression of genes related to DNA methylation and epigenetic modulation (A–E); genes 
involved in RNA processing and epigenetic regulation (F–H); and genes associated with cell growth, 
development, and stress response (I–L) in maize seedlings treated with the methylation inhibitor 5-
azaC at a concentration of 2.5 µM for 7 DAI and inoculated with H. seropedicae for 48 HAI. Letters (a, 
b, c, d) indicate significant differences between treatments based on Tukey's test. Treatments are 
represented as follows: C (Control), B (Bacteria), A (5-azaC), and AB (5-azaC + Bacteria). 

 

  

3.1.3.5. Fluorescence Analysis in Maize Roots Induced by 5-azaC 

Treatment and H. seropedicae 

  

To investigate the interaction between maize seedlings and H. seropedicae, 

fluorescence microscopy was performed in order to detect the bacterial strain used 

(RAM10) that contains a chromosomal GFP fluorescent marker, allowing the 

visualization of bacterial colonization on the roots to confirm the successful 

interaction.  

As shown in Figure 6, a characteristic colonization was observed near the root 

hairs in treatments B (Bacteria) and AB (5-azaC and Bacteria), while no fluorescence 

was detected in the control (C) or in the treatment with 5-azaC alone (D), as 



 
 

 

expected. These results confirm that H. seropedicae RAM10 was able to colonize 

maize roots although the presence of the bacterial inoculum. 

  

  

Figure 6. Fluorescence microscopy analysis of maize seedling roots treated with the DNA 
methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae expressing 
the fluorescent marker GFP (RAM10) for 48 HAI. (A) Bacteria-only treatment, (B) 5-azaC + 
Bacteria, (C) Control, and (D) 5-azaC-only treatment. Longitudinal sections of the pellucid zone. Scale 
bar: 40 µm. 

 

Given this colonization pattern, a follow-up methodology was implemented to 

quantify the bacterial inoculum using CFU counts. Since only the GFP-tagged H. 

seropedicae strain fluoresces, this method allowed specific quantification of the 

inoculated bacteria. 

Figure 6 demonstrates the quantification of bacterial CFUs and their 

respective dilutions (Fig. 7A.B) and the total bacterial quantification via RT-PCR (Fig. 



 
 

 

7C). Treatments B and AB showed significant CFU presence, confirming the 

absence of contamination in the experiment. Additionally, the comparison between 

treatments B and AB revealed a statistically significant increase in bacterial 

colonization in the AB treatment (5-azaC + and Bacteria), suggesting that the 

hypomethylation induced by 5-azaC eased bacterial interaction and colonization. 

 

 

Figure 7. Quantification of bacterial inoculum in maize seedling roots treated with the DNA 
methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae for 48 HAI. 
(A) Quantification of colony-forming units (CFU/mL). (B) Visualization of CFUs and their serial 
dilutions. (C) Total bacterial quantification of H. seropedicae via RT-PCR. Treatments are represented 
as follows: C (Control), B (Bacteria), A (5-azaC), and AB (5-azaC + Bacteria). Different letters (a, b, c, 
and d) indicate significant differences among treatments based on Tukey’s test. 

 

RT-PCR quantification confirmed the higher abundance of H. seropedicae in 

treatments inoculated with bacteria (B and AB). However, RT-PCR also quantified 

endogenous Herbaspirillum strains already present in the maize microbiome. Control 

(Fig. 2) demonstrated that 5-azaC does not inhibit the growth of Herbaspirillum in the 

maize microbiome, even at varying concentrations, supporting the conclusion that the 

bacterial increase observed in treatment AB is due to the enhanced interaction 

between plant-inoculated bacteria. 

These findings suggest that hypomethylation induced by 5-azaC facilitates the 

colonization of exogenous bacteria like H. seropedicae in maize roots. In contrast, 

treatment B (Bacteria) showed less bacterial colonization, likely due to a stronger 

interaction between maize and its endogenous microbiota in the absence of the 

methylation inhibitor. The results highlight the potential of epigenetic modulation to 

enhance plant-microbe interactions, particularly with beneficial exogenous bacteria. 

 

 

 



 
 

 

3.1.3.6. Bacterial Distribution in Maize Roots After Treatments 

 

Following fluorescence microscopy, which confirmed the interaction between 

maize seedlings and H. seropedicae, scanning electron microscopy (SEM) was 

performed to visualize bacterial distribution among the treatments and examine the 

root microbiota. This analysis aimed to provide a detailed view of the spatial 

distribution of microorganisms in the root tissues under different treatments. 

As shown in Figure 8, no bacterial presence was detected in the control 

seedlings (C). SEM analysis demonstrated that the superficial sterilization of the 

seeds effectively removed external microbiota, leaving only the internal microbiome 

of the roots. This confirmed the absence or minimal presence of surface-associated 

bacteria in control roots. 

In the bacterial treatment (B), bacteria were distributed throughout the roots, 

including the root cap, elongation zone, and pellucid zone (Fig. 8). This uniform 

colonization aligns with observations from fluorescence microscopy. 

Interestingly, in the treatment with 5-azaC alone (A), SEM revealed a 

substantial fungal presence, particularly in the elongation zone (Fig. 8). This fungal 

colonization was also observed under bright-field microscopy (Figure S3), suggesting 

that the fungi were part of the internal microbiome of the root and not due to external 

contamination. These findings indicate that hypomethylation induced by 5-azaC may 

disrupt fungal regulation within the maize root microbiome, allowing for increased 

fungal growth. 

In the combined treatment (AB), bacteria from the inoculum were less 

prevalent in the root cap but they were prominently localized in the elongation and 

pellucid zones (Fig. 8). Notably, no fungal presence was observed in the AB 

treatment, indicating that the bacterial inoculum may have inhibited or altered the 

root's fungal microbiota in the root. This suggests a complex interaction between the 

internal microbiome, the introduced bacteria, and the hypomethylation effects 

induced by 5-azaC. 

These results highlight the influence of epigenetic modulation on composition 

of the root microbiota and the potential for H. seropedicae to modify or regulate 

internal fungal populations when introduced in combination with 5-azaC. 

 



 
 

 

 

Figure 8. Scanning electron microscopy of maize seedling roots treated with the DNA 
methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae for 48 HAI. 
The analysis highlights three root zones: root cap (images 1–6 and 19–24), elongation zone (images 
7–12 and 25–30), and root hair zone (images 13–18 and 31–36). Treatments are as follows: Control 
(C) includes images 1–3, 7–9, and 13–15; Bacteria (B) includes images 4–6, 10–12, and 16–18; 5-
azaC (A) includes images 19–21, 25–27, and 31–33; and 5-azaC + Bacteria (AB) includes images 22–
24, 28–30, and 34–36. 

 

3.1.3.7. Metataxonomic Analysis of Maize Root Microbiome under the 

Influence of 5-azaC and H. seropedicae 

  

A metataxonomic analysis was performed to understand how the native seed 

microbiota was altered by 5-azaC and H. seropedicae. The Venn diagram (Fig. 9A) 

shows unique and shared OTUs/ASVs across treatments. While groups C, B, and AB 

had similar values, the 5-azaC treatment (A) exhibited more than twice the number of 

unique microbial taxa, suggesting that DNA hypomethylation significantly reshapes 

the composition of the root microbiome.  



 
 

 

Alpha diversity analysis (Fig. 9B) confirmed significant differences, with the  A 

group showing a marked increase in diversity, whereas C, B, and AB displayed no 

significant variations. After 48 hours, bacterial interaction in AB did not significantly 

alter diversity, indicating a stabilizing effect.  

Beta diversity analysis using PCA (Fig. 9C) revealed distinct microbial profiles 

among treatments. The control group (C) clustered separately, while B and AB 

overlapped, suggesting a shared microbial composition. The A treatment formed an 

isolated cluster, reinforcing the impact of DNA hypomethylation on the structure of 

the microbiome.  

Hierarchical clustering via heatmap analysis (Fig. 9D) highlighted specific 

enriched bacterial taxa in response to 5-azaC. The AB treatment closely resembled 

control, with slight alterations, indicating that H. seropedicae strongly modulated the 

microbiome shifts induced by 5-azaC. 
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Figure 9. Variance analysis of the microbial community in maize seedling roots treated with the 
DNA methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae for 48 
HAI. (A) Venn diagram showing OTU/ASV analysis results. (B) Boxplot representing alpha diversity 
among treatments. (C) PCA plot illustrating beta diversity analysis (D) Sample Clustering HeatMap 
Analysis. Treatments are represented as follows: C (Control), B (Bacteria), A (5-azaC), and AB (5-
azaC + Bacteria). 

 

The taxonomic distribution of bacteria in maize seedling roots (Fig. 10) 

illustrates how treatments influenced microbiome composition. At the phylum level 

(Fig. 10A), Proteobacteria dominated across all treatments, but relative abundances 

varied significantly. Treatments B and AB showed an increase in Proteobacteria, 

expected due to H. seropedicae inoculation. In contrast, the 5-azaC treatment (A) led 

to the decrease in Proteobacteria and an increase in Bacteroidota, suggesting a 

microbial response to DNA hypomethylation.  



 
 

 

At the class level (Fig. 10B), roots treated with 5-azaC exhibited a higher 

proportion of Actinobacteria and Clostridia compared to other treatments. The 

presence of H. seropedicae in B and AB was confirmed by an enrichment of 

Gammaproteobacteria. 

At the family level (Fig. 10C), treatment A showed a drastic reduction in 

Oxalobacteraceae, nearly disappearing, while Rikenellaceae, Prevotellaceae, and 

Lachnospiraceae increased. These taxa were barely detected in C and B, and are 

present at lower levels in AB compared to A.  

At the genus level (Fig. 10D), Herbaspirillum was notably enriched in AB and 

B, as expected due to H. seropedicae inoculation. Interestingly, Herbaspirillum 

presence was almost absent in A, despite previous qPCR analysis detecting it in this 

treatment. Additionally, Muribaculum and Alistipes, present in A but absent in C and 

B, appeared suppressed in AB. 
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Figure 10. Taxonomic classification of bacterial communities in maize seedling roots treated 
with the DNA methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. 
seropedicae for 48 HAI. Taxonomic levels are represented as follows: (A) Phylum, (B) Class, (C) 
Family, (D) Genus. Treatments are represented as follows: C (Control), B (Bacteria), A (5-azaC), and 
AB (5-azaC + Bacteria). 

 

The functional characterization of the root microbiome (Fig. 11) provided 

further insights into how treatments influenced root-associated bacteria. Aerobic (Fig. 

11A), anaerobic (Fig. 11B), and facultative anaerobic bacteria (Fig. 10C) were 

enriched in treatment A, suggesting potential changes in root exudates or microbial 

interactions in response to DNA hypomethylation.  

Biofilm-forming bacteria (Fig. 11D) were particularly enriched in B and AB, 

indicating that H. seropedicae may promote microbial aggregation and root 

colonization and in contrast, treatment A showed a reduced enrichment. Mobile 

genetic elements (Fig. 11E) and stress-tolerant bacteria (Fig. 11F) were more 

abundant in B and AB, likely due to H. seropedicae treatments.  

The distribution of Gram-negative (Fig. 11G) and Gram-positive (Fig. 10H) 

bacteria varied significantly, with Gram-negative bacteria dominating in C, B, and AB, 

consistent with the presence of H. seropedicae.  

Interestingly, the analysis showed an increase in bacteria with pathogenic 

potential in B and AB (Fig. 11I), whereas treatment A lacked these bacteria in the 

roots. This suggests that 5-azaC modulates plant-microbe interactions, potentially 

suppressing the colonization of harmful microorganisms. 
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Figure 11. Characteristics of microbial groups in maize seedling roots treated with the DNA 
methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae for 48 HAI. 
(A) Aerobic bacteria, (B) Anaerobic bacteria, (C) Facultative anaerobes, (D) Biofilm-forming bacteria, 
(E) Presence of mobile genetic elements, (F) Stress tolerance, (G) Gram-negative bacteria, (H) Gram-
positive bacteria, and (I) Pathogenic potential. Treatments are represented as follows: C (Control), B 
(Bacteria), A (5-azaC), and AB (5-azaC + Bacteria). 

 

3.1.3.8. Proteomic Modulations Induced by Treatments 

 

To understand how alterations in DNA methylation, gene expression, and root 

microbiome composition impact the proteome of the root, a label-free proteomic 

analysis was performed to compare the different treatments. In total, 1,818 proteins 



 
 

 

were identified across the treatments. Comparisons were made between the 

treatments B/C, A/C, AB/A, and AB/B, allowing the identification of differentially 

accumulated proteins (DAPs). In Figure 12, up- (blue arrows) and down-accumulated 

proteins (red arrows) are highlighted for each comparison, with the proteins exclusive 

to a single treatment being excluded from the comparative analyses.  

Our analysis revealed differences in the concentration of the proteins the A/C 

and AB/B comparison. In the A/C comparison, 1,789 proteins were identified, with 54 

up-accumulated, 66 down-accumulated, and 29 exclusive proteins (17 from A and 12 

from C). In the AB/B comparison, 1,783 proteins were identified, with 96 up 

accumulated, 59 down accumulated, and 32 exclusive proteins (13 from AB and 19 

from B). 
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Figure 12. Differentially accumulated proteins in maize seedling roots treated with the DNA 
methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae for 48 HAI. 
Volcano plot of differentially accumulated proteins. Blue dots: up-accumulated proteins (log2 FC ≥ 0.5, 
P ≤ 0.05). Red dots: down-accumulated proteins (log2 FC ≤ -0.5, P ≤ 0.05). (A) Comparison B/C. (B) 
Comparison A/C. (C) Comparison AB/A. (D) Comparison AB/B. 



 
 

 

To determine the functional annotation of the differentially accumulated 

proteins, a KEGG functional enrichment analysis was conducted using ShinyGO. 

Tthe differentially accumulated proteins with their respective functional annotations 

for both up-regulated and down-regulated proteins in the B/C, A/C, AB/A, and AB/B 

comparisonsare shown in Figure 13   

It was observed that metabolic pathways such as the citric acid cycle (TCA) 

displayed differential regulation across comparisons. In the B/C treatment, this 

pathway was both up-regulated and down-regulated, while in the AB/B treatment, a 

down-regulation (negative regulation) was observed. The phenylpropanoid 

biosynthesis pathway was regulated in almost all comparisons, with proteins being 

both up- and down-accumulated, except in the AB/B comparison, where no positive 

regulation was observed.  

Carbon metabolism was also differentially expressed in various comparisons, 

except the A/C and AB/A comparisons. Carbon fixation in photosynthetic organisms 

was down-regulated only in the AB/A comparison. Furthermore, the 2-Oxocarboxylic 

acids metabolism pathway was up-regulated in the B/C comparison and down-

regulated in the AB/B comparison, suggesting that the interaction between the plant 

and the bacterium without hypomethylation may regulate this pathway.  

Another key finding was the positive regulation of proteins related to nitrogen 

fixation, observed in the AB/A and AB/B comparisons. This result indicates that 

hypomethylated plants inoculated with the bacterium exhibited higher expression of 

these proteins. Lastly, in the B/C comparison, a negative regulation of a plant-

pathogen interaction-related protein was observed, suggesting an impact of the 

bacterial interaction in plant response. 



 
 

 

 

Figure 13. Differentially accumulated proteins in maize seedling roots treated with the DNA 
methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. seropedicae for 48 HAI. 
Comparisons: B/C (A,B), A/C (C,D), AB/A (E,F), AB/B (G,H). KEGG functional enrichment of 
differentially accumulated proteins, with bubble maps showing up-regulated (A,C,E,G) and down-
regulated (B,D,F,H) pathways. 

 



 
 

 

3.1.3.9. Metabolic pathways altered by 5-azaC treatment and bacterial 

inoculation 

 

Proteomic analysis of proteins differentially accumulated revealed significant 

variations in the metabolic pathways among the conditions C, B, A, and AB (Table 1). 

In the Citrate cycle (TCA cycle), the comparison B/C showed that 

DIHYDROLIPOYLLYSINE-RESIDUE SUCCINYLTRANSFERASE 

(Zm00001eb085130_P001) and ACONITATE HYDRATASE 

(Zm00001eb105870_P004) were upregulated, whereas MALATE 

DEHYDROGENASE (Zm00001eb045790_P003) and DIHYDROLIPOYLLYSINE-

RESIDUE SUCCINYLTRANSFERASE (Zm00001eb421290_P001) were 

downregulated. Interestingly, DIHYDROLIPOYLLYSINE-RESIDUE 

SUCCINYLTRANSFERASE exhibited both up- and downregulation depending on the 

comparison. Additionally, in the AB/B comparison, ACONITATE HYDRATASE 

(Zm00001eb105870_P004) was exclusively downregulated. 

In the carbon metabolism pathway, the enzymes D-3-PHOSPHOGLYCERATE 

DEHYDROGENASE (Zm00001eb040890_P001), MALATE DEHYDROGENASE 

(Zm00001eb045790_P003), PYRUVATE KINASE (Zm00001eb060760_P002), 

GLUCOSE-6-PHOSPHATE 1-DEHYDROGENASE (Zm00001eb079220_P001), and 

MALIC ENZYME (Zm00001eb285890_P009) were upregulated in the AB/B 

comparison. Conversely, 3-HYDROXYISOBUTYRYL-COA HYDROLASE 

(Zm00001eb409740_P002) was downregulated in the AB/A comparison. Moreover, 

MALATE DEHYDROGENASE (Zm00001eb134330_P001) and MALIC ENZYME 

(Zm00001eb283570_P002) were also downregulated in the AB/A comparison 

regarding carbon fixation in photosynthetic organisms. 

The DIHYDROXY-ACID DEHYDRATASE CHLOROPLASTIC 

(Zm00001eb175970_P003) enzyme, belonging to the 2-oxocarboxylic acid 

metabolism, was upregulated in the B/C comparison and downregulated in the AB/B 

comparison. In the nitrogen metabolism pathway, the enzymes CYANATE 

HYDRATASE (Zm00001eb046120_P002) and CARBONIC ANHYDRASE 

(Zm00001eb158800_P001) were upregulated in the AB/A comparison. Additionally, 

GLUTAMINE SYNTHETASE (Zm00001eb054990_P003; Zm00001eb399860_P004) 

was upregulated in the AB/B comparison. In the plant-pathogen interaction pathway, 

the enzymes HISTIDINE KINASE/HSP90-LIKE ATPASE DOMAIN-CONTAINING 



 
 

 

PROTEIN (Zm00001eb315880_P002) and HEAT SHOCK PROTEIN 90-2 

(Zm00001eb316410_P002) were downregulated in the B/C comparison. 

In the phenylpropanoid biosynthesis pathway, we identified 11 different 

PEROXIDASE-RELATED proteins, with PEROXIDASE 42 being the only one with a 

distinct annotation. These peroxidases were upregulated in two instances in B/C 

(Zm00001eb109960_P001; Zm00001eb276250_P002), three in A/C 

(Zm00001eb109960_P001; Zm00001eb276250_P002; Zm00001eb330550_P002), 

three in AB/A (Zm00001eb111430_P002; Zm00001eb195200_P001; 

Zm00001eb281180_P002), and three in AB/B Zm00001eb017950_P001; 

Zm00001eb083140_P001; Zm00001eb291850_P001), while being downregulated 

once in B/C (Zm00001eb354680_P001), five times in A/C Zm00001eb017950_P001; 

Zm00001eb083140_P001; Zm00001eb281180_P002; Zm00001eb291850_P001; 

Zm00001eb354680_P001), and twice in AB/A (Zm00001eb251340_P001; 

Zm00001eb282430_P002). Furthermore, PHENYLALANINE AMMONIA-LYASE 

(Zm00001eb185260_P001; Zm00001eb247650_P001) was downregulated in the 

B/C and A/C comparisons. 



 
 

 

Tabele 1. Differentially regulated enzymes in selected pathways in maize seedling roots treated 
with the DNA methylation inhibitor 5-azaC (2.5 µM) for 7 DAI and inoculated with H. 
seropedicae for 48 HAI. Comparisons: B/C, A/C, AB/A, AB/B. "Up" indicates upregulation and "down" 
indicates downregulation 

 

 

3.1.4. DISCUSSION 

 

The compound 5-azaC is a widely used methylation inhibitor for studying the 

processes involved in plant development under hypomethylation conditions [41,42]. 

This compound is a cytosine analog and can be randomly incorporated into the newly 

synthesized DNA strand, replacing natural cytosine. Consequently, it interferes with 

the activity of DNA methyltransferases, preventing normal DNA methylation and 

leading to genomic hypomethylation in different regions [43–45]. These effects make 

5-azaC a valuable tool for investigating the role of DNA methylation in regulating 

plant growth and development. 

To study the interaction between hypomethylated plants and plant growth-

promoting bacteria, a bacterial growth curve was performed to assess whether the 

https://paperpile.com/c/CO3EOw/jad0+FCmC
https://paperpile.com/c/CO3EOw/kzYE+JIUB+badW


 
 

 

compound interfered with the bacterial development. We observed that the 

interaction between 5-azaC and H. seropedicae did not inhibit bacterial growth at the 

tested concentrations, as shown in Figure 1. However, Escherichia coli RecA and 

lexA mutants were highly sensitive to 5-azaC [46,47], and Bacillus subtilis also 

exhibited growth inhibition [46]. Additionally, biofilm formation in Streptococcus 

pneumoniae was inhibited by 5-azaC [48], demonstrating that the hypomethylating 

effect can impact certain bacterial groups, which was not the case for H. 

seropedicae. 

The effect of 5-azaC on maize seedling development resulted in reduced root 

growth, fresh mass, and dry mass, like the findings in soybean [48,49]. However, in 

soybean, these effects were observed at higher concentrations, whereas in our 

study, effects at 100 μM were comparable to those at 2.5 μM, indicating that the 

inhibitor has a stronger morphological effect on monocotyledons than on 

dicotyledons. In Populus nigra, 5-azaC also reduced plant development [42]. In 

bamboo, hypomethylation promoted greater lateral root development, contrary to our 

results, where root growth was reduced [50]. In Arabidopsis seedlings, 

hypermethylation treatment affected fresh and dry mass and increased flowering 

[51]. 

The early bio-stimulation effect of H. seropedicae inoculation was observed in 

other studies involving maize and this bacterium, where increased fresh and dry 

mass in both root and shoot was reported [51,52]. In rice, however, no biomass 

increase due to H. seropedicae was noted, suggesting that H. seropedicae promotes 

biomass accumulation differently depending on the plant species. 

Global methylation quantification demonstrated that 5-azaC treatment had a 

hypomethylating effect (Fig. 4). Bacterial treatment modulated methylation similarly to 

5-azaC, as observed in the group treated solely with the bacterium. When assessing 

the combined effect of the methylation inhibitor and bacteria, different genomic 

regions were affected, indicating an interaction between these treatments. When 

analyzing the demethylation pattern, we found that bacteria did not induce CHG 

hemimethylation, with 5-azaC being the primary modulator of this pathway. 

Interestingly, bacterial treatment tended to increase CHG methylation levels, as 

observed in our data. In total CG methylation, both bacterial treatment and 5-azaC 

treatments, including the combined treatment, reduced methylation levels. 

https://paperpile.com/c/CO3EOw/aniR+bvtz
https://paperpile.com/c/CO3EOw/aniR
https://paperpile.com/c/CO3EOw/F19L
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https://paperpile.com/c/CO3EOw/TKr9+MwXM


 
 

 

Studies in bamboo (Bambusa mimoso) found that 5-azaC reduced CG and 

CHG methylation levels [50]. In Arabidopsis thaliana, both zebularine and 5-azaC 

reduced methylation levels [50][53].  The interaction between plants and plant 

growth-promoting bacteria was shown to modulate methylation [7]. In plant-pathogen 

interactions, hypomethylation was observed as a plant response [54–56]. 

Expression analyses of genes involved in epigenetic regulation showed that H. 

seropedicae and 5-azaC significantly influence the expression of epigenetic genes in 

maize roots. The reduction in DRM2 and MET expression in bacterial treatments 

suggests an impact on DNA methylation maintenance [57–60], possibly reducing 

global methylation. Simultaneously, lower DML expressions in B and AB treatments 

suggest that bacteria may affect active demethylation mechanisms, reinforcing the 

hypothesis of epigenetic reprogramming [61,62]. 

MBD1 and MBD7, linked to recognition of methylated cytosines, showed 

distinct patterns, with MBD7 being induced in the AB treatment, suggesting an 

epigenetic adjustment to hypomethylation and bacterial interaction [63–65]. The 

reduced SAMS expression across all treatments indicates a possible decrease in 

methyl group availability through SAM, potentially affecting both DNA methylation 

and broader regulatory processes [66,67]]. 

Lower DCL expression suggests reduced siRNA and miRNA biogenesis, 

which may alter post-transcriptional regulation of essential genes for growth and 

stress responses [68–70]. Additionally, the differential regulation of CLS 1-2 and CLS 

3-4 points to impacts on RdDM lays a crucial role in transposon silencing, genome 

stability, and regulation of gene expression, particularly during developmental 

transitions and stress responses, with a potential compensatory adjustment in the AB 

treatment [71–74]. 

Finally, the reduced expression of DNG 101 and DNG 103, homologous of 

AtROS1, may be associated with the repression of demethylation in the genome [75–

77]. 

The colonization of maize roots by H. seropedicae was demonstrated through 

the quantification of the inoculum using a fluorescence-based colony-forming unit 

(CFU) methodology, developed in this study. Validation of this approach was 

performed using specific primers for H. seropedicae quantification. These primers 

were originally designed by Da Silva et al. [33] to evaluate the inoculation of this 

bacterium in sugarcane. In the aforementioned study, an initial increase in the 

https://paperpile.com/c/CO3EOw/iZZg
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bacterial population was observed, followed by stabilization over time, approaching 

control levels. 

Fluorescence microscopy confirmed bacterial colonization in the roots, as 

fluorescent bacilli were detected exclusively in the inoculated treatments. H. 

seropedicae was capable of colonizing both the surface and internal tissues of maize 

roots as early as 30 min and 24 h post-inoculation [78]. This diazotrophic endophytic 

bacterium colonizes the internal tissues of the host plant by entering through root 

fissures. After infection, it spreads and colonizes other tissues [79]. Scanning 

electron microscopy revealed a more intense colonization in the root cap region of H. 

seropedicae-treated roots. However, in hypomethylated and inoculated roots, H. 

seropedicae presence was barely noticeable, possibly due to structural modifications 

induced by 5-azaC [49,79]. 

In the control samples, we verified that the seed decontamination methodology 

effectively removed most native rhizosphere bacteria, as neither bacteria nor fungi 

were detected in the control roots. However, in roots treated with the 

hypomethylating agent 5-azaC, a significant presence of fungi was observed, 

suggesting that this compound alters the root microbiome. Interestingly, in 

hypomethylated roots inoculated with H. seropedicae, fungi were not detected, 

indicating that this bacterium may have an inhibitory effect on fungal proliferation. 

Metataxonomic analysis of maize roots treated with 5-azaC and inoculated 

with H. seropedicae revealed significant modifications in the microbiota. The 5-azaC 

treatment (A) caused major shifts in microbial composition, increasing diversity and 

altering taxonomic groups, particularly with a decrease in Proteobacteria and an 

increase in Bacteroidota [80,81]. These findings suggest that DNA hypomethylation 

significantly affects the bacterial community. In contrast, the AB treatment did not 

show such drastic changes, indicating that the presence of Herbaspirillum may 

mitigate the effects of hypomethylation. 

Functional analysis indicated that hypomethylation favored aerobic and 

anaerobic bacteria, whereas Herbaspirillum enhanced biofilm-forming bacteria and 

those with increased stress resistance, suggesting that H. seropedicae inoculation 

may promote bacterial aggregation and root colonization. Moreover, 5-azaC 

treatment was associated with a reduction in potentially pathogenic bacteria, 

suggesting a protective effect [82–84]. These findings highlight the complex interplay 
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between epigenetic modulations and microbiota, with implications for plant 

microbiome manipulation and the promotion of beneficial interactions. 

Proteomic analysis of maize roots treated with 5-azaC and inoculated with H. 

seropedicae revealed significant alterations in the proteome composition, indicating 

modulations induced by both DNA hypomethylation and bacterial presence. The 

results showed that inoculation with H. seropedicae in the B/C treatment increased 

the number of proteins involved in metabolic processes [85,86], while treatment with 

5-azaC in A/C led to an increase in proteins associated with stress response and 

phenylpropanoid biosynthesis [87,88]. The presence of Herbaspirillum in the AB 

treatment exhibited an intermediate proteomic modulation, with some effects of 5-

azaC attenuated. This also suggests a synergistic interaction between the plant and 

bacteria, favoring the expression of nitrogen fixation-related proteins, as observed in 

the AB/A and AB/B comparisons. 

Functional analysis using KEGG revealed significant alterations in metabolic 

pathways among different treatments (C, B, A, and AB), suggesting that bacterial 

inoculation and epigenetic modifications impact distinctly, the plant metabolism. 

In the citrate cycle (TCA), a complex modulation of the involved enzymes was 

observed. The upregulation of DIHYDROLIPOYLLYSINE-RESIDUE 

SUCCINYLTRANSFERASE and ACONITATE HYDRATASE in the B/C comparison 

suggests an increase in metabolic activity in plants treated with H. seropedicae. 

Conversely, the downregulation of MALATE DEHYDROGENASE and another 

isoform of DIHYDROLIPOYLLYSINE-RESIDUE SUCCINYLTRANSFERASE may 

indicate a rerouting of energy flow, potentially influenced by the presence of the 

bacterium. Interestingly, the differential regulation of DIHYDROLIPOYLLYSINE-

RESIDUE SUCCINYLTRANSFERASE among different comparisons suggests an 

adaptive metabolic response to the treatment. It is noted that citric acid synthase 

expression in maize during germination and in response to light is regulated by 

promoter methylation of corresponding genes [89]. 

In carbon metabolism, the upregulation of enzymes such as D-3-

PHOSPHOGLYCERATE DEHYDROGENASE, MALATE DEHYDROGENASE, and 

PYRUVATE KINASE in the AB/B comparison indicates an activation of glycolytic 

pathways and secondary metabolism, possibly as a response to the combined 

treatment of 5-azaC and bacterial inoculation [90,91]. The downregulation of 3-
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HYDROXYISOBUTYRYL-COA HYDROLASE in the AB/A comparison may indicate 

an adjustment in amino acid degradation and intermediate carbon metabolism [92]. 

In nitrogen metabolism, the upregulation of CYANATE HYDRATASE and 

CARBONIC ANHYDRASE in the AB/A comparison suggests an increase in the 

availability of assimilable nitrogen forms, which may be related to the combined effect 

of 5-azaC and bacterial inoculation [93,94]. The increased expression of 

GLUTAMINE SYNTHETASE in the AB/B comparison supports the hypothesis of 

enhanced nitrogen fixation and utilization in these treatments [95]. 

Regarding plant-pathogen interactions, the downregulation of HISTIDINE 

KINASE/HSP90-LIKE ATPASE DOMAIN-CONTAINING PROTEIN and HEAT 

SHOCK PROTEIN 90-2 in the B/C comparison may indicate an alteration in stress 

response and plant recognition of bacterial treatment [96–99]. 

Phenylpropanoid biosynthesis was also significantly altered, with various 

differentially expressed peroxidases. The upregulation of some peroxidases in B/C 

and AB/B may be associated with an increase in antioxidant defense and cell wall 

reinforcement, while their downregulation in other comparisons may indicate a 

physiological adjustment to experimental conditions[100–102]. The downregulation of 

PHENYLALANINE AMMONIA-LYASE in the B/C and A/C comparisons reinforces the 

hypothesis that bacterial inoculation and epigenetics influence the synthesis of 

phenolic compounds and plant responses to the environment[103–105] . 

These results highlight that the interaction between epigenetics and PGPB 

bacteria directly impacts essential metabolic processes. The increased activity of 

enzymes related to carbon and nitrogen metabolism suggests a potential 

improvement in plant metabolic efficiency, particularly in combined treatments. On 

the other hand, the altered expression of defense-related proteins suggests that 

epigenetic regulation may play a role in plant adaptation to microbial environments. 

 

3.1.5. CONCLUSIONS 

 

We concluded that 5-azaC, at the tested concentrations, does not interfere 

with the development of H. seropedicae. We also demonstrated that it is possible to 

inoculate a plant growth-promoting bacterium while the plants are under the effect of 

the hypomethylating agent. 
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The interaction between plants and bacterium induces global DNA 

hypomethylation in specific regions, promoting better plant development. However, 

the hypomethylation caused by 5-azaC does not result in the same observed 

improvement and modulates different methylation patterns compared to the 

modifications induced by the bacterium. 

Variations in gene expression and differences in expression profiles indicate 

that the methylation modulation induced by the bacterium and 5-azaC has distinct 

effects among the treatments. 

The bacterial inoculum tends to colonize the roots of hypomethylated 

seedlings more efficiently. Additionally, treatment with 5-azaC alters the root 

microbiota, making it more susceptible to fungal colonization. However, the 

inoculation of H. seropedicae in hypomethylated seedlings leads to a significant 

reduction in fungal growth in the roots. 

5-azaC drastically modifies the root microbiota of hypomethylated seedlings, 

while inoculation with H. seropedicae tends to restore the microbiota to a state like 

the control, although some persistent modifications remain. 

Proteomic analysis revealed that hypomethylation induced by 5-azaC alters 

protein expression in plant roots. Distinct proteomic profiles were observed among 

the treatments, suggesting that epigenetic regulation influences essential biological 

pathways. The interaction between plant-bacterium and hypomethylated plant-

bacterium exhibits unique proteomic signatures, highlighting the complexity of the 

molecular mechanisms involved in response to treatment. 

These findings contribute to a better understanding of the role of DNA 

methylation in regulating pathways associated with pathogen defense responses, 

adaptation to abiotic stress, and seedling development in maize. Furthermore, the 

proteomic data provides new insights into how hypomethylation affects plant-

microorganism interactions. 

Our results demonstrate that, regardless of 5-azaC treatment, H. seropedicae 

is capable of colonizing maize roots. Furthermore, inoculum quantification suggests a 

greater penetration and establishment capacity of the bacterium in hypomethylated 

plants, highlighting a potential epigenetic impact on plant-microorganism interactions. 

 

 

 



 
 

 

3.1.6. Supplementary Material 

 

Table S1: Primers used for qRT-PCR analysis 

Primer Foward Reverse 

ZmTubAlfa3 GCGCACCATCCAGTTCGT CTGGTAGTTGATTCCGCACTTG 

ZmDRM2_F CAAGCACAGGGAAGTAGAGG GATCTGTCCACTCGTCTTGAC 

ZmSAMb_F TGTTTGGGTATGCGACTGAC TCCATTCTTGCGAACCTCC 

ZmSAHH TTCCGTCACCAAGAGCAAG GACATCACCGTATCCGCAG 

ZmMBD1 AGGAAATTAAGAACAAGAGGCAAC CCTTGACTTTCTCGCTAATGC 

ZmMBD7 GTGATTATGGGCGGTGACTAC GGCTTTTGTACGCTGGATTTG 

ZmDML CCTACCCCATACTTATTGGAA TTGCTAAAATCGCCTCCCA 

ZmMET GCCAACACATTCCGAAACG CCCGTACAGTCCTTTCCAC 

ZmDCL CCTTGATAGTGGGTGTGCTAC TCTAATCCTTCGGCTTGCTG 

ZmCLS 1-2  CCATCTTCCGCTGATAGTCAAG TGCTCTCATGAACGACTTCTG 

ZmCLS 3-4 CGTGGGAAGCATGAATTTGTT TTTCACGCCTTTGTCATTTGG 

ZmDNG 103 CCATGCTGTGACCCTCAAATG CTCTGCAGTACAATTCTGGCAC 

ZmDNG 101 CCAGATGATCCCTGCCATATCTTC GGCATCGATCGARRGTGCAGTTTC 

Hs54C ATTCACGCTCCCTCGACGAC CGGGCTTGGCGTTGGTGACG 

 

Table S2: ISSR primers used for cytosine methylation pattern analysis 

Primer Loci Sequencia (5’-3’) Ta (°C) 

ISSR-06 UBC- 809 AGAGAGAGAGAGAGAGG 48 

ISSR-10 UBC- 823 TCTCTCTCTCTCTCTCC 48 

ISSR-14 UBC- 829 TGTGTGTGTGTGTGTGC 53 

ISSR-15 UBC- 830 TGTGTGTGTGTGTGTGG 52 

ISSR-21 UBC- 841 GAGAGAGAGAGAGAGAYC 48 

ISSR-25 UBC- 847 CACACACACACACACARC 53 

ISSR-31 UBC- 859 TGTGTGTGTGTGTGTGRC 54 

 

 



 
 

 

Table S3 Strategy used to interpret different banding patterns and quantify genome 
methylation percentage 

Banding Pattern 
Restriction Sites Interpretation 

DNA/ Hpa II/ MspI 

1/1/1 5'CCGG3' Unmethylated cytosines 

1/0/1 5'CmCGG3' Fully methylated CG sites 

1/1/0 5'mCCGG3' Hemimethylation at CHG sites 

1/0/0 

5'mCmCGG3 

' 5'CCNG3' 

Methylation on both cytosines or unknown 

mutation 

 

 

 

Supplementary Figure S 1 Effect of the methylation inhibitor (5-azaC) on maize seedlings 
development at 7 DAE. Treatments included 25 µM 5-azaC and inoculation with H. seropedicae 
for 24 HAI. (A) Image showing the effect of the compound on seedling growth (Scale bar = 1 cm). (B, 
D, F) Measurements of shoot length, fresh mass, and dry mass, respectively. (C, E, G) Measurements 
of root length, fresh mass, and dry mass, respectively. Letters (a, b, c, d) indicate significant 
differences between treatments based on Tukey's test. DAE – Days After Emergence; HAI – Hours 
After Inoculation. In the graphs, the labels C, B, A, and AB correspond to Control, Bacteria, 5-azaC, 
and 5-azaC + Bacteria, respectively 

 

 



 
 

 

 

Supplementary Figure S2 Effect of the methylation inhibitor (5-azaC) on maize seedlings 
development at 7 DAE. Treatments included 0,25 µM 5-azaC and inoculation with H. 
seropedicae for 24 HAI. (A) Image showing the effect of the compound on seedling growth (Scale 
bar = 1 cm). (B, D, F) Measurements of shoot length, fresh mass, and dry mass, respectively. (C, E, 
G) Measurements of root length, fresh mass, and dry mass, respectively. Letters (a, b, c, d) indicate 
significant differences between treatments based on Tukey's test. DAE – Days After Emergence; HAI 
– Hours After Inoculation. In the graphs, the labels C, B, A, and AB correspond to Control, Bacteria, 5-
azaC, and 5-azaC + Bacteria, respectively. 

 

 

Supplementary Figure S3 Supplementary Figure S4. Microscopy analysis of maize seedling 
roots treated with the DNA methylation inhibitor 5-azaC (2.5 µM) for 7 DAE. Fungi present in the 
longitudinal sections of the pellucid zone. 
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