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Famous for its blind cavefish and Darwin’s finches, Latin America is home to some of the richest
biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated
naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as
Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the
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study of embryology and evolutionary thinking. But, what are the historical and present contribu-
tions of the Latin American scientific community to Evo-Devo? Here, we provide the first compre-
hensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of
research based on endemic species, focusing on body plans and patterning, systematics, physiol-
ogy, computational modeling approaches, ecology, and domestication. Literature searches reveal
that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators
of productivity, it has not stabilized yet, because it relies on few and sparsely distributed labo-
ratories. Coping with the rapid changes in national scientific policies and contributing to solve
social and health issues specific to each region are among the main challenges faced by Latin
American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolution-
ary Developmental Biology played a pivotal role in bringing together Latin American researchers
eager to initiate and consolidate regional and worldwide collaborative networks. Such networks
will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of
Latin America, bound to be an almost infinite source of amazement and fascinating findings for
the Evo-Devo community. J. Exp. Zool. (Mol. Dev. Evol.) 00:1–36, 2016. C© 2016 Wiley Periodicals,
Inc.
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“Evolutionism in general from mollusks and birds to mam-
mals: what, finally, Empedocles said and Aristotle wrote”
title in Léon Croizat’s Space, Time, Form (’64:481)

INTRODUCTION
Evolution and development are two fields in biology that were
considered to be associated and complementary to each other
since their conception. Just 4 years after publication of Darwin’s
opus magna, Fritz Müller proposed what came to be the first
Evo-Devo explanation of von Baer’s laws of embryology, which
soon became further expanded in Ernst Haeckel’s biogenetic law
(von Baer, 1828; Darwin, 1859; Haeckel, 1866; Müller, 1869). At
the end of the nineteenth century, the philosophical rift between
naturalism and experimentalism split these twin fields apart. As
a result, evolutionary biology and developmental biology re-
mained mostly isolated from each other until the second half
of the twentieth century, when foundational developmental ge-
netic experiments started rebuilding bridges between the devel-
opment and evolution of form and function (Raff and Kaufman,
’83). The pioneering works of Richard Goldschmidt and Stephen
Jay Gould (Goldschmidt, ’40; Gould, ’77a, ’77b) eventually led
to 1981’s Dahlem Workshop on Evolution and Development,
which set out an agenda to “pry open the black box [of develop-
ment]” (Haag and Lenski, 2011) and became an early milestone
of modern Evo-Devo. Since then, a number of highly influential
books (e.g., Raff and Kaufman, ’83; Gerhart and Kirschner, ’97;
Carroll et al., 2005) have inspired researchers to combine evolu-

tionary and developmental approaches. Evo-Devo has proven
to be a dynamic, multidisciplinary and hotly debated field
(Gilbert et al., ’96; Sommer, 2009; Parsons and Albertson, 2013;
Wray et al., 2014; Moczek et al., 2015; Pieretti et al., 2015;
Roux et al., 2015). It has fostered the establishment of several
specialized journals (e.g., Evolution & Development; Evo-Devo;
Development, Genes, and Evolution; Journal of Experimental Zo-
ology, Part B: Molecular and Developmental Evolution), journal
sections (e.g., Evolution of Developmental Control in Develop-
mental Biology; Evolutionary Developmental Biology in Fron-
tiers in Ecology and Evolution; Evolutionary Developmental Bi-
ology in Neotropical Biodiversity), and scientific societies (Euro
Evo-Devo and PanAm Evo-Devo). Hence, the number of articles
that mention “Evo-Devo” or equivalent terms and synonyms per
year has been increasing steadily since the mid-1990s (Fig. 1A).
In Latin America, Evo-Devo is only starting to emerge when
compared to scientific output in the rest of the world (Fig. 1A),
but also displays a pronounced and steady growth in its use
as a concept in the scientific literature (Fig. 1B). As part of the
Latin American community, we took advantage of the inaugu-
ral meeting of the PanAmerican Society for Evo-Devo (August
5–9, 2015, in Berkeley, CA) to organize a workshop aimed at
discussing the current challenges of Evo-Devo in Latin Amer-
ica (Lesoway, 2016; Specht, 2016). One of the issues identified
in this workshop was the lack of visibility of Latin American
research. In this review, we sought to highlight the work of fore-
runners of Evo-Devo research in Latin America and to comment
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Figure 1. Usage of the word “Evo-Devo” (and all its synonyms in
English, Spanish, or Portuguese) expands rapidly in the world sci-
entific literature in the mid-1990s, and only 5 years later in Latin
America. (A) Number of articles that use “Evo-Devo” or equiva-
lent terms in the world (dark blue squares) and in Latin America
(light blue circles); (B) number of articles that use “Evo-Devo” or
equivalent terms in Latin America only (light blue circles). Syn-
onyms used in the Scopus database search (1906–2016): “evo-
devo” or “evodevo” or “evolutionary developmental biology” or
“evolution and development” or “evolution & development” or “bi-
ología del desarrollo evolutiva” or “biologia del desarrollo evo-
lutiva” or “biología evolutiva del desarrollo” or “biología evolu-
tiva del desarrollo” or “biologia do desenvolvimento evolutiva”
or “biologia evolutiva do desenvolvimento”. South-up maps or
upside down maps, as proposed by Uruguayan artist Joaquín
Torres García (1874–1949) or Argentinean cartoonist Quino
(1932–present).

on cutting-edge Evo-Devo research carried out by several groups
in the region. It is clear that the great and unique biodiver-
sity in Latin America contributes to understanding fundamental
principles of evolution, Evo-Devo, or Ecological Evo-Devo (Eco-
Evo-Devo); thus, researchers from this region are best poised
to address many important and interesting questions in the
field.

LATIN AMERICA: A LIVING LABORATORY FOR EVO-DEVO
RESEARCH
One can only marvel at the staggering biodiversity of Latin
America. Three of five leading biodiversity hotspots (Tropical
Andes, Brazil’s Atlantic Forest, and Caribbean) are located in this
region, which together holds nearly 12% of the world’s endemic
plant species (Myers et al., 2000). This is not surprising know-
ing that the Neotropics are estimated to house about 100,000
plant species (Stoll, 2012). Furthermore, in a single hectare of
the Western Amazon over 300 species of trees can be found, the
same number of species found in the whole of Eastern North
America (Wade, 2015). If Mesoamerica is included into the bio-
diversity hotspots mentioned above, these four regions alone
serve as shelter to 15% of the world’s endemic vertebrate species
(Myers et al., 2000). The Neotropics are estimated to have
40% (approximately 4000) of bird species in the world
(Stotz et al., ’96). Similarly, South America alone contains a
third (approximately 1700) of all anuran species, with nearly
96% of these being endemic to the region (Duellman, ’99;
www.amphibiaweb.org).

Present-day diversity is the result of millions of years of
biologic, oceanographic, geologic, and climatologic changes.
Present day diversity in the Neotropics is proposed to have
been generated by events dating back to the early Miocene
(15–23 Mya) when the Caribbean sea poured into South Ameri-
can northwestern regions forming an enormous marine estuary
about the size of Bolivia or Colombia (approximately 1,100,000
km2), a tangle of saltwater, freshwater, and terrestrial habitats
that prompted speciation (hence, pink dolphins and stingrays in-
habit the Amazon river). The uplifting of the Andes (10–65 Mya)
accelerated speciation events as it generated environmental al-
titudinal clines, mountaintops (known as Páramos) (Madriñan
et al., 2013), and isolated valleys, trapping precipitation, and in-
ducing the formation of lakes and rivers (Wade, 2015). Between
14 and 3.5 Mya, South and North America joined as the Isth-
mus of Panama arose from the seas when the Central American
volcanic arc collided with South America. Through this narrow
strip of land armadillos, opossums, capybaras, giant sloths, por-
cupines, and terror birds crossed from south to north, whereas
horses, parrots, peccaries, rabbits, deer, llamas, bears, cougars,
and saber-toothed cats migrated from north to south (Carrillo
et al., 2014). In fact, South American porcupines can be found
in Alaska today as a result of this large-scale event of migration
and radiation (Wood, ’50). Many plants, insects, fungi, and fresh-
water fish crossed both sides as well (Stone, 2013). Although the
timing of closure of the isthmus remains contentious, the rich
biodiversity in Central and South America serve as evidence for
the explosive adaptive radiation that followed this event (Bacon
et al., 2015; Stone, 2013).

Naturalists from different parts of the world have recog-
nized the biodiversity in Latin America as central to biological
discovery. In their youths, Humboldt, Darwin, Wallace, Bates,
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Figure 2. Usage of the word “Evo-Devo” (and all its synonyms in English, Spanish, or Portuguese) in the scientific literature of all Latin
American countries parallels that of Canada, but is eight times lower than in the United States. (A) Number of articles that mention
“Evo-Devo” or equivalent terms is dominated by the United States in the Pan-American region. (B) In Latin America, the term is used
predominantly by the scientific regional powerhorses: Brazil, Mexico, Argentina, and Chile. Synonyms used in the Scopus database search
(1906–2016) are the same as described in Figure 1.

and Spruce were awed by the diversity of shapes, colors, and
behaviors of the organisms they observed. As a result, natural
history observations made in this region of the world helped to
shape many central ideas of evolutionary biology. From Darwin’s
early observations to modern biological analyses, biodiversity in
Latin America has played a central role for our understanding of
intra- and interspecific variation (Grant and Grant, 2006.; Gross
et al., 2009; Yoshizawa et al., 2012; Lamichhaney et al., 2015).
It continues to provide a “living laboratory” to observe natural
selection and mimicry in action and to untangle interesting bio-
geographic patterns. Modern tools to address large-scale biologi-
cal studies in largely unexplored diversity or unique ecosystems
of Latin American open up new possibilities to uncover novel
evolutionary and developmental principles.

But what is the contribution of the Latin American scien-
tific community to Evo-Devo? An increase in papers mentioning
“Evo-Devo” or equivalent terms in articles published by authors
from Latin American institutions occurred just recently, around
2003 (Fig. 1B). The number of articles related to the evolution of

developmental processes from the whole Latin American com-
munity is far lower than that of the United States and slightly
inferior to that of Canada (Fig. 2A); within Latin America, most
articles are from Brazil, Argentina, Mexico, and Chile (Fig. 2B).
As no keyword searches can efficiently and exhaustively retrieve
Evo-Devo articles, we reasoned that recent work published in
four journals overtly dedicated to Evo-Devo could be used as a
proxy to compare the activity of Evo-Devo laboratories among
Pan-American countries (Fig. 3). Again, this analysis shows that
total Latin American production is considerably lower than that
of the United States and a bit lower than that of Canada (Fig. 3A).
For instance, the United States alone contributed to almost 30%
of Evo-Devo articles, whereas Latin America accounted for 3%
of articles published in these journals (Fig. 3B). However, nor-
malizing these results to the number of articles published per
country in all disciplines of biology indexed in PubMed during
the same period reveals similar relative productivities for North
America (around three articles published in these four journals
per 10,000 biology articles) and Latin America (between 0.9 and
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Figure 3. Recent contribution of Pan-American researchers to four journals overtly dedicated to Evo-Devo: Dev Genes Evol, Evol Dev,
EvoDevo, and J Exp Zool B Mol Dev Evol. Only the 2010–2015 period was considered for this analysis. (A) Total number of publications
by country; (B) net contribution of each country to these four journals; (C) number of publications in these four journals per 10.000
publications referenced in PubMed, for each country. Note that the high relative productivity observed for Panama is an artifact resulting
from the particularly low total number of publications generated in this country. Source: PubMed, NCBI.

4.7 articles published in these four journals per 10,000 biology
articles, depending on the country) (Fig. 3C). While this suggests
that the proportional importance of the field in Latin America
is on par with that of North America, the absolute number of
research groups in each Latin American country (Table 1) is low
enough that the disappearance of a single group can signifi-
cantly impact countrywide productivity of Evo-Devo research.
Clearly, Evo-Devo is still in its early days in Latin America; while
showing encouraging indicators of productivity, it remains frag-
ile as it relies on few laboratories in each country. Furthermore,
this isolation limits opportunities for productive training and
collaboration. Such a recent and incipient development of Evo-
Devo in Latin America stands in contrast to the notable historical
importance of long-standing ideas of evolution in the region.

THE DAWN OF EVOLUTIONARY DEVELOPMENTAL
BIOLOGY IN LATIN AMERICA: MÜLLER’S FÜR DARWIN,
AMEGINHO’S FILOGENIA, AND CROIZAT’S SPACE, TIME
AND FORM
Evo-Devo is a historical discipline that requires a great deal
of consilience, the convergence of evidence from independent
sources, thus depending on the generation of a common ground-
work of explanatory facts and fact-based theories across disci-
plines (Wilson, ’98). Suggestions recently brought up by Latin

American philosophers that may help explain the origins of
consilience are as follows: (1) Evolutionary developmental biol-
ogy as a historical discipline has been oriented to study remote
causes of specific evolutionary processes highly influenced by
models of variation established by Darwinism (Caponi, 2011),
and (2) Evo-Devo offers apparently opposite explanations as a
result of the distinction among internal/external factors and the
relative importance of variation in individuals or populations
when examining roles that should be attributed to structure or
function, to genes or the environment, to self-regulation or natu-
ral selection (Andrade, 2007). Individual disciplines, for example,
developmental biology, molecular genetics, comparative mor-
phology, and phylogenetic systematics, have together generated
substantial knowledge to allow for consilience required for a
successful Evo-Devo program (Edgar and Chinga, 2015).

During most of the twentieth century in Latin America, clerical
institutions dominated the teaching of natural sciences; hence
college and university education was influenced by theology and
religion, as well as philosophical positivism (for Colombian and
Mexican historical perspectives on these issues, see Restrepo and
Becerra, ’95; Argueta Villamar, 2009; Ruiz Gutierrez et al., 2015).
From the start of the twentieth century, biologists arduously
described many species and studied the diversity of life forms
in the region. Trapped in such descriptive approaches, biology
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Table 1. A nonexhaustive list of Evo-Devo scientists that have established their own research groups in Latin America

Name Affiliation Research interests Articles related to Evo-Devo1

Abdala, Virginia Universidad
Nacional de
Tucumán
(Argentina)

Tetrapod
musculoskeletal
development and
evolution

– Musculoskeletal anatomical changes that accompany limb
reduction in lizards (Abdala et al., 2015)

– Life in the slow lane: the effect of reduced mobility on tadpole
limb development (Abdala and Ponssa, 2012)

Aboitiz,
Francisco

Pontificia
Universidad
Católica de Chile
(Chile)

Evolution and
developmental
changes in brain
connectivity
patterns

– Olfaction, navigation, and the origin of isocortex (Aboitiz and
Montiel, 2015)

– Genetic and developmental homology in amniote brains. Toward
conciliating radical views of brain evolution (Aboitiz, 2011)

Álvarez-Buylla,
Elena

Universidad
Nacional
Autónoma de
México (Mexico)

MADS-box genes,
morphological
evolution of plants,
bio-mathematical
modeling of gene
regulatory network
dynamics

– Molecular evolution constraints in the floral organ specification
gene regulatory network module across 18 angiosperm genomes
(Davila-Velderrain et al., 2014)

– When ABC becomes ACB (Garay-Arroyo et al., 2012)

Alves, Marccus Universidade
Federal de
Pernambuco
(Brazil)

Morphological
evolution of plants

– Occurrence and evolutionary inferences about Kranz anatomy in
Cyperaceae (Poales) (Martins et al., 2015)

– Comparative study of ovule and fruit development in species of
Hypolytrum and Rhynchospora (Cyperaceae, Poales). Plant
Systematics and Evolution (Coan et al., 2008)

Andrade,
Eugenio

Universidad
Nacional de
Colombia
(Colombia)

Molecular evolution,
biological theory,
phylosophy

– La ontogenia del pensamiento evolutivo (Andrade, 2011)
– The role of animal behavior in evolution. Consideration from

developmental systems’ theory and biosemiotics (Toscano and
Andrade, 2015)

Benítez,
Mariana∗

Universidad
Nacional
Autónoma de
México (Mexico)

Eco-evo-devo – Development of cell differentiation in the transition to
multicellularity: a dynamical modeling approach (Van Cauwelaert
et al., 2015)

– Dynamics of cell-fate determination and patterning in the
vascular bundles of Arabidopsis thaliana (Benítez and Hejátko,
2013)

Berois, Nibia Universidad de la
República
(Uruguay)

Evo-devo of annual
fishes

– Annual Fishes: Life History Strategy, Diversity, and Evolution
(Berois et al., 2015)

– Annual fish: developmental adaptations for an extreme
environment (Berois et al., 2012)

Bitner-Mathé,
Blanche

Universidade
Federal do Rio de
Janeiro (Brazil)

Phenotypic plasticity
in drosophilids

– Genetic variability and phenotypic plasticity of metric thoracic
traits in an invasive drosophilid in America (Bitner-Mathé and
David, 2015)

– Cellular basis of morphological variation and temperature-related
plasticity in Drosophila melanogaster strains with divergent wing
shapes (Torquato et al., 2014)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Bitondi, Márcia Universidade de
São Paulo (Brazil)

Development of honey
bees

– Dimorphic ovary differentiation in honeybee (Apis mellifera)
larvae involves caste-specific expression of homologs of Ark and
Buffy cell death genes (Dallacqua and Bitondi, 2014)

– Genes involved in thoracic exoskeleton formation during the
pupal-to-adult molt in a social insect model, Apis mellifera
(Soares et al., 2013)

Boege, Karina Universidad
Nacional
Autónoma de
México (Mexico)

Plant–animal
interactions

– Plant defence as a complex and changing phenotype throughout
ontogeny (Ochoa-López et al., 2015)

– Induced responses to competition and herbivory: natural selection
on multitrait phenotypic plasticity (Boege, 2010)

Borojevic,
Radovan

Universidade
Federal do Rio de
Janeiro (Brazil)

Characterization of
embryonic
development of
several sponges

– Primmorphs generated from dissociated cells of the sponge
Suberites domuncula: a model system for studies of cell
proliferation and cell death (Custodio et al., ’98)

– Retinoic acid acts as a morphogen in freshwater sponges
(Imsiecke et al., ’94)

Bortolini, María
Cátira

Universidade
Federal do Rio
Grande do Sul
(Brazil)

Genetic diversity – Origins and evolvability of the PAX family (Paixao-Cortes et al.,
2015)

– Evolutionary history of chordate PAX genes: dynamics of change
in a complex gene family (Paixao-Cortes et al., 2013)

Brante, Antonio Universidad
Católica de la
Santísima
Concepción
(Chile)

Evolution of
development and
reproductive
strategies in marine
invertebrates

– A new case of poecilogony from South America and the
implications of nurse eggs, capsule structure, and maternal
brooding behavior on the development of different larval types
(Oyarzún and Brante, 2015)

– Genetic variation of the shell morphology in Acanthina monodon
(Gastropoda) in habitats with different wave exposure conditions
(Solas et al., 2013)

Brown, Federico∗ Universidade de
São Paulo (Brazil)

Invertebrate evo-devo
(tunicates,
nematodes,
flatworms)

– Evolution of flatworm central nervous systems: insights from
polyclads (Quiroga et al., 2015)

– [Evolutionary developmental biology of] Tunicata (Stolfi and
Brown, 2015)

Chaparro, Oscar Universidad Austral
de Chile (Chile)

Molluskan
eco-evo-devo

– Impact of short-term salinity stress on larval development of the
marine gastropod Crepipatella fecunda (Calyptraeidae) (Montory
et al., 2014)

– Comparing biochemical changes and energetic costs in
gastropods with different developmental modes: Crepipatella
dilatata and C. fecunda (Chaparro et al., 2012)

Chiapella, Jorge Universidad
Nacional de
Córdoba
(Argentina)

Morphological and
molecular
phylogeny in Plants

– Disentangling the Tillandsia capillaris complex: phylogenetic
relationships and taxon boundaries in Andean populations
(Castello et al., 2016)

– Molecular phylogeny of Gymnocalycium (Cactaceae): assessment
of alternative infrageneric systems, a new subgenus, and trends in
the evolution of the genus (Demaio et al., 2011)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Collin, Rachel∗ Smithsonian
Tropical Research
Institute
(Panama)

Snails, life cycles,
reproduction,
evolution of life
histories

– The development of viable and nutritive embryos in the direct
developing gastropod Crepidula navicella (Lesoway et al., 2014)

– The effects of experimentally induced adelphophagy in gastropod
embryos (Thomsen et al., 2014)

Concha, Miguel Universidad de
Chile (Chile)

Neural development
and brain
asymmetry

– Evolutionary plasticity of habenular asymmetry with a conserved
efferent connectivity pattern (Villalón et al., 2012)

– Zebrafish and medaka: model organisms for a comparative
developmental approach of brain asymmetry (Signore et al., 2009)

de Menezes,
Nanuza Luiza

Universidade de
São Paulo (Brazil)

Plant anatomy and
development

– Cytogenetics and cytotaxonomy of Velloziaceae (de Melo et al.,
’97)

– Evolution of the anther in the family Velloziaceae (de Menezes,
’88)

Delgado,
Jean-Paul

Universidad de
Antioquia
(Colombia)

Limb regeneration in
salamanders

– Maintaining Plethodontid salamanders in the laboratory for
regeneration studies (Arenas et al., 2015)

– The aneurogenic limb identifies developmental cell interactions
underlying vertebrate limb regeneration (Kumar et al., 2011)

del Pino, Eugenia Pontificia
Universidad
Católica del
Ecuador
(Ecuador)

Comparative
development of
amphibians

– Developmental diversity of amphibians (Elinson and del Pino,
2012)

– Variation in the schedules of somite and neural development in
frogs (Sáenz Ponce et al., 2012)

Dornelas,
Marcelo

Universidade
Estadual de
Campinas
(Brazil)

Plant reproduction
and evolution

– A genomic approach to study anthocyanin synthesis and flower
pigmentation in passion flowers (Aizza and Dornelas, 2011)

– Rapid touch-stimulated movement in the androgynophore of
Passiflora flowers (subgen. Decaloba; Sect. Xerogona) an
adaptation to enhance cross-pollination? (Scorza and Dornelas,
2014)

Espinosa-Soto,
Carlos∗

Universidad
Autónoma de
San Luis de
Potosí (Mexico)

Gene regulatory
circuits

– Tetramer formation in Arabidopsis MADS domain proteins:
analysis of a protein–protein interaction network (Espinosa-Soto
et al., 2014)

– Phenotypic plasticity can facilitate adaptive evolution in gene
regulatory circuits (Espinosa-Soto et al., 2011)

Fabrezi, Marissa Instituto de Bio y
Geociencias
(Argentina)

Anuran morphology
variation

– Developmental changes and novelties in ceratophryid frogs
(Fabrezi et al., 2016)

– Heterochrony in growth and development in anurans from the
Chaco of South America (Fabrezi, 2011)

Fanara, Juan
José

Universidad de
Buenos Aires
(Argentina)

Genetic basis of
phenotypic traits in
Drosophila

– Genetic architecture of olfactory behavior in Drosophila
melanogaster: differences and similarities across development
(Lavagnino et al., 2013)

– Evolution of male genitalia: environmental and genetic factors
affect genital morphology in two Drosophila sibling species and
their hybrids (Soto et al., 2007)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Fernández,
Daniel

Centro Austral de
Investigaciones
Científicas
(Argentina)

Evolution and
diversification of
Antarctic and
sub-Antarctic fishes

– Ancient climate change, antifreeze, and the evolutionary
diversification of Antarctic fishes (Near et al., 2012)

– Temperature effects on growing, feeding, and swimming
energetics in the Patagonian blennie Eleginops maclovinus
(Pisces: Perciformes) (Vanella et al., 2012)

Fernández,
Miriam

Pontificia
Universidad
Católica de Chile
(Chile)

Eco-evo-devo in
marine
invertebrates

– Correlated evolution between mode of larval development and
habitat in muricid gastropods (Pappalardo et al., 2014)

– Mode of larval development as a key factor to explain contrasting
effects of temperature on species richness across oceans
(Pappalardo and Fernández, 2014)

Flores, Augusto Universidade de
São Paulo (Brazil)

Marine invertebrates
ecology

– Conspecific cues affect stage-specific molting frequency, survival,
and claw morphology of early juvenile stages of the shore crab
Carcinus maenas (Duarte et al., 2014)

– Uneven abundance of the invasive sun coral over habitat patches
of different orientation: an outcome of larval or later benthic
processes? (Mizrahi et al., 2014)

Frankel, Nicolas∗ Universidad de
Buenos Aires
(Argentina)

Genetic basis of
morphological
evolution

– Parental age influences developmental stability of the progeny in
Drosophila (Colines et al., 2015)

– Multiple layers of complexity in cis-regulatory regions of
developmental genes (Frankel, 2012)

Gallardo, Carlos Universidad Austral
de Chile (Chile)

Evolution of life cycles
in closely related
species of slipper
limpets

– Egg-laying behaviour and intracapsular development of
Argobuccinum pustulosum (Gastropoda: Ranellidae) in temperate
waters at the South coast of Chile (Gallardo et al., 2012)

– Morphological analysis of two sympatric ecotypes and
predator-induced phenotypic plasticity in Acanthina monodon
(Gastropoda: Muricidae) (Sepúlveda et al., 2012)

García-Arraras,
José Enrique

Universidad de
Puerto Rico
(Puerto Rico)

Sea cucumber
regeneration

– Postembryonic organogenesis of the digestive tube: why does it
occur in worms and sea cucumbers but fail in humans?
(Mashanov et al., 2014a)

– Heterogeneous generation of new cells in the adult echinoderm
nervous system (Mashanov et al., 2015)

Godoy-Herrera,
Raul

Universidad de
Chile (Chile)

Larval development in
D. melanogaster

– The neuro-ecology of Drosophila pupation behavior (del Pino
et al., 2014)

– Chemical cues influence pupation behavior of Drosophila
simulans and Drosophila buzzatii in nature and in the laboratory
(Beltramí et al., 2012)

González, Favio Universidad
Nacional de
Colombia
(Colombia)

Leaf, flower, and fruit
development in
angiosperms

– Flower development and perianth identity candidate genes in the
basal angiosperm Aristolochia fimbriata (Piperales:
Aristolochiaceae) (Pabón-Mora et al., 2015)

– Flower and fruit characters in the early-divergent lamiid family
Metteniusaceae, with particular reference to the evolution of
pseudomonomery (Gonzalez and Rudall, 2010)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Hasson, Esteban Universidad de
Buenos Aires
(Argentina)

Evolutionary genetics
of host plant choice
in Drosophila

– Positive selection in nucleoporins challenges constraints on early
expressed genes in Drosophila development (Mensch et al., 2013)

– Evolutionary genomics of genes involved in olfactory behavior in
the Drosophila melanogaster species group (Lavagnino et al.,
2012)

Hartfelder, Klaus Universidade de
São Paulo (Brazil)

Bee development,
developmental
endocrinology

– Insights into the dynamics of hind leg development in honey bee
(Apis mellifera L.) queen and worker larvae—a
morphology/differential gene expression analysis (Santos and
Hartfelder, 2015)

– Development and evolution of caste dimorphism in honeybees—a
modeling approach (Leimar et al., 2012)

Irles, Paula∗ Pontificia
Universidad
Católica de Chile
(Chile)

Ovary development
and evolution in
insects

– The notch pathway regulates both the proliferation and
differentiation of follicular cells in the panoistic ovary of Blattella
germanica (Irles et al., 2016)

– Unlike in Drosophila meroistic ovaries, Hippo represses notch in
Blattella germanica panoistic ovaries, triggering the
mitosis-endocycle switch in the follicular cells (Irles and Piulachs,
2014)

Kohlsdorf, Tiana∗ Universidade de
São Paulo (Brazil)

Tetrapod development
and evolution

– Molecular evolution of HoxA13 and the multiple origins of
limbless morphologies in amphibians and reptiles (Singarete et al.,
2015)

– Musculoskeletal anatomical changes that accompany limb
reduction in lizards (Abdala et al., 2015)

Lanna, Emilio∗ Universidade
Federal da Bahia
(Brazil)

Sponge development
and evolution

– Environmental effects on the reproduction and fecundity of the
introduced calcareous sponge Paraleucilla magna in Rio de
Janeiro, Brazil (Lanna et al., 2015)

– Evo-devo of non-bilaterian animals (Lanna, 2015)

Mashanov,
Vladimir

Universidad de
Puerto Rico
(Puerto Rico)

Neural and visceral
regeneration in
echinoderms

– Myc regulates programmed cell death and radial glia
dedifferentiation after neural injury in an echinoderm (Mashanov
et al., 2015)

– Transcriptomic changes during regeneration of the central
nervous system in an echinoderm (Mashanov et al., 2014b)

Maldonado,
Ernesto∗

Universidad
Nacional
Autónoma de
México (Mexico)

Eco-evo-devo in
zebrafish, cavefish
and coral reefs
animals

– Spatial mapping in perpetual darkness: EvoDevo of behavior in
Astyanax mexicanus cavefish (Santacruz et al., 2015)

– The zebrafish scarb2a insertional mutant reveals a novel function
for the Scarb2a/Limp2b receptor in notochord development
(Diaz-Tellez et al., 2016)

Maldonado, Sara Universidad de
Buenos Aires
(Argentina)

Plant and seed
development and
evolution

– Programmed cell death in seeds of angiosperms (Lopez-Fernandez
and Maldonado, 2015)

– Analogous reserve distribution and tissue characteristics in
quinoa and grass seeds suggest convergent evolution (Burrieza
et al., 2014)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Manriquez,
Patricio

Centro de Estudios
Avanzados en
Zonas Áridas
(Chile)

Eco-evo-devo in
marine
invertebrates

– Ocean acidification disrupts prey responses to predator cues but
not net prey shell growth in Concholepas concholepas (loco)
(Mánriquez et al., 2013)

– Adaptive shell color plasticity during the early ontogeny of an
intertidal keystone snail (Mánriquez et al., 2009)

Marcellini,
Sylvain∗

Universidad de
Concepción
(Chile)

Vertebrate skeletal
development, bone
and
cartilage-specific
regulatory networks

– Molecular footprinting of skeletal tissues in the catshark
Scyliorhinus canicula and the clawed frog Xenopus tropicalis
identifies conserved and derived features of vertebrate
calcification (Enault et al., 2015)

– Evolution of the vertebrate bone matrix: an expression analysis of
the network forming collagen paralogues in amphibian
osteoblasts (Aldea et al., 2013)

Marques-Souza,
Henrique∗

Universidade
Estadual de
Campinas
(Brazil)

Mouse stem cells and
gene regulatory
networks

– De novo transcriptome assembly and analysis to identify potential
gene targets for RNAi-mediated control of the tomato leafminer
(Tuta absoluta) (Camargo et al., 2015)

Marroig, Gabriel Universidade de
São Paulo (Brazil)

Evolution of
modularity in
mammalian skull

– Directional selection can drive the evolution of modularity in
complex traits (Melo and Marroig, 2015)

– Skull modularity in neotropical marsupials and monkeys: size
variation and evolutionary constraint and flexibility (Shirai and
Marroig, 2010)

Martínez,
Maximiliano∗

Universidad
Nacional
Autónoma de
México (Mexico)

Phylosophy of
Evo-Devo and
complex systems

– Multilevel causation and the extended synthesis (Martínez and
Esposito, 2014)

– Constreñimientos, variación evolutiva y planos corporales
(Martínez and Andrade, 2014)

Mendoza, Luis Universidad
Nacional
Autónoma de
México (Mexico)

Modeling and
simulation of
biological networks

– Building qualitative models of plant regulatory networks with
SQUAD (Weinstein and Mendoza, 2012)

– The Arabidopsis thaliana flower organ specification gene
regulatory network determines a robust differentiation process
(Sánchez-Corrales et al., 2010)

Monteiro,
Leandro

Universidade
Estadual do
Norte
Fluminense
(Brazil)

Vertebrate
morphology
evolution and
diversification

– Evolutionary patterns and processes in the radiation of
phyllostomid bats (Monteiro and Nogueira, 2011)

– Evolutionary integration and morphological diversification in
complex morphological structures: mandible shape divergence in
spiny rats (Rodentia, Echimyidae) (Monteiro et al., 2005)

Montiel, Juan∗ Universidad Diego
Portales (Chile)

Brain development
and evolution

– From sauropsids to mammals and back: new approaches to
comparative cortical development (Montiel et al., 2016)

– Maternal-fetal unit interactions and eutherian neocortical
development and evolution (Montiel et al., 2013)

Mora-Osejo, Luis
Eduardo

Universidad
Nacional de
Colombia
(Colombia)

Comparative plant
morphology

– Estudios morfológicos, autoecológicos y sistemáticos en
angiospermas (Mora-Osejo, ’87)

– Estudios ecológicos del Páramo y del Bosque
Altoandino-Cordillera Oriental de Colombia (Mora-Osejo and
Sturm, ’94)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Negreiros-
Fransozo,
María Lucia

Universidade
Stadual Paulista
(Brazil)

Systematics and
development of
crustaceans

– Morphological analysis of the female reproductive system of
Stenorhynchus seticornis (Brachyura: Inachoididae) and
comparisons with other Majoidea (Antunes et al., 2016)

– First zoeal stage of Cataleptodius parvulus (Fabricius, 1793) and
Xanthodius denticulatus (White, 1848) (Decapoda: Brachyura):
larval evidences and systematic position (Barros-Alves et al., 2013)

Nery, Mariana∗ Universidade
Estadual de
Campinas
(Brazil)

Gene and molecular
evolution

– Increased rate of hair keratin gene loss in the cetacean lineage
(Nery et al., 2014)

– Genomic organization and differential signature of positive
selection in the alpha and beta globin gene clusters in two
cetacean species (Nery et al., 2013)

Nespolo, Roberto Universidad Austral
de Chile (Chile)

Evolution of life
histories,
bioenergetics,
ecophysiology and
quantitative genetic

– Testing the aerobic model for the evolution of endothermy:
implications of using present correlations to infer past evolution
(Nespolo and Roff, 2014)

– Thermoregulatory capacities and torpor in the South American
marsupial, Dromiciops gliroides (Cortés et al., 2014)

Nunes da
Fonseca,
Rodrigo∗

Universidade
Federal do Rio de
Janeiro (Brazil)

Arthropod evo-devo – Toll signals regulate dorsal-ventral patterning and
anterior-posterior placement of the embryo in the hemipteran
Rhodnius prolixus (Berni et al., 2014)

– Evolution of extracelular Dpp modulators in insects: the role of
tolloid and twisted-gastrulation in dorsoventral patterning of the
Tribolium embryo (da Fonseca et al., 2010)

Núñez-Farfán,
Juan

Universidad
Nacional
Autónoma de
México (Mexico)

Evolution of plant
defense

– Adaptive divergence in resistance to herbivores in Datura
stramonium (Castillo et al., 2015)

– Phylogenetic correlations among chemical and physical plant
defenses change with ontogeny (Karinho-Betancourt et al., 2015)

Olson, Mark Universidad
Nacional
Autónoma de
México (Mexico)

Plant morphological
evolution in dry
tropical habitats,
evolutionary theory

– Convergent vessel diameter-stem diameter scaling across five
clades of New- and Old- World eudicots from desert to rain forest
(Olson et al., 2013)

– Ontogenetic modulation of branch size, shape, and biomechanics
produces diversity across habitats in the Bursera simaruba clade
of tropical trees (Rosell et al., 2012)

Opazo, Juan∗ Universidad Austral
de Chile (Chile)

Evolution of genomes – How to make a dolphin: molecular signature of positive selection
in Cetacean genome (Nery et al., 2013)

– Whole-genome duplication and the functional diversification of
teleost fish hemoglobins (Opazo et al., 2013)

Oyarzún,
Fernanda

Universidad de
Concepción
(Chile)

Ecology and
development of
larval stages in
marine
invertebrates

– A new case of poecilogony from South America and the
implications of nurse eggs, capsule structure, and maternal
brooding behavior on the development of different larval types
(Oyarzún and Brante, 2015)

– The effects of nurse eggs and sibling interactions on the larval
development of the poecilogonous annelid Boccardia proboscidea
(Spionidae) (Oyarzún and Brante, 2014)

(Continued)
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Name Affiliation Research interests Articles related to Evo-Devo1

Pabón-Mora,
Natalia∗

Universidad de
Antioquia
(Colombia)

Plant evo-devo – Flower development and perianth identity candidate genes in the
basal angiosperm Aristolochia fimbriata (Piperales:
Aristolochiaceae) (Pabón-Mora et al., 2015)

– Analysis of the CYC/TB1 class of TCP transcription factors in basal
angiosperms and magnoliids (Horn et al., 2014)

Paulino, Juliana Universidade de
São Paulo (Brazil)

Floral morphology and
development

– Comparative development of rare cases of a polycarpellate
gynoecium in an otherwise monocarpellate family, Leguminosae
(Paulino et al., 2014)

– Floral developmental morphology of three Indigofera species
(Leguminosae) and its systematic significance within
Papilionoideae (Paulino et al., 2011)

Perez, Oscar∗ Pontificia
Universidad
Católica del
Ecuador
(Ecuador)

Comparative
development of
amphibians

– The morphology of prehatching embryos of Caecilia orientalis
(Amphibia: Gymnophiona: Caeciliidae (Perez et al., 2009)

– Comparative analysis of Xenopus VegT, the meso-endodermal
determinant, identifies an unusual conserved sequence (Perez
et al., 2007)

Piñeyro-Nelson,
Alma∗

Universidad
Autónoma
Metropolitana
(Mexico)

Developmental
molecular genetics
and plant evolution

– The role of transcriptional regulation in the evolution of plant
phenotype: a dynamic systems approach (Rodríguez-Mega et al.,
2015)

– When ABC becomes ACB (Garay-Arroyo et al., 2012)

Pozner, Raúl Instituto de
Botánica
Darwinion
(Argentina)

Systematics and
morphology of
angiosperms

– Evolutionary origin of the Asteraceae capitulum: Insights from
Calyceraceae (Pozner et al., 2012)

– Multiple origins of congested inflorescences in Cyperus s.s.
(Cyperaceae): developmental and structural evidence (Guarise
et al., 2012)

Quinzio, Silvia Universidad
Nacional de
Salta (Argentina)

Morphological
diversity in anuran
tadpoles

– The lateral line system in anuran tadpoles: neuromast morphology,
arrangement, and innervation (Quinzio and Fabrezi, 2014)

– Ontogenetic and structural variation of mineralizations and
ossifications in the integument within Ceratophryid frogs (Anura,
Ceratophrydae) (Quinzio and Fabrezi, 2012)

Rezende,
Gustavo∗

Universiade
Estadual do
Norte
Fluminense
(Brazil)

Evolution of the
resistance to
desiccation in
insect eggs

– Physical features and chitin content of eggs from the mosquito
vectors Aedes aegypti, Anopheles aquasalis and Culex
quinquefasciatus: connection with distinct levels of resistance to
desiccation (Farnesi et al., 2015)

– Serosal cuticle formation and distinct degrees of desiccation
resistance in embryos of the mosquito vectors Aedes aegypti,
Anopheles aquasalis and Culex quinquefasciatus (Vargas et al.,
2014)

Rodrigues,
Miguel

Universidade de
São Paulo (Brazil)

Taxonomy and
evolution of
neotropical
amphibians and
reptiles

– Digit evolution in gymnophthalmid lizards (Roscito et al., 2014)
– Embryonic development of the fossorial gymnophthalmid lizards
Nothobachia ablephara and Calyptommatus sinebrachiatus
(Roscito and Rodrigues, 2012)

(Continued)
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Table 1. Continued

Name Affiliation Research interests Articles related to Evo-Devo1

Rubinstein,
Marcelo

Instituto de
Investigaciones
en Ingeniería
Genética y
Biología
Molecular
(Argentina)

Regulatory landscape
evolution,
exaptation of
repetitive elements

– Evolution of transcriptional enhancers and animal diversity
(Rubinstein and de Souza, 2013)

– Convergent evolution of two mammalian neuronal enhancers by
sequential exaptation of unrelated retroposons (Franchini et al.,
2011)

Sarrazin,
Andres∗

Pontificia
Universidad
Católica de
Valparaíso (Chile)

Segmentation in
arthropods, gene
regulatory networks
and body plan
evolution

– A Tribolium castaneum whole embryo culture protocol for
studying the molecular mechanisms and morphogenetic
movements involved in insect development (Macaya et al., 2016)

– A segmentation clock with two-segment periodicity in insects
(Sarrazin et al., 2012)

Sajo, Maria das
Graças

Universidade
Estadual Paulista
(Brazil)

Morphological
evolution of plants

– Developmental morphology of a dimorphic grass inflorescence:
the Brazilian Bamboo eremitis (Poaceae) (Graca Sajo et al., 2015)

– Morphology, development and homologies of the perianth and
floral nectaries in Croton and Astraea
(Euphorbiaceae-Malpighiales) (De-Paula et al., 2011)

Schizas, Nikolaos Universidad de
Puerto Rico
(Puerto Rico)

Molecular evolution of
marine
invertebrates

– The evolution of euhermaphroditism in caridean shrimps: a
molecular perspective of sexual systems and systematics (Fiedler
et al., 2010)

– Phenotypic plasticity or speciation? A case from a clonal marine
organism (Prada et al., 2008)

Schneider, Igor∗ Universidade
Federal do Pará
(Brazil)

Amazonian fish
evo-devo, including
the four eyed fish,
tetrapod evolution

– Molecular mechanisms underlying the exceptional adaptations of
batoid fins (Nakamura et al., 2015)

– The origin of the tetrapod limb: from expeditions to enhancers
(Schneider and Shubin, 2013)

Schneider,
Patricia

Universidade
Federal do Pará
(Brazil)

Vertebrate
development and
patterning

– A putative RA-like region in the brain of the scale-backed antbird,
Willisornis poecilinotus (Furnariides, Suboscines, Passeriformes,
Thamnophilidae) (De Lima et al., 2015)

– Differential role of Axin RGS domain function in Wnt signaling
during anteroposterior patterning and maternal axis formation
(Schneider et al., 2012)

Simões, Zilá Luz Universidade de
São Paulo (Brazil)

Bee development and
endocrinology

– MicroRNA signatures characterizing caste-independent ovarian
activity in queen and worker honeybees (Apis mellifera L.)
(Macedo et al., 2016)

– Juvenile hormone biosynthesis gene expression in the corpora
allata of honey bee (Apis mellifera L.) female castes (Bomtorin
et al., 2014)

Vargas,
Alexander∗

Universidad de
Chile (Chile)

Paleontology, digit
evolution,
vertebrate
homologies, origins
of novelty

– Bird embryos uncover homology and evolution of the dinosaur
ankle (Ossa-Fuentes et al., 2015)

– New developmental evidence clarifies the evolution of wrist
bones in the dinosaur-bird transition (Botelho et al., 2014)

(Continued)
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Vergara-Silva,
Francisco∗

Universidad
Nacional
Autónoma de
México (Mexico)

History, philosophy,
bioethics, biological
anthropology,
systematics,
eco-evo-devo

– Recurrent abnormalities in conifer cones and the evolutionary
origins of flower-like structures (Rudall et al., 2011)

– Complex patterns of morphogenesis, embryology, and
reproduction in Triuris brevistylis, a species of Triuridaceae
(Pandanales) closely related to Lacandonia schismatica
(Espinosa-Matías et al., 2012)

West-Eberhard,
Mary Jane

Universidad de
Costa Rica
(Costa Rica)

Developmental
plasticity and
evolution;
sociobiology and
behavioral ecology

– Darwin’s forgotten idea: the social essence of sexual selection
(West-Eberhard, 2014)

– Phenotypic accommodation: adaptive innovation due to
developmental plasticity (West-Eberhard, 2005)

Xavier-Neto,
Jose

Laboratório
Nacional de
Biociências
(Brazil)

Evo-devo of the
vertebrate heart,
paleontology

– Signaling through retinoic acid receptors in cardiac development:
doing the right things at the right times (Xavier-Neto et al., 2015)

– The evolutionary origin of cardiac chambers (Simões-Costa et al.,
2005)

Zaher, Hussam Universidade de
São Paulo (Brazil)

Phylogeny, evolution,
and development of
neotropical snakes

– A new snake skull from the Paleocene of Bolivia sheds light on the
evolution of macrostomatans (Scanferla et al., 2013)

– The anatomy of the upper Cretaceous snake Najash rionegrina
(Apesteguía and Zaher, 2006), and the evolution of limblessness in
snakes (Zaher et al., 2009)

1We have highlighted here recent contributions, not necessarily the most relevant/cited articles of each researcher.
∗Researchers that have established their laboratories in the last decade.

in Latin America missed the opportunity to build consilience
among divergent and emerging fields, except perhaps for certain
attempts to bring together embryology and genetics together in
a few schools of medicine (Restrepo, 2009). In contrast to the
rapid and profound effect of Darwinism on biological thought
in North America, evolutionary thinking in Latin America had
a slower, more heterogeneous—but still deep—impact. Evolution
influenced anthropology (including indigenism), medicine (in-
cluding eugenics), and psychology (including education) and
was often used in nationalistic discourses with direct effects
in state policies, for example, agriculture or economics (Glick
et al., 2001; McCook, 2002; Novoa, 2010; Novoa and Levine,
2010; Gómez, 2012; Levine and Novoa, 2012). Despite the fact
that a translation of Hennig’s Grundzüge einer Theorie der
phylogenetischen Systematik (1950) into Spanish was available
two decades later (Hennig, ’68). phylogenetic systematics only
blossomed in the 1980s after DNA sequencing started to be-
come broadly available. Biological research was mainly focused
in descriptive natural history likely due to an implicit neces-
sity to document the large diversity of undescribed organisms.
Thus, in Latin America the study of biological patterns/processes
and the integration of evolutionary thought in empirical biol-

ogy were delayed until the second half of the twentieth cen-
tury. In the following section, we comment on landmarks that
are crucial for a historical perspective of Evo-Devo in Latin
America.

Müller’s (1869) Für Darwin and Other Contributions
Fritz Müller (1821–1897) was a German naturalist exiled in the
Brazilian island city of Desterro (current Florianópolis). In ex-
ile, Müller made important contributions to the knowledge of
South American biodiversity. Owing to their common interest in
crustaceans, particularly on Cirripedia, Fritz Müller and Charles
Darwin exchanged extensive correspondence. However, many
observations on plants and animals communicated by Müller
remained unpublished, or appeared only as part of their corre-
spondence (cf. González and Bello, 2009; West, 2003). Müller
also described a new, remarkably large (reaching up to 2.5 m)
hemichordate species from Brazil, Balanoglossus gigas (1898),
rediscovered later (Sawaya, ’51). We highlight here important
contributions by Müller relevant to the field of Evo-Devo.

One of Darwin’s preferred disciplines was embryology. At
the time, Darwin played a crucial role in reviving recapitula-
tion, also known as the “biogenetic Law,” in Europe. In his Für
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Darwin (1864), Müller went further in discussing development
and evolution. Müller was aware that it was necessary to ex-
plain in much more detail the observations made by Darwin on
embryology, vestigial organs, and transmutation in his chap-
ter XIII of The Origin (1859). Although the full complexity of
Müller’s arguments remained unaddressed, Darwin commented
his findings in the fourth edition of The Origin (1866) after read-
ing a preliminary translation of Für Darwin. Both Darwin and
Müller supported views of recapitulation and dismissed creation-
ist views put forth by influential academics such as Louis Agas-
siz or Johannes Müller (Ghiselin, ’96; Richards, 2008). Müller’s
book provided, simultaneously, arguments in favor of Darwin’s
observations and against one of the most outstanding figures
at the time, Louis Agassiz. For example, Müller proposed the
generally conserved pattern of sequential larval stages in the
Crustacea, that is the nauplius and the zoea, as an argument to
support Darwin’s ideas about the relationship between ontogeny
and phylogeny (Ghiselin, ’96; Müller, 1869). Müller (1864, 1869)
stated that “Descendants therefore reach a new goal, either by
deviating sooner or later whilst still on the way toward the form
of their parents, or by passing along this course without devia-
tion, but then, instead of standing still, advance still further” and
that in the second case “the entire development of the progen-
itors is also passed through by the descendants, and, therefore,
so far as the production of a species depends upon this second
mode of progress, the historical development of the species will
be mirrored in its developmental history” (boldface, our em-
phasis). Thus, Müller rapidly embraced views of recapitulation
that went largely unrecognized, and that in some respects re-
sembled those first articulated in the biogenetic law by Haeckel
(1866).

Even from Desterro, which coincidentally means exile in Por-
tuguese, Fritz Müller was deeply involved in the birth of evo-
lutionary physiological anatomy, along with Darwin and An-
ton Dohrn (Ghiselin, ’96), as well as in the conception of other
important and pioneer studies of evolutionary biology. Müller
analyzed and clearly understood and analyzed in situ natural
selection, as evidenced by his discovery of Müllerian mimicry
(Ghiselin, ’96), a predator avoidance strategy in which two or
more unpalatable, toxic or otherwise dangerous species sharing
the same potential predators mimic each other, or by his careful
description of the three-way mutualism between scale insects,
ants, and orbicules (or Müllerian bodies) that form a peculiar
cushion immediately below the abaxial portion of the petiole
of Cecropia trees. A branching notion of species diversification
was already used by Müller very early on, as he illustrated one
of the first “cladograms,” in which he used two characters (“clasp
forceps” or the “secondary flagellum”) to demonstrate two con-
flicting relationships among three amphipod species in the genus
Melita (Müller 1864). In botany, an example of Müller’s inte-
grative views on evolution and development was found in a
letter sent to Darwin in 1875, in which Müller explained and

illustrated the presence of an ancestral character state (i.e., the
presence of petals in terminal flowers) in the inflorescence of a
Brazilian species of Gunnera (Gunneraceae) and communicated
the occurrence of broad arrangements of flowers and inflores-
cences in related Gunnera species (González and Bello, 2009).
These observations served to complement Darwin’s (1868) stud-
ies on peloric flowers in garden plants, such as the snapdragon
Antirrhinum.
Müller also contributed to the general ongoing debate on

whether phenotypes were exclusively a result of “inherited” or
“acquired” characters by following phenotypic variation across
generations of another Latin American species, Abutilon (Mal-
vaceae). He argued against heredity and its link to observed vari-
ation of characters in consecutive generations, thus challenging
the views of August Weismann (see review by West, 2003). For
example, in some of the last known letters to Weismann (dated
between 1886 and 1888; cf. West, 2003), Müller attributed the
de novo appearance of a floral trait in a hybrid species of Abu-
tilon that was not present in one of the parental species as co-
occurrence of variation, but not as a result of inheritance. In his
1888 letter, Müller considered the co-occurrence of these traits
in the hybrid offspring as “acquired, not as inherited charac-
teristics, above all from the fact that most of the time the very
rare deviations in the usual structure, which occur once in many
thousands if at all, usually appear together in most cases.” In the
recent literature, however, we find examples that point to a com-
mon regulatory network for leaf development and floral organ
identity (Ferrandiz et al., 2000; Pabón-Mora et al., 2012), which
would explain the co-occurrence of leaf and flower variation of
Müller’s original observations. In spite of Müller’s misinterpreta-
tion of genetic inheritance in Abutilon, it is worthwhile mention-
ing that studies by Müller in non-European species contributed
significantly to our current understanding of evolutionary
theory.

Ameghino’s Filogenia (1884) and Other Texts
Florentino Ameghino (1854–1911) was an Argentinean self-
taught naturalist who, along with his brothers Carlos and Juan,
made very important contributions to the development of pale-
ontology in Latin America, his published and unpublished works
adding up to 24 volumes of 700–800 pages (Torcelli, ’35). He
owned a small bookshop in Buenos Aires and used his mea-
ger earnings to finance paleontological expeditions lead by his
brothers. Indeed, he “had to write the immortal pages of his Filo-
genia while selling cheap goods and paper sheets to earn ten
cents” (Torcelli, ’13). In Filogenia (Ameghino, 1884), his opus
magna, he recognized the great importance of embryology for
understanding animal evolution, devoting two full chapters to
it. In one of them, he recognizes the difficulty of doing devel-
opmental biology work at that time in Argentina, suggesting
instead a methodology that would use “evolutionary laws” to al-
low paleontologists to infer phylogenies even in the absence of
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fossils. To such end, he developed analytical tools and used them
in his “procedimiento de seriación,” becoming a pioneer in both
the use of mathematics and the recognition for the need to iden-
tify ancestral traits as a first step to determine a transformational
character series during evolution. Without knowing it, Amegh-
ino found the recipe to solve Darwin’s abominable mystery of
angiosperm evolution, and anticipated for almost 60 years the
foundations of Hennig’s (’50) Paläontologische Methode. With-
out the discovery of fossils or vestiges, Ameghino hypothesized
the existence of transformation of characters or character states,
for example, during the evolution of the foot of Equidae or the
skull of hominids (Torcelli, ’13). Ameghino was a Lamarckian, a
recapitulationist, and an orthogeneticist (i.e., supporter of direc-
tional evolution). His views of the natural world were strongly
influenced by the rich and endemic South American mammalian
paleofauna, along with the fossil remains of the diverse hu-
man groups that formerly inhabited the Pampas and Patago-
nian plains. These materials, along with the evolutionary laws
he proposed, led him to the idea of bestialization. This concept
was an orthogeneticist extension of the Haeckel’s “biogenetic
law” and proposed the existence of unidirectional trends in both
the ontogeny and evolution of organisms that could eventually
lead to extinction due to maladaptive trait exageration. He ap-
plied bestialization to explain human evolution, proposing that
humans shared a common ontogeny to the “antropomorphs,”
which included the big African and Asian apes, as well as some
“smooth skull” fossil primates from Latin America. In Amegh-
ino’s view, humans represented a more primitive, early step in
an orthogenetic trend that led to other apes and monkeys; a bio-
geographic corollary of his hypothesis proposed South America
as the point of origin of humans (for a review, see Salgado, 2011).
While many of his peculiar hypotheses were proven wrong later,
Ameghino can no doubt be considered not only among the first
Argentinean evolutionists, but also a pioneer of Evo-Devo in
Latin America.

Croizat’s Space, Time, Form (1964)
Léon Croizat (1894–1982) was a French–Italian botanist who
worked in Venezuela from 1947 until his death. Croizat raised
pivotal questions of evolution and development by the observa-
tion of peculiar biological patterns. His largely overlooked book
Space, time, form (1964) is, perhaps, the first text with explicit
notions that integrate evolutionary thought and developmental
observations in plants and animals, not to mention the relevant
contribution of biogeography to evolutionary patterns. Although
the book remains marginal in relevance in the scientific litera-
ture, it covers some keystone and up-to-date issues still debated
in Evo-Devo today. For example, Croizat (’64) extensively dis-
cussed issues related to the concept of the flower versus the in-
florescence, the unique importance of evolutionary switches in
floral symmetry in Euphorbiaceae, and the structural develop-

ment and evolution of fruit formation in the Rhododendron fam-
ily (Ericaceae). Croizat discussed extensively the origin of an-
giosperms and the homology of flowers and floral organs; many
of these key questions remain unresolved in plant Evo-Devo to-
day. In zoology, Croizat discussed the issue of feather develop-
ment, morphology, and function, and compared these structures
to putative homologs in fish or lizards; compared cranial struc-
tures and teeth development of extant and extinct “subungu-
lates”; discussed the occurrence of paedomorphosis in hominids;
and discussed genetic mutations in the light of natural selection,
presenting early examples of homeosis, and homeotic mutants
in insects (Croizat, ’64).

The extraordinary effort of Croizat to reach a biological syn-
thesis has only recently been acknowledged (Nelson and Platnick
’81; Williams and Ebach 2008), yet much of his work provides
a useful resource for empirical or conceptual research in Evo-
Devo. Although technical advancements had occurred since the
nineteenth century, Croizat alerted the community that theoret-
ical frameworks in biology had not progressed a great deal and
needed serious attention. For example, he noted that botanical
concepts established by Goethe (1790), De Candolle (1827), and
Van Tieghem (1868) were still under investigation at the time
with no clear theoretical breakthrough (Croizat, ’64). Croizat an-
ticipated that to expand concepts in evolution it was necessary
to take into account the developmental program (or “inherited
tendencies”) underlying the origin of novel structures, a funda-
mental aspect of modern Evo-Devo studies. An example of this
predicted conceptual expansion is the homology of the dorsal
surface of segmented invertebrates with the ventral surface of
vertebrates, proposed by Geoffroy St.-Hilaire almost two cen-
turies ago, and ultimately studied and hotly debated by devel-
opmental geneticists almost two centuries later (De Robertis and
Sasai, ’96; Panchen, 2001). Croizat (’64) appealed for more em-
pirical data to help integrate development and evolution, antic-
ipated overhauling homology hypotheses of far-reaching pro-
portions in botany, and recognized two discernible moments in
our understanding of evolutionary change: one primarily direc-
tional (orthogenetic) and another that involves adaptation or se-
lection. He argued that natural selection could only operate on
an extant framework of directional development (or orthogeny)
that, in turn, was completely independent of the environment.
However, recent evidence suggests that biotic and abiotic factors
can influence developmental processes and give rise to diverse
forms, which can then be selected upon (Gilbert et al., 2015). The
emerging field of Eco-Evo-Devo is, in this sense, an update of
Croizat’s ideas, since it aims to generate newer evidence for the
action of the environment to select phenotypes and its effects
in shaping organisms during ontogeny. The integration of envi-
ronmental/ecological studies to classic questions of evolution-
ary developmental biology represents a promising contribution
to advance evolutionary theory.
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PIONEERS OF EVOLUTIONARY AND DEVELOPMENTAL
BIOLOGY IN LATIN AMERICA: THE BLENDING OF
DISTINCT FIELDS AND EXPERTISE
Evo-Devo may be defined nowadays as an integrative field con-
sisting of at least four different but interconnected research pro-
grams addressing the reciprocal influence of evolution and de-
velopment (sensu Müller, 2007). Formal establishment of the
field only occurred in Latin America toward the end of last cen-
tury, and subsequently increased its presence throughout many
countries after the year 2000 (Fig. 1). Most researchers identified
their work either as strictly developmental biology or as evolu-
tionary biology, and few articles published before the year 2000
clearly integrated both concepts within the main text of a single
article (Fig. 1). To identify the earliest researchers in the region
that began to question how developmental mechanisms evolve
or how developmental biology can contribute to our understand-
ing of evolutionary processes, we searched for research articles
from Latin American authors that included the term “evolution"
but also contained the term “development”, and found that early
research focused in the study of alternative developmental tra-
jectories of frogs with distinct modes of reproduction (Lutz, ’47,
’48; del Pino and Escobar, ’81) and life history evolution in ma-
rine mollusks (Gallardo, ’73).

Brazilian zoologist Bertha Lutz reported deviations and pe-
culiar modes of development in South American anurans (Lutz,
’47). Lutz noted differences in egg size and development of em-
bryonic structures, for example, gill sacs, in tropical and sub-
tropical anuran species adapted to terrestrial development (Lutz,
’48), but a clear understanding of the cellular and development
mechanisms of oogenesis (i.e., formation of mononucleated and
multinucleated oocytes), modes of gastrulation, and early frog
embryogenesis only occurred after seminal studies by Eugenia
del Pino from Ecuador decades later (del Pino and Humphries,
’78; del Pino and Elinson, ’83; del Pino, ’89; del Pino et al., 2007).
Early work by del Pino clearly presented some of the fundamen-
tal integrating principles of Evo-Devo. She found that embryos
of brooding frogs developed from only a subset of blastomeres,
resembling the development of embryonic disks in birds or mam-
mals (del Pino and Elinson, ’83). These findings showed conver-
gent patterns of development among distantly related groups of
vertebrates resulting from adaptive processes likely related to
brooding or egg size. Del Pino’s findings occurred in parallel
to other seminal Evo-Devo research that raised new questions
about the constraints imposed by development and phylogeny,
and the adaptive significance of developmental processes and
patterns. Her research program on the embryonic development
in a diverse group of local frogs is still active and has provided
new insights on how variation in developmental processes and
patterns arise among closely related groups of animals (Sáenz-
Ponce et al., 2012a, b).

Carlos Gallardo from Chile addressed questions about the evo-
lution of animal life cycles (Table 1). In his initial studies, he

investigated the evolution and variation of developmental pat-
terns in the abalone Concholepas concholepas (Gallardo, ’73,
’79), the intertidal snail Nucella crassilabrum (Gallardo, ’79), and
slipper limpets Crepipatella (previously referred as Crepidula)
(Gallardo, ’77; Gallardo and Garrido, ’87). The latter studies al-
lowed him to propose an adaptive significance to the genera-
tion of alternative developmental trajectories within egg cap-
sules of closely related or cryptic species of limpets, as observed
for species that generate additional nurse eggs or embryos to
feed other sibling embryos within the same capsule (Gallardo,
’77; Gallardo and Garrido, ’87). More recent studies of intracap-
sular variation of developmental modes in Crepipatella spp., as
well of the variation of shell thickness in the unicorn snail Acan-
thina monodon (Sepúlveda et al., 2012) have set the stage for fur-
ther Evo-Devo research to address questions on the evolution of
polyphenisms and phenotypic plasticity using mollusks as model
systems (West-Eberhard, 2003; Lesoway et al., 2014). Both del
Pino and Gallardo’s foundational work was soon to be followed
by that of a large number of researchers contributing to the
construction and consolidation of Evo-Devo research in Latin
America (Table 1).

A SELECTION OF EVO-DEVO TOPICS CURRENTLY
ADDRESSED BY LATIN AMERICAN RESEARCH GROUPS
The identification of deeply conserved gene networks deployed
during the development of a few model organisms has estab-
lished paradigms that allow us to better understand homology
and embryological transformations and to frame new questions
regarding developmental evolution. With the advent of high
throughput sequencing techniques of genomes and transcrip-
tomes, the Evo-Devo research field has been steadily shifting
toward the study of nonmodel local species presenting inter-
esting biological questions. Table 1 shows a nonexhaustive list
of present day laboratories that conduct Evo-Devo research in
Latin America. A younger generation of researchers with diverse
interests and expertise has come together to facilitate new av-
enues of research with unique questions and laboratory models
(Fig. 4).

Evolution of Body Plans, Patterning, and Structures
Plants present a plethora of examples of diversification and
adaptation, including developmental phenomena that are well
worth investigating using Evo-Devo approaches (Vergara-Silva,
2003). Interesting study topics that take advantage of the diver-
sity of life cycles in plants or specific adaptations include: the al-
ternation of generations in land plants by extending the mitotic
phase after the zygote formation to form an embryo; the acqui-
sition of vascular tissue in ferns and seed plants; the acquisition
of flowers and in particular carpels in the angiosperms; the oc-
currence of highly synorganized flowers in the Aristolochiaceae
(Figs. 4A, B), Orchidaceae, and Zingiberaceae (Fig. 4E); or the
evolution of numerous seed dispersal strategies due to changes
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in fruit shape and dehiscence. Heterotopy can also trigger novel
changes in floral shape, like in Neotropical poppies where petals
are replaced by stamens (e.g., Bocconia frutescens; Figs. 4C,D),
or in the mycoheterotrophic, achlorophyllous monocot species
from the Lacandon rainforest (Chiapas, Mexico) which bears
hermaphroditic “inside-out” flowers with central stamens and
lateral carpels (Álvarez-Buylla et al., 2010; Rudall et al., 2016;
Figs. 4F,G). Novelty can also arise by loss or reduction, as oc-
curs for the tiny unisexual flowers of hemiparasitic plants (e.g.,
Viscaceae). Carpellate flowers of these species sometimes lack
ovules and exhibit a remnant structure called the mamelon,
where gametogenesis occurs (Fig. 4H).

Assessment of the genetic basis of novelty in plants has been
dominated by studies in flower development, as one of the first
developmental genetic models was the ABCE model of floral or-
gan identity based on homeotic mutants of Arabidopsis thaliana
(Pelaz et al., 2000). The model explained the interactions between
four classes of transcription factors (A, B, C, and E) involved
in controlling the identity of the canonical floral organs, the
sepals (A+E class genes), the petals (A+B+E class genes), the
stamens (B+C+E class genes), and the carpels (C+E class genes)
(Coen and Meyerowitz, ’91). Comparative studies in nonmodel
species point to conserved functions of B and C class genes in
stamen and carpel identity, but a more flexible recruitment of
genes in sepal and petal identity (Litt & Kramer 2010; Pabón-
Mora et al., 2012, 2013, 2015). Conversely, functional character-
ization in nonmodel plants has shown that the least conserved is
the A-function. There is growing evidence of the role of A-class

genes in other processes that include leaf morphogenesis, inflo-
rescence architecture and fruit development and the recruitment
of other MADS-box transcription factors contributing to peri-
anth identity (e.g., AGAMOUS-like6; Pabón-Mora et al., 2013,
2015, Wang et al., 2016). We therefore must now move beyond
the genes involved in the ABCE model and indeed beyond “organ
identity” alone to explain floral variation in angiosperms, and
particularly changes in perianth, whose diversity correlates with
pollinator preferences (Pabón-Mora et al., 2012, 2015; Specht
and Howarth, 2015; Almeida et al., 2015a,b).
Structural homologies are not always easy to identify in

organisms, given the extreme morphological and anatomical
modification that they can exhibit across large evolutionary dis-
tances. Ontogenetic studies are important for assessing homol-
ogous structures in modular organisms. In each module, the
same reference points can be used to assess correspondence
and homology despite extreme metamorphosis. For instance,
meristematic origin, identity, polarity, and position are addi-
tive criteria to pinpoint leaf homologs despite their reduction or
extreme variation in shape, color, or size, along one or differ-
ent axes, whether vegetative or reproductive. Another exam-
ple of extreme body shape transformation that has been stud-
ied using nonmodel organisms is the convergent evolution of
snakelike forms in Neotropical Squamata (lizards, snakes, and
amphisbaenians), which involve limb reduction or loss along
with an increase in the number of trunk vertebrae. Comparative
anatomical and molecular studies suggest that convergent forms
do not necessarily involve the same evolutionary changes in

Figure 4. Examples of emerging model systems for Evo-Devo studies in Latin America. (A–B) Aristolochia fimbriata and A. ringens flowers
having petaloid sepals, lacking petals, and exhibiting fusion between stamens and stigmas (C–D) Petalless poppy flowers in preanthesis
(C) and anthesis (D) of Bocconia frutescens, growing in the wild in Colombia. (E) Costus sp. (Costaceae). The labellum, formed from the
fusion of five laminar staminodes, dominates the floral display and has markings and conical epidermal cells typically associated with
petals in other lineages of flowering plants. Thus, in Costaceae, the stamens are responsible for floral display and pollinator signaling.
(F–G) Lacandonia schismatica is a mycoheterotrophic, achlorophylous monocot from the Lacandon rainforest (Chiapas, Mexico) harboring
hermaphroditic “inside-out” flowers with central stamens and lateral carpels. (H) Longitudinal section of Phoradendron nervosum female
flower, a common American hemiparasite, showing the tepals covering the carpels. Ovules do not develop, and the female gametophyte
forms in the reddish blue lower area called the mamelon. (I–L) The threatened Caribbean cnidarian species Acropora palmata (Elkhorn
Coral) collected off the eastern coast of Mexico; a fully grown individual (I), dividing blastula cells (J), gastrulating embryos (K), and planula
larvae (L). (M) The solitary ascidian Herdmania pallida in late gastrula just before blastopore closure; a classic example of a bilateral and
determinate embryo used for teaching and research at CEBIMAR, São Paulo. (N) The ribbon worm Lineus bonaerensis—a junior synonym
of Lineus (= Ramphogordius) sanguineus is reported in the intertidal of the Atlantic coast of Argentina, Uruguay, and Southern Brazil; it
is a top predator capable of clonal reproduction and exhibiting amazing regenerative capabilities. (O–P) Aedes aegypti (O) is the vector
of yellow fever, dengue, zika, and chikungunya viruses and Culex quiquefasciatus (P) is the vector of the filariasis nematode and the St.
Louis encephalitis, Western equine encephalitis and West Nile viruses; remarkably, of these two species, only the Aedes aegypti embryos
are resistant to desiccation. (Q) Four-eyed fish Anableps anableps from Venezuela and Brazil. (R) Skeletal preparation of the toad Rhinella
spinulosa, sampled in Chile. This species inhabits the Andean slopes of Argentina, Chile, Bolivia, and Peru from 0 to 5100 m above sea level.
Photo credits: A–D: Natalia Pabón-Mora; E: Chelsea Specht; F and G: Juan Pablo Abascal; H: Vanessa Suaza-Gaviria. I–L: Guillermo Jordan
and Griselda Avila; M: Alvaro Migotto and Ana Perticarrari de Osório; N: Eduardo Zattara; O and P: Gustavo Rezende; Q: Patricia Schneider;
and R: Sylvain Marcellini.
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developmental processes and genetic pathways (Waters, 2013;
Roscito et al., 2014; Singarete et al., 2015). Changes in the
anatomy of the musculoskeletal system associated with limbless
morphologies and epigenetic effects of reduced mobility on limb
development have also been studied for anurans (Abdala and
Ponssa, 2012; Abdala et al., 2015). Whether there are evolution-
ary changes that simultaneously affect the limb and vertebrae
modules simultaneously remains an open question.

Comparative Development and Systematics
While essential for understanding developmental evolution, the
integration of ontogeny and phylogeny has been a challenging
task for many years, as the connection between these two fields
requires a fair comparison between observations at a develop-
mental timescale and hypotheses at an evolutionary timescale.
Developmental series are often recorded as consecutive events
with a particular timing, resulting in qualitative and quantita-
tive phenotypic changes. Advances in microscopy techniques
have allowed for incredibly detailed descriptions of compara-
tive developmental processes at the cellular level; in parallel,
a growing molecular-genetics toolkit has enabled the identifi-
cation of some of the underlying molecular factors regulating
such processes. Advances in techniques for phylogenetic com-
parative analyses and the development of more comprehensive
statistical models capable of analyzing large data sets obtained
from genomic and transcriptomic sequence data have allowed
more rigorous testing of hypotheses of ancestry and relation-
ships among lineages (Blaimer et al., 2015). The extremes of the
tree of life are still problematic, as both deep nodes separating
major ancient groups and shallow nodes identifying very recent
speciation events remain hard to resolve (Phillippe et al., 2011).
Despite these limitations, modern comparative biology relies on
the construction of robust phylogenetic frameworks from which
to analyze developmental changes and thus determine common
ancestry and homology of form and function (Minelli, 2009).
In this section, we highlight how Evo-Devo studies that inte-
grate both developmental observations and gene or organismic
evolution have improved our understanding of morphological
variation in nonmodel plant and animal systems.
Plant Evo-Devo: Traditional techniques for chemical or mor-

phological analyses have been successfully combined with com-
putational methods in ancestral character estimation to investi-
gate the evolution of plant defenses (Karinho-Betancourt et al.,
2015), tree architecture (Rosell et al., 2012), floral diversification
(Gonzalez and Rudall, 2010; Pozner et al., 2012; Bull-Herenu
and Classen-Bockhoff, 2013; Cardoso-Gustavson et al., 2014;
Paulino et al., 2014; Almeida et al., 2015a, b), vascular vari-
ants (Pace et al., 2009, 2011), and seed anatomy (Sousa-Baena
and de Menezes, 2014). On the other hand, many of the molec-
ular techniques developed in the model plant A. thaliana are
now being used on a broader comparative framework to assess
functional evolution of gene lineages. This effort has resulted

in the transfer of genetic information from model systems to a
diversity of organismal studies, offering novel insights into the
molecular evolution and gene regulatory network involved in
the development and diversification of organs such as leaves
(Sousa-Baena et al., 2014), flowers (Pabon-Mora et al., 2013;
Davila-Velderrain et al., 2014; Almeida et al., 2015a, b), fruits
(Pabon-Mora et al., 2014), seeds (Lopez-Fernandez and Maldon-
ado, 2015), and conifer cones (Vazquez-Lobo et al., 2007; En-
glund et al., 2011; Carlsbecker et al., 2013). Understanding the
evolution of gene regulatory networks in plant development has
shed light to a series of commonalities among plant and ani-
mal systems (Hernandez-Hernandez et al., 2012; Moczek et al.,
2015), which currently allow us to expand Evo-Devo approaches
across different biological systems under the same theoretical
framework.
Animal Evo-Devo: Evolutionary and developmental questions

in both invertebrates and vertebrates have been addressed us-
ing comparative morphological approaches with ancestral trait
reconstruction. Studies related to the evolution of life history
traits include studies of egg size in relation to direct or indi-
rect development in marine invertebrates (Collin, 2012), evo-
lution of larval development in relation to habitats and pat-
terns of distribution in muricid gastropods (Pappalardo et al.,
2014), evolution of adelphophagic larvae in marine gastropods
(Thomsen et al., 2014), gonad development and evolution of
viviparity in fish (Martínez et al., 2014), and evolution of terres-
trial reproduction in frogs (Pereira et al., 2015). Studies related
to heterochrony, allometry, and modularity include geographic
variations of body size adapted to local climate or habitat in
gymnophthalmid lizards (Grizante et al., 2012), evolution of lar-
val and juvenile development and allometry in secondary sex-
ual characters of crabs (Flores et al., ’98; Flores and Negreiros-
Fransozo, ’99; Negreiros-Fransozo et al., 2003), digit length ra-
tios, locomotor performance, and sexual dimorphism in igua-
nian lizards (Gomes and Kohlsdorf, 2011), modulatory gene net-
work regulation of tooth number in mammalian dentition (Line,
2003), variation of cranial shape and structure number in mam-
mals (Monteiro et al., 2005; Shirai and Marroig, 2010; Gian-
nini, 2014; Koyabu et al., 2014), muscle identity and attachments
during human digit evolution and development (Diogo et al.,
2015), or mammalian cortical development and brain size evo-
lution (Montiel et al., 2013, 2016). Studies related to evolution-
ary novelties or losses include evolution of transparent eyelids
in lizards (Guerra-Fuentes et al., 2014), evolution of jaw abduc-
tor muscles, tooth variation, and limblessness in snakes (Zaher,
’94; Zaher and Prudente, ’99; Zaher and Rieppel, ’99; Apesteguía
and Zaher 2006; Zaher et al., 2009), evolution of limb bone ele-
ments in turtles (Fabrezi et al., 2009), or loss of digits and limb
reduction in gymnophthalmid lizards (Roscito and Rodrigues,
2012; Roscito et al., 2014). Separate but often complementary
lines of research take advantage of the growing wealth of ge-
nomic data to explore the molecular evolution of different gene
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families and their role in morphological and physiological adap-
tation, such as evolution of Hox genes and the origins of limbless
morphologies in amphibians and reptiles (Singarete et al., 2015),
origin and evolvability in PAX genes involved in embryonic de-
velopment and organogenesis (Paixao-Cortes et al., 2013, 2015),
nonvertebrate origins of retinoic acid involved in vertebrate de-
velopment and homeostasis (Simoes-Costa et al., 2008), genes
involved in olfactory behaviors (Lavagnino et al., 2012) or in
hybrid incompatibility (Mensch et al., 2013) in flies, hemoglobin
diversification in teleost fish (Opazo et al., 2013), and compara-
tive genomics of cetaceans (Nery et al., 2013).

Mathematical and Computational Modeling Approaches to
Evo-Devo
Morphogenesis and phenotypic change in plants, animals, and
other multicellular systems involve changes in time and space of
developmental processes and gene regulatory dynamics. These
changes can be studied with the help of mathematical models
(Álvarez-Buylla et al., 2008; Caballero et al., 2012). Models al-
low for simplification and quantification of the processes un-
der study and provide a formal framework to understand and
predict developmental processes at a mechanistic and dynamic
level. The recent emergence of powerful computational tools has
enabled the implementation of some of these models, which in
turn has allowed researchers to exhaustively explore parame-
ter values, perform in silico experiments, test hypotheses, and
render new predictions—often unforeseen or counterintuitive—
that can in turn guide further experimental work (Prusinkiewicz
and Runions, 2012; Hay-Mele et al., 2015). It is important to
keep in mind some of the possible pitfalls of mathematical and
computational modeling, such as the imposition of models upon
actual study systems (reification) and the use of mathematical
and computational tools to “animate” developmental and evo-
lutionary processes, rather than to understand them.

The Latin American community has a robust tradition in the
development of different types of mathematical and computa-
tional models for the study of development. At the genetic and
biochemical level, there is a strong school of network model-
ing that has largely contributed to understanding how the col-
lective activity of genes and other factors can lead to cell-fate
determination and to the balance between proliferation and dif-
ferentiation in different developmental systems (Alvarez-Buylla
et al., 2007; Azpeitia et al., 2010; Weinstein and Mendoza, 2012).
These gene network models have shown that different cell fates
can be attained during the development of multicellular organ-
isms when the intracellular networks, in interaction with local
cues (e.g., ligands or morphogen gradients), reach one of their
potential steady states. This echoes Kauffman’s proposal that cell
types are dynamical attractors of gene networks (Kauffman, ’69)
and has provided a way to study Waddington’s epigenetic land-
scapes in particular developmental models (e.g., Alvarez-Buylla
et al., 2008).

Gene network models, which provide a valuable framework to
postulate precise mechanisms and events underlying phenotypic
change, have been developed mostly from a qualitative view, but
have also included large data sets from model genetic organisms
and experimental evidence to build and validate the models and
postulate their role in evolution of form (Espinosa-Soto, 2004;
Alvarez-Buylla et al., 2008; Hernández-Lemus, 2013). Indeed,
one of the conclusions of these modeling efforts is that even
qualitative gene regulatory network models are able to repro-
duce the overall regulatory logic of some differentiation and de-
velopmental events, suggesting that the global dynamic of these
processes largely depends on the network architecture and na-
ture of the interactions, rather than on particular kinetic details.
At the organismic scale, Latin American groups have con-

tributed to the integral study of patterning and morphogenetic
processes in which diverse biological, chemical, physical, and
even environmental factors are involved. Importantly, many
of these efforts have provided conceptual, methodological,
and technical tools to couple genetic/biochemical factors with
physicochemical processes at the multicellular level (Cocho et al.,
’87; Caballero et al., 2012; Swat et al., 2012; Barrio et al., 2013).
From these mathematical models, it is now clear that, besides
biochemical signals or morphogens, physical factors like me-
chanical fields play a central role in the establishment of spatial-
dependent information and in morphogenesis in general. Elena
Álvarez-Buylla has been fundamental in training a new gener-
ation of scholars in the biomathematical field, to interpret mor-
phogenetic data with an Evo-Devo approach. Such studies have
opened new avenues in the study of multicausal mechanisms in
plant and animal systems.
Organismal evolution is restricted, affected, and driven by

processes occurring at different scales. To address evolution from
a comprehensive Evo-Devo view, it is therefore necessary to de-
velop computational approaches able to integrate molecular, cel-
lular, and environmental subprocesses, among others. With the
advent of new theoretical and technological approaches from the
computational and mathematical fields, multiscale models that
study the interaction of these subprocesses have recently been
developed (García and Azpeitia, 2014). Developing models that
enable the coupling of different spatiotemporal scales has im-
proved our understanding of major evolutionary transitions (Mi-
ramontes, 2014; Mora Van Cauwelaert et al., 2015) and may help
to elucidate the complex relations between ecological, sociocul-
tural, and developmental processes in evolution (Casanueva and
Martínez, 2014; Martínez and Esposito, 2014). These complex
interactions could benefit from theoretical platforms elaborated
by historians or philosophers of biology interested in Evo-Devo
(for instance, see Abrantes, 2011).
Latin American researchers have produced some pioneering

advances toward understanding the dynamic and self-organized
nature of developmental processes (Cocho, ’99; Varela et al., ’74).
Moreover, long-standing organizational and educational efforts
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have created a critical mass of researchers, groups, and insti-
tutions actively developing diverse mathematical and computa-
tional models in Evo-Devo. Undoubtedly, our community will
continue contributing to worldwide efforts aiming at modeling
evolutionary processes from genetic, molecular, cellular, devel-
opmental, physiological, behavioral, and ecological perspectives
and tackle some of the most challenging issues in Evo-Devo.

Evo-Devo Studies on Domesticated Crops in Latin America
A topic of research that is increasingly present in the contem-
porary scientific literature addresses the evolutionary processes
underlying domestication of plants and animals (for an analy-
sis and discussion of these emerging topics, see Piperno, 2011;
Moczek et al., 2015). Central and South America harbor areas
that have been considered the centers of origin of domesticated
plants, a concept that was originally articulated by Vavilov (’26).
Based on current knowledge, two centers of origin fall within
Latin America: the Mesoamerican and the Andean area(s). In
these regions, maize, beans, tomato, amaranth, papaya, avo-
cado, potato, manioc, yams, and quinoa, to name only a few
crops, were domesticated between 10,000 and 6,000 years be-
fore present (Piperno, 2011). While these areas were originally
defined based on botanical and agronomical evidence, the role
of humans on moving and diversifying the domesticated plants
was acknowledged (Vavilov, ’26). In later years, the explicit in-
corporation of archeological, ethnobotanical, and ethnolinguis-
tic studies, as well as detailed genetic analyses of crops and
their wild relatives, have painted a much more nuanced pic-
ture of the process of domestication and its bearing on soci-
etal/cultural evolution (Piperno, 2011). These studies have not
only refined the narrative and increased the evidence used to
assert the origin of particular crop plants, but have also empha-
sized that while domestication occurred sometime in the past
(in some cases with independent domestication events of the
same species such as Phaeseolus sp. and Cucurbita sp.; Piperno,
2011), the process of crop diversification, which can include the
incorporation of wild germplasm into native cultivars as well
as their acclimation to changing agroecological conditions is a
current, ongoing phenomenon practiced by peasants and farm-
ers in what has been termed autoctonous genetic improvement
(AGI; Turrent et al., 2009). AGI as a process that maintains and
recreates the landrace varieties that harbor an important part of
the phenotypic, genetic, and epigenetic diversity of a particu-
lar plant species. This is a key aspect of in situ conservation,
which can be further utilized for professional genetic improve-
ment. Furthermore, while landraces can occupy distinct and re-
stricted ecological niches, as a whole they can cover important
parts of the agricultural landscape, commingling with their wild
relatives and hybrid counterparts, with whom they can readily
interbreed (for a review of documented cases, see Ellstrand et al.,
2013). Cultivated plants are embedded in a complex biological
patchwork further complicated by the fact that many are staple

crops, with the cultural, social, and economic importance that
this status entails (Dyer et al., 2009). The acknowledgment of the
highly integrated and often complex relationships that underlie
the dynamic maintenance of the genetic diversity of domesti-
cated crops by the farmers that live off them—who under certain
circumstances chose to harbor particular varieties because these
are well suited to particular agronomic conditions, whereas in
other cases they sow them for specific organoleptic, symbolic,
and/or religious purposes—is at the heart of the ongoing contro-
versy pertaining the introduction of genetically modified cul-
tivars of plants that were domesticated or diversified in Latin
America (Acevedo Gasman, 2009). In this context, the notion of
coexistence without gene flow from genetically modified culti-
vars into their conventional counterparts and wild relatives has
been strongly put into question, more so after transgene flow
has already been documented for species such as maize and cot-
ton (Dyer et al., 2009; Piñeyro-Nelson et al., 2009; Wegier et al.,
2011). Transgenes that are introduced into novel genomic con-
texts could persist across generations with unforeseen conse-
quences at the developmental and evolutionary levels. Further-
more, current patents and intellectual property laws associated
with many recombinant constructs introduced into commercial
cultivars directly imperil ancestral agronomical practices, such
as seed exchange and communal plantings, two phenomena that
actively maintain and structure genetic diversity (Álvarez-Buylla
and Piñeyro-Nelson, 2013). Thus, the introduction of genetically
modified cultivars in the region could affect overall abundance,
distribution, and Eco-Evo-Devo dynamics of native varieties of
Latin American crops and affect agronomical practices, includ-
ing AGI efforts.

PERSPECTIVES
Despite the relatively low investment of Latin American coun-
tries in science and technology, interest and research in Evo-
Devo is on the rise in this part of the world. Many new re-
search groups were established in the past decade, leading to
the formation of a new generation of scientists interested in
addressing questions of relevance to the international commu-
nity while maintaining a marked Latin American perspective.
Interdisciplinary interactions of Evo-Devo researchers should
be encouraged, and more broadly extended to researchers in
other academic fields, such as social sciences and humanities,
or history and philosophy. We argue that Latin American Evo-
Devo must continue to develop and expand, mainly by at-
tracting young principal investigators (PIs) and helping them
to start their own original line of research and propose that
a variety of complementary strategies will help in reaching
this goal. First, current Evo-Devo labs must keep inspiring stu-
dents to engage in this discipline by proposing exciting thesis
projects on a wide variety of species and topics, and by establish-
ing dynamic networks of collaborations with colleagues within
Latin America as well as with other regions. Collaborations will
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Table 2. Resources for EvoDevo in Latin America

Type Name URL

Developmental
biology
scientific
societies

Latin American Society for Developmental Biology
(LASDB)

http://lasdbbiology.ning.com/

Sociedad Mexicana de Biologia del Desarrollo http://www.smbd.org.mx/
Sociedade Brasileira de Biologia do Desenvolvimento
Sociedad Colombiana de Biología del Desarrollo http://www.colsdb.org/
Sociedad Chilena de Reproducción y Desarrollo http://www.schrd.cl/

Evolutionary
biology
scientific
societies

ColEvol http://www.colevol.co/
Sociedad Chilena de Evolución http://socevol.cl/

Journals Neotropical Biodiversity http://www.tandfonline.com/loi/tneo20#.Vr-9yRjiEgU
Genetics and Molecular Biology http://www.gmb.org.br/
Gayana http://www.gayana.cl/es/index.php

Books Emergencia de las formas vivas: aspectos dinámicos de la
biología evolutiva by Lorena Caballero (2008)

http://scifunam.fisica.unam.mx/mir/copit/TS0004ES/
TS0004ES.pdf

La ontogenia del pensamiento evolutivo by Eugenio
Andrade (2011)

http://www.uneditorial.com/la-ontogenia-del-
pensamiento-evolutivo-hacia-una-interpretacion-
semiotica-de-la-naturaleza-tapa-dura-
biologia.html#.Vr_BRxjiEgU

Evolución: El Curso de la Vida by Milton H. Gallardo
Narcisi (2011)

http://www.medicapanamericana.com/Libros/Libro/4369/
Evolucion.html

Requiem por el centauro: aproximación epistemiológica a
la biología evolucionaria del desarrollo by Gustavo
Caponi (2012)

http://www.scientiaestudia.org.br/associac/gustavocaponi/
index.asp

Cazadores de monstrous. Monstruos esperanzados y
sistemas complejos: evolución y autoorganización by
Álvaro Chaos Cador (2014)

http://publicaciones.uacm.edu.mx/monstruos.html

Introducción a La Biología Evolutiva by Marco A. Méndez
and José Navarro B. (2014)

http://www.scribd.com/doc/240808617/Mendez-y-
Navarro-2014-Introduccion-a-La-Biologia-
Evolutiva#scribd

Blogs Evolução & Desenvolvimento – Sobre genes, embriões,
fósseis e evolução

https://evodevobr.wordpress.com/

Evolucionismo - I think http://evolucionismo.org/

accelerate the training of students in Evo-Devo, provide access
to cutting edge imaging, molecular, computing, and sequencing
technologies, which remain scarcely available in Latin America,
and facilitate the access to native species with interesting evo-
lutionary questions for international colleagues. Research net-
works can also coordinate the generation, acquisition, and use
of common resources and core facilities. Until the number of
Latin American Evo-Devo researchers reaches the critical mass
needed to hold regional Evo-Devo meetings, it is our responsi-
bility to improve our visibility by actively getting involved in
the PanAm Evo-Devo, Latin American Society for Developmen-

tal Biology (LASDB), European Society for Evolutionary Devel-
opmental Biology (Euro Evo Devo or EED), and other societies
(Table 2). In addition, current efforts to edit or publish books,
create Evo-Devo friendly journals and maintain blogs related
to our discipline must be increased (Table 2). Startup funds are
crucial to implement laboratories and animal facilities to study
local species whose biology and etiology are poorly understood.
Finally, Evo-Devo PIs will have to adapt to survive the rapid
changes in scientific policies that result from the strong swings
that are commonplace during governmental transitions in Latin
American countries, as well as embrace the increasing regional
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bias toward research and development (R&D). Latin American
universities and governmental institutions must discourage
brain drain phenomena by adopting long-term strategies that
contribute to support basic science in general, and more specif-
ically the Evo-Devo field (Fraser, 2014; Miranda, 2014); in turn,
researchers could start to adopt distinct Evo-Devo approaches
to address societal needs (Moczek et al., 2015). Evolutionary de-
velopmental biologists must now find clever ways to apply their
passion to socially, economically, medically, and environmen-
tally relevant issues (Losos et al., 2013). Given that heterologous
assays with closely related model species are known to be a pow-
erful tool to reveal the functional evolution of genes of interest
(Kramer, 2015), such assays, along with transgenesis, mutagene-
sis and expression protocols could be adapted to regional crop or
pest species of medical and economic importance that can easily
be raised in the lab. Furthermore, given the multidisciplinary na-
ture of many Evo-Devo studies, insights gained in areas such as
Eco-Evo-Devo or crop Evo-Devo can help to increase awareness
regarding the uniqueness and frailty of the region’s biodiversity,
hopefully influencing national policies toward increased con-
servation efforts and scientifically sound management practices.
Much more than a simple “trick” to attract funding, this strat-
egy is a social responsibility of Evo-Devo researchers working
in Latin America, a continent that hosts a large fraction of the
world’s biodiversity, and that is currently threatened by climate
change, overexploitation of natural resources, and the spread of
many neglected tropical diseases. Hence, Latin America provides
a unique and exciting opportunity to combine applied and ba-
sic research while exploring how new developmental trajectories
have evolved in myriads of endemic species that have never been
studied before.
Nowadays, Latin America remains a place of discovery. The

importance of the region’s biodiversity has also increased dur-
ing the past decade as Evo-Devo started shifting away from com-
parisons among the deeply divergent traditional model systems
of developmental biology and embraced case studies sampling
larger sets of closely related species scattered across the diversity
of life. Never before could genomics, transcriptomics, experi-
mental embryology, and genome editing technologies be applied
to so many species, and not just model organisms (Chen et al.,
2014). Thus, scientific progress now allows us to study unique
biological questions in “strange” organisms: What are the phys-
iological and stem cell features that give cnidarians, ascidians,
nemerteans, and other marine organisms their impressive ability
to regenerate and reproduce clonally (Figs. 4I–N)? What are the
differences among mosquitoes that make them vectors of differ-
ent disease agents (Figs. 4O and P)? How did “electrocytes” (i.e.,
specialized cells that produce 600 V) evolve in electric eels? How
do Hoatzin chicks develop reminiscent claws in their forewings?
How did curare vines and Bothrops insularis evolve to produce
such powerful venom? How does the transparent abdominal skin
of glass frogs develop? What are the adaptations to perpetual

darkness of cave-dwelling Speleonectes, the only known ven-
omous crustacean in the world? How did split eyes evolve to al-
low vision above (the eye upper half) and below (the eye bottom
half) the water surface in the Anableps fishes (Fig. 4Q)? These
questions, among many others reviewed in this article, are only
a minute sample of the exciting topics inspired by Latin Amer-
ica, a continent whose thriving biodiversity represents endless
forms most beautiful and most wonderful that are a source of
inspiration and opportunities for the Evo-Devo community.
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