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Abstract

Sparse seismic data acquisitions are becoming increasingly common due to their

cost and time benefits. However, this method results in irregularly sampled data, which

negatively impacts the quality of the final images. To address this challenge, this work

proposes and evaluates two groundbreaking deep neural network methodologies to improve

the resolution of seismic data and overcome the limitations caused by irregular sampling.

Firstly, we introduce the ResFFT-CAE network, a convolutional neural network with

residual blocks based on the Fourier transform. These residual blocks allow the network

to extract both high- and low-frequency features from the seismic data. High-frequency

features capture detailed information, while low-frequency features integrate the overall

data structure. This combined approach facilitates superior recovery of irregularly sampled

seismic data in the trace and shot domains. We evaluate the ResFFT-CAE network’s

performance on both synthetic and field data, comparing it against the compressive sensing

(CS) method using the curvelet transform and other established neural networks, including

the convolutional autoencoder (CAE) and U-Net. The results consistently demonstrate

that the ResFFT-CAE outperforms other approaches in all scenarios, producing superior-

quality images characterized by lower residuals and reduced distortions. Furthermore,

models trained on synthetic data also exhibit promising results in generalization tests. The

ResFFT-CAE network proves to be an efficient tool for regularizing irregularly sampled

seismic data, with potential applications in the preconditioning of seismic data analysis

and processing flows. In parallel, we propose the Enhanced Deep Super-Resolution (EDSR)

strategy to improve the resolution of seismic data obtained from sparse acquisitions.

Our approach aims to reconstruct low-resolution seismic data from its high-resolution

counterparts, allowing a satisfactorily detailed subsurface image using a smaller amount

of data. EDSR differs from traditional methods of interpolation by learning complex

mapping between low- and high-resolution seismic data, enabling more accurate and

realistic reconstructions. Through extensive experiments with synthetic and real seismic

data sets, we demonstrated the effectiveness and versatility of the proposed approach. The

EDSR network exhibits remarkable performance in restoring high-frequency details and

preserving structural integrity, even in high-data-sparsity scenarios. This study highlights

the significant potential of the EDSR network for the reconstruction of low-resolution

data. The ResFFT-CAE and EDSR methodologies represent significant breakthroughs in

applying deep learning to regularize seismic data. ResFFT-CAE is an effective tool for

regularizing irregularly sampled data, while EDSR enables the seismic data reconstruc-

tion from regularly sparse acquisitions. These approaches offer promising solutions to

optimze seismic exploration.

Keywords: CNN; ResFFT-CAE; EDSR; time-lapse seismic.
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Resumo

As aquisições sísmicas esparsas estão se tornando cada vez mais comuns devido aos seus

benefícios em custo e tempo. No entanto, esse método resulta em dados amostrados de

forma irregular, o que impacta negativamente a qualidade das imagens finais. Para enfrentar

esse desafio, este trabalho propõe e avalia duas metodologias inovadoras de redes neurais

profundas para melhorar a resolução dos dados sísmicos e superar as limitações causadas

pela amostragem irregular. Primeiramente, apresentamos a rede ResFFT-CAE, uma rede

neural convolucional com blocos residuais baseados na transformada de Fourier. Esses blocos

residuais permitem que a rede extraia características de alta e baixa frequência dos dados

sísmicos. As características de alta frequência capturam informações detalhadas, enquanto

as de baixa frequência integram a estrutura geral dos dados. Essa abordagem combinada

facilita a recuperação superior de dados sísmicos amostrados de forma irregular nos domínios

de traço e tiro. Avaliamos o desempenho da rede ResFFT-CAE em dados sintéticos e de

campo, comparando-a com o método de compressive sensing (CS) usando a transformada

curvelet e outras redes neurais estabelecidas, incluindo o autoencoder convolucional

(CAE) e U-Net. Os resultados consistentemente demonstram que a ResFFT-CAE supera

outras abordagens em todos os cenários, produzindo imagens de qualidade superior

caracterizadas por resíduos menores e distorções reduzidas. Além disso, modelos treinados

em dados sintéticos também exibem resultados promissores em testes de generalização. A

rede ResFFT-CAE se mostra uma ferramenta eficiente para regularizar dados sísmicos

amostrados de forma irregular, com aplicações potenciais no pré-condicionamento de

análises e fluxos de processamento de dados sísmicos. Em paralelo, propomos a estratégia

de Enhanced Deep Super-Resolution (EDSR) para melhorar a resolução de dados sísmicos

obtidos de aquisições esparsas. Nossa abordagem visa reconstruir dados sísmicos de baixa

resolução em suas contrapartes de alta resolução, permitindo uma imagem satisfatoriamente

detalhada usando uma quantidade menor de dados. A EDSR difere dos métodos tradicionais

de interpolação ao aprender mapeamentos complexos entre dados sísmicos de baixa e alta

resolução. Por meio de extensos experimentos com conjuntos de dados sísmicos sintéticos e

reais, demonstramos a eficácia e versatilidade da abordagem proposta. A rede EDSR exibe

um desempenho notável na restauração de detalhes de alta frequência e na preservação

da integridade estrutural, mesmo em cenários de alta esparsidade. Este estudo explora o

potencial significativo da rede EDSR na reconstrução de dados sísmicos de baixa resolução.

As metodologias ResFFT-CAE e EDSR representam avanços significativos na aplicação de

aprendizado profundo para regularizar dados sísmicos. A ResFFT-CAE permite regularizar

dados amostrados de forma irregular, enquanto a EDSR possibilita a reconstrução de

dados sísmicos a partir de aquisições regularmente esparsas. Essas abordagens oferecem

soluções promissoras para otimizar a exploração sísmica.

Palavras-Chave: CNN; ResFFT-CAE; EDSR; sísmica time-lapse.
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1 Introduction

Seismic exploration plays a fundamental role in the oil and gas industry, aiming to

provide a comprehensive and detailed view of the terrestrial and marine subsurface. Through

the generation and analysis of elastic waves, this technique enables the identification of

complex geological structures, the location of potential hydrocarbon reservoirs, as well as

the monitoring and optimization of production in operating fields.

The method utilizes the principle of elastic wave reflection to map and characterize

geological structures in the subsurface (YILMAZ, 2001). These waves, as they propagate

through media with different physical properties, have part of their energy transmitted and

another part reflected towards the surface. These reflected waves represent the response

of the elastic wave field to velocity and density contrasts of the layer interfaces and are

recorded by a set of receivers.

Seismic acquisitions, an integral part of this process, involve different types of

survey arrangements, which can be divided into three main categories: 2D, 3D, and 4D.

The 2D geometry provides seismic profiles along one-dimensional lines, while 3D geometry

uses multiple parallel cables (towed cable system) and can also employ receiver technologies

deployed on the ocean floor, such as Ocean Bottom Nodes (OBN) and Ocean Bottom Cable

(OBC). 4D Systems follow the same configuration as 3D, but vary over time, allowing

monitoring of changes occurring in the environment.

Conventionally, these acquisitions use a dense network of receivers arranged in

a uniform pattern with narrow spacing (DONDURUR, 2018). This configuration ensures

dense and uniform spatial coverage of the study area but presents challenges in complex

environments and results in high operational costs. Sparse seismic acquisitions emerge

as an efficient alternative to optimize time and operational costs (CAMPMAN et al., 2017;

SANO et al., 2020; CHARRON et al., 2022). This technique utilizes an irregular distribution

of receivers, with larger spacing between them. This approach allows for a significant

reduction in the number of receivers and cables, making the operation faster and more

economical.

Thus, the absence of traces and shots, regardless of the acquisition geometry,

causes aliasing and energy leakage to the data. This means that the final seismic image

may exhibit distortions and loss of important information. To overcome these challenges,

regularization and interpolation techniques are crucial tools. These approaches aim not

only to fill in the missing information but also to ensure a representation of the subsurface

is as accurate as possible for subsequent processing flow applications.



1.1 Objectives

This paper aims to address fundamental issues related to seismic exploration in

the oil and gas industry by developing innovative artificial intelligence methodologies for

seismic data reconstruction and regularization, with the goal of optimizing the mapping

and characterization process and generating high-quality images from low-resolution data.

To achieve this overarching goal, the following specific objectives are outlined:

• Evaluate the potential of sparse seismic acquisitions as an efficient alternative to

reduce costs and optimize operational time, exploring irregular distributions of

receivers and larger spacing between them.

• Analyze the impact of data sparsity on the quality of seismic images, investigating

regularization and interpolation techniques to overcome distortions and information

loss resulting from the absence of traces and shots.

• Present studies focused on innovative approaches for irregularly and regularly sam-

pled seismic data reconstruction, such as the use of residual convolutional neural

networks based on fast Fourier transforms (ResFFT-CAE) and Enhanced Deep

Super-Resolution (EDSR), using both synthetic and real data, respectively.

• Compare the performance of the new approaches with traditional methods, such as

compressive sensing and bicubic interpolation, in terms of reconstruction quality and

operational efficiency, using evaluation criteria such as signal-to-noise ratio (SNR).

1.2 Original contributions

The originality of this thesis lies in its innovative approach to fundamental issues in

exploration seismic within the oil and gas industry. It introduces methodologies centered on

artificial intelligence, with a particular emphasis on the use of convolutional neural networks,

for seismic data reconstruction and regularization. It explores the application of sparse

seismic acquisitions as an efficient alternative to traditional ones, with irregular distributions

of receivers or regular arrangements with larger spacing. It investigates the impact of

sparsity on the quality of seismic images, proposing regularization and interpolation

techniques. The thesis presents innovative approaches to seismic data reconstruction, using

neural networks such as ResFFT-CAE for irregularly sparse data and EDSR for regularly

sparse data, comparing them with established methods in the literature. It contributes new

insights and potential for significant advancements in the field, highlighting the importance

of convolutional neural networks in the regularization of seismic data.
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1.3 Thesis Organization

The structure of this thesis is outlined systematically and in detail to address

specific topics related to exploration seismic in the oil and gas industry, as well as the

developed methodologies and obtained results. Below are the chapters that compose this

work:

• Chapter 1: Introduction. This chapter provides a succinct contextualization of

the topic, presenting the study’s objectives and its original contributions to the field

of exploration seismic in the oil and gas industry.

• Chapter 2: Sparse seismic data regularization in both shot and trace

domains using residual blocks autoencoder based on fast Fourier transform.

The second chapter highlights a pioneering study that introduces the application

of the residual convolutional neural network ResFFT-CAE, which was published

in the GEOPHYSICS journal. This innovative approach, based on the fast Fourier

transform, aims to reconstruct irregularly sampled seismic data, covering both trace

and shot domains. The architecture and operation of ResFFT-CAE are detailed,

and the results of its interpolation performance at different levels of random sparsity

(30%, 50%, and 70%) are presented. Comparisons are also made with traditional

methods such as compressive sensing and other neural networks recognized in the

literature.

• Chapter 3: Unlocking High-Resolution Seismic Data from Sparse Acqui-

sitions: A Deep Learning Approach. This chapter addresses the application

of a neural network called Enhanced Deep Super-Resolution (EDSR) for regular-

ization of sparsity in regularly sampled seismic data, which was submitted to the

IEEE Transactions on Geoscience and Remote Sensing. We explore contexts where

data availability varies, ranging from having half of the total data to having only

one-eighth of it. The reconstruction performance is compared with the traditional

method of bicubic interpolation, both on synthetic and real data.

• Chapter 4: Conclusions and Final Remarks. The final chapter synthesizes

the main contributions of the work as a whole. In addition to summarizing the

results obtained in the previous chapters, possible future directions for research

and development in the field of exploration seismic are discussed, highlighting

opportunities for improving seismic data reconstruction and regularization techniques

and their applicability in the oil and gas industry.

• Apenddix: Codes and training details. The appendix of this work contains

the complete code used for the development and implementation of the ResFFT-

CAE and EDSR networks, as well as the data preprocessing steps. This additional
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material aims to provide a deeper and more transparent understanding of the applied

techniques, enabling other researchers to reproduce and validate the presented results.
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2 Sparse seismic data regularization in both

shot and trace domains using residual

blocks autoencoder based on fast Fourier

transform

A. L. Campi and R. M. Missagia.

Adaptation of the manuscript published in GEOPHYSICS, 2023.

2.1 Abstract

The increasing use of sparse acquisitions in seismic data acquisition offers advantages

in cost and time savings. However, it results in irregularly sampled seismic data, adversely

impacting the quality of the final images. In this paper, we propose the ResFFT-CAE

network, a convolutional neural network with residual blocks based on the Fourier transform.

Incorporating residual blocks allows the network to extract both high- and low-frequency

features from the seismic data. The high-frequency features capture detailed information,

while the low-frequency features integrate the overall data structure, facilitating superior

recovery of irregularly sampled seismic data in the trace and shot domains. We evaluate the

performance of the ResFFT-CAE network on both synthetic and field data. On synthetic

data, we compare the ResFFT-CAE network with the compressive sensing (CS) method

utilizing the curvelet transform. For field data, we conducted comparisons with other

neural networks, including the convolutional autoencoder (CAE) and U-Net. The results

demonstrate that the ResFFT-CAE network consistently outperforms other approaches in

all scenarios. It produces images of superior quality, characterized by lower residuals and

reduced distortions. Furthermore, when evaluating model generalization, tests using models

trained on synthetic data also exhibit promising results. In conclusion, the ResFFT-CAE

network shows great promise as a highly efficient tool for the regularizing irregularly

sampled seismic data. Its excellent performance suggests potential applications in the

preconditioning of seismic data analysis and processing flows.

2.2 Introduction

Seismic exploration in oil fields generally produces irregular seismic data as a result

of either structural obstacles (from platforms to pipelines) or sparse acquisitions. In recent



years, sparse acquisition techniques have been developed that provide better areal coverage

while reducing costs and time (CHARRON et al., 2022). Missing traces and shots cause data

aliasing, leading to decreased image processing quality due to difficulties with multiple

attenuation, migration, amplitude versus offset analysis (AVO), and inversion in the case

of 3D acquisitions. Interpolation techniques are used to address problems caused by low

quality. There are currently a variety of approaches available for this purpose, including

prediction filters, wave equations, compressive sensing, dictionary learning, and artificial

intelligence.

The prediction filter approach is utilized in the F-X (GULUNAY, 1986; SPITZ, 1991;

LIU et al., 2012), F-K (GULUNAY; CHAMBERS, 1996), and T-X (CLAERBOUT; NICHOLS,

1991) domains for noise attenuation and interpolation of regularly subsampled data.

Seismic wave equation reconstruction is related to data inversion using dip moveout

(DMO) or azimuth moveout (AMO), which combines the wave equation with inverse

data regularization and local superposition to restore the seismic wave field via wave

propagation characteristics (CANNING; GARDNER, 1996; CHEMINGUI; BIONDI, 1996). Some

spectral anti-leakage methods can be highlighted, such as antileakage Fourier transform

(ALFT), multichannel interpolation by matching pursuit (MIMAP), antileakage least-

squares spectral analysis (ALLSSA) and multichannel ALLSSA (MALLSSA).

The ALFT approach, introduced by Xu et al. (2005, 2010), is an iterative method

that searches for the strongest frequency that contaminates the signal at each iteration

and then removes the contribution of this component from the input data for seismic

data regularization. Multichannel interpolation by matching pursuit (MIMAP), a method

for reconstructing seismic wave fields that (VASSALLO et al., 2010) proposed, allows for

interpolating data with severe aliasing while reconstructing the signal using a variety of

ideal basis functions.

The ALLSSA technique employs the LSSA to identify the frequency components

with the most energy and then reconstructs the data into a regularly spaced series using

an iterative algorithm to determine the accurate frequencies of the components in the

data (GHADERPOUR et al., 2018). The MALLSSA method, an extension of the ALLSSA

method, integrates seismic data spatial gradients in the regularization of aliased data

(GHADERPOUR, 2019).

The compressive sensing method is associated with the data’s sparse basis transfor-

mation (DONOHO, 2006). This transformation is typically performed using Fourier (MENG et

al., 2008; LIU; SACCHI, 2004), Radon (OU et al., 2014), wavelet (LAI et al., 2016), and curvelet

(HENNENFENT; HERRMANN, 2008) transforms. Yu et al. (2020) compared the effects of

regularization of VSP data using CS techniques with the curvelet and ALFT transforms,

concluding that CS produces better results. Sun et al. (2019) achieved promising results by

replacing the sparse compressive sensing representation with K-SVD dictionary learning, in

19



which they employed a priori information to establish a supercomplete learning dictionary.

Machine learning techniques have recently been used extensively in seismic explo-

ration for a variety of purposes, including reservoir characterization (ZHANG; ALKHALIFAH,

2020), interpretation (WRONA et al., 2021), automatic fault detection (GAO et al., 2021),

AVO analysis (LIM et al., 2021), and facies classification (SILVA et al., 2020). In addition,

machine learning techniques, such as support vector regression (SVR) (JIA; MA, 2017)

and deep learning (DL), were used to interpolate seismic data. In contrast to SVR, which

extracts low-level features from seismic data, DL can learn high-level nonlinear features,

making it a useful technique.

Deep learning, as defined by Goodfellow et al. (2016), is a subfield of machine

learning that uses artificial neural networks with multiple hidden layers. These hidden

layers allow neural networks to learn complex representations of data, which can be

used for a variety of tasks such as classification, regression, data generation, and others.

Within the wide range of neural networks, we can highlight autoencoder networks (AE)

and generative adversarial networks (GAN). Both methods use networks made up of

convolutional layers to form convolutional neural networks, which use local coherence to

extract features automatically. Furthermore, they have been used with promising results

in seismic data interpolation and noise attenuation.

GAN networks have been used in seismic data reconstruction (SIAHKOOHI et al.,

2018), seismic imaging applications, modeling and image transfer learning (SIAHKOOHI et

al., 2019), seismic inversion (MOSSER et al., 2020), and interpolation of post stack 3D seismic

data with a many missing traces. AE networks were used for prestack 2D seismic data

interpolation and noise attenuation (MANDELLI et al., 2019). Wang et al. (2020) produced

favorable results in reconstructing shot gathers with irregularly missing features using

an adaptation of a denoising autoencoder, in which spatially subsampled seismic data

replaced noisy data.

In general, convolutional neural networks can have difficulty in modeling low-

frequency information. Therefore, this article proposes an innovative architecture that

incorporates Fourier transforms into its internal structure to capture low- and high-

frequency information, improving the reconstruction of irregular seismic data in 2D

synthetic and field data, in the trace and shot domains. First, we present a brief description

of the ResFFT-CAE network, along with the details of the flow used in the recovery of

randomly missing seismic data in both domains. Various sparsity scenarios (30%, 50%

and 70% of randomly missing traces) are tested. The interpolation performance of the

ResFFT-CAE network is compared with the compressive sensing (CS) method on synthetic

data and with other networks found in the literature, such as CAE and U-Net, on field

data. Additionally, the network performance is evaluated using transfer learning from a

network trained on synthetic data to field data.
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Figure 1 – Schematic representation of an AE residual block based on Fourier transform.

2.3 Methodology

According to Goodfellow et al. (2016), autoencoders are neural networks that

attempt to copy their inputs into their outputs. Autoencoders are typical designs that

learn to map data with reduced dimensionality so that it may be recovered with low

information loss (BERTHELOT et al., 2018). An autoencoder is composed of three parts:

the encoder, which extracts features from the input data; the central part, which performs

the processing of the characteristics; and finally, the decoder, which encodes the processed

features in the output image with the desired dimensions. A series of FFT-based residual

blocks, a modified version of the well-known blocks first presented in the ResNet design,

make up the central part. Each block is designed with forward and inverse Fourier

transforms in the outermost layers and two convolutional layers in the innermost layers,

and a skip connection that combines each block’s input and output data, providing two

distinct paths: one through the block and one around the block. FFT-based residual

blocks can handle both low- and high-frequency information, allowing for more expressive

representation and increased efficiency (HE et al., 2016). The convolutional autoencoder

residual block based on FFT (ResFFT-CAE) is shown in Figure 1.

The encoder’s convolutional layers are responsible for producing the k-th feature

map of the current layer from the sparse input data x ∈ [−1, 1]nt×nr , as described by

hk = σ(x ∗ W k + bk), (2.1)
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where hk is the output of the k-th layer of the encoder, W k is the weight matrix of the

k-th layer, bk is the k-th layer bias. The activation function, σ, introduces nonlinearity

to the network, enabling it to learn more sophisticated functions; otherwise, it would

resemble a linear regression model. In comparison to other conventional functions like

tanh and sigmoid, the rectified linear unit (ReLU) function has been demonstrated to

facilitate faster and more robust training (KRIZHEVSKY et al., 2012). Consequently, ReLU

was chosen as the activation function, which is defined,

σ = max(0, x). (2.2)

FFT-based residual blocks are subnets with a few stacked convolutional layers and

a skip connection. It is possible to describe the function performed by each residual block

as G(h), where h is the encoder output data, as follows:

rN = G (hn−1) + hN−1, (2.3)

where N = 1, 2, ..., n denotes the number of residual blocks utilized in the network. The

residual mapping G of each block, in turn, may be represented by

G(h) = F −1 (σ (P2 ∗ σ ((P1 ∗ F (h) + v1)) + v2)) , (2.4)

where F and F −1 are the direct and inverse Fourier transformations, P1 and P2 are the

weights of the convolutional layers in the residual block, and v1 and v2 are the biases.

As shown in Equation 2.5 the decoder can decoding the data of the current layer’s k-th

feature maps, the result of which is estimated data.

y = σ





∑

k∈H

hk ∗ Ŵ k + ck



 , (2.5)

where Ŵ k and ck are the weights (convolutional kernel) and biases of the current layer’s

k-th feature map, respectively, ∗ denotes a 2D convolutional operation, and H represents

the feature map group. Autoencoders may be thought of as a series of convolutional/de-

convolutional (convolutional transposed) layers linked together by convolution kernels

(TURCHENKO et al., 2017), which are small square matrices of 3 × 3 or 5 × 5 dimensions.

They should slide through the whole input dataset using a step termed stride, which

indicates the distance between two subsequent convolutions (DI et al., 2018).

Since the interpolation of seismic traces is a regression issue with no specific range

or limit to the target value, the final layer employs a linear activation function (WANG et

al., 2020). The kernels and biases of all convolutional layers, which comprise the neural

network model’s parameters, are adjusted at each epoch by minimizing the loss function,
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defined as the mean absolute error to assess the disparity between the network output

ResFFT-CAE(X ′, θ) and the complete data X, according to the following equation:

L(θ) =
1

N

N
∑

n=1

♣Xn − X ′

n
♣ , (2.6)

where θ specifies network properties such as the size and number of kernels in each layer,

the components in each kernel, and the bias of each kernel. N denotes the number of input

samples.

2.3.1 Network architecture and training

The ResFFT-CAE network is a form of autoencoder trained to reconstruct sparse

input data into its dense equivalent. It is trained on input and label data pairs because it

is a supervised learning network. The input data consist of sparse shot gathers, whereas

the label data consist of dense shot gathers. The architecture of the ResFFT-CAE network

can be represented by the main layers: input, encoder, residual blocks FFT-based, decoder,

and output. The input layer receives N pairs of shot gathers of dimension nt × nr, where

N denotes the number of shot gathers present in the training dataset, and nt and nr

represent the number of samples and the number of receivers contained in each shot gather,

respectively.

The encoder layer comprises two 2D convolutional layers, each with 64 and 32

convolutional kernels. Each residual block consists of four convolutional layers. The

initial and last layers function as direct and inverse FFT convolutional layers, while

the intermediate levels are conventional convolutional layers. The layers consist of 32

convolutional kernels. Additionally, a skip connection is incorporated, where the input layer

is added to the block’s output after the final convolutional layer. This enables the model

to capture differences between the current and previous representations. The decoder

layer consists of two 2D convolutional layers with 64 and 1 convolutional kernels. The

convolutional kernel is 3 × 3 for the encoder and decoder parts, while the residual block

FFT-based layers take the value 5 × 5. The stride for all layers is 1 × 1. The output layer

consists of regularized seismic data. All parameters used in the proposed neural network’s

definition were determined by trial and error.

The ResFFT-CAE network is summarized in Table 1. We chose to use whole shot

gathers as input to the ResFFT-CAE network for the training phase, rather than patch

images, to allow greater versatility during the prediction phase.
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Table 1 – The ResFFT-CAE convolutional layer details.

Layer Type Number of kernels Kernel size Stride

1 Input – – –
2 Conv2D 64 3 × 3 1 × 1
3 Conv2D 32 3 × 3 1 × 1
4 ResBlock 32 5 × 5 1 × 1
5 ResBlock 32 5 × 5 1 × 1
6 ResBlock 32 5 × 5 1 × 1
7 Con2D 64 3 × 3 1 × 1
8 Conv2D 1 3 × 3 1 × 1

Interpolation of missing seismic traces using the ResFFT-CAE approach should

be performed in two steps: training and prediction. Assuming that pairs of datasets exist

for the training phase, the input to the ResFFT-CAE network is fed sparse shot gathers,

which results in a trained network by reducing the distances between the network’s output

data and its associated label, with the weights and bias models updated at each epoch.

We employed the Adam optimizer (KINGMA; BA, 2017), a first-order descending gradient

technique, to minimize the loss function, as shown in Equation 2.6.

Supervised training often needs a huge quantity of data to train the network

adequately. However, recent research has shown that the residual block network architecture,

such as the proposed ResFFT-CAE, has a quick and effective convergence model on small

datasets (MURALI; SUDEEP, 2020). As a result, to explore the similarities between seismic

data, we evaluated the network generalization ability by training the ResFFT-CAE network

on one dataset, and its learned weights model was applied to another dataset.

In addition, we assessed the network performance by using the transfer learning

technique, taking into account Wang et al. (2020) observation that the learning transfer

strategy is a helpful practice when there are not enough training samples. For this phase,

the sparsity of the input data was produced from the original dense data by randomly

removing 50% of the traces from each shot gather. The prediction phase consists of

inputting missing trace seismic data into the ResFFT-CAE network’s input to generate

repaired seismic data in its output.

This approach allows previously trained models to be applied directly to sparse

seismic data retrieval quickly and directly because there is no need to retrain the network.

Moreover, it allows data acquired in a truly sparse way to be regularized. We chose to use

whole shot gathers as input to the ResFFT-CAE network for the training phase, rather

than patch images, to allow greater versatility during the prediction phase.
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2.4 Results

The results of experiments performed on public domain 2D synthetic and field data

are presented in this section. The feasibility of the suggested method is first explored using

synthetic data without learning transfer, and then its effectiveness and adaptability are

tested on real data with learning transfer. Finally, the signal-to-noise ratio (S/N) metric

is used to assess network performance, which compares interpolated data to the original

data using

S/N = 10log10

(

∥Xo∥
2

∥Xo − Xi∥2



, (2.7)

where Xo refers to the original data and Xi refers to the interpolated data.

2.4.1 Synthetic data example

Initially, we promoted the recovery of missing traces using the ResFFT-CAE

network on a 2D marine synthetic data set known as the Chevron Gulf of Mexico (GOM)

full-waveform inversion synthetic data set (CHEVRON, 2012).

The data consists of 1600 shot gathers, 321 traces per shot gather, 2001 samples,

and dt = 4 ms. The data is divided into two parts: one with 320 shot gathers (20%) used

as training data and the other with 1280 shot gathers (80%) used as test data. First, a

sparsity scenario was simulated in which the traces were irregularly subsampled in the

spatial direction, with 50% of the traces in each shot gather randomly removed. Next,

the ResFFT-CAE network was trained using the training data set consisting of input

pairs (sparse shot gathers) and labels (dense shot gathers). The test data set sparse shot

gathers were interpolated using the model weights and biases learned during training. The

interpolation results quality was assessed by comparing dense shot gathers (reference) with

their interpolated counterparts using Equation 2.7. The ResFFT-CAE network was trained

using the TensorFlow platform (ABADI et al., 2016) over 1000 epochs, using the Adam

optimization technique with a learning rate of 0.001 and the early stopping technique to

prevent overfitting (PRECHELT, 1998).

Figure 2 shows the clusters of sparse and original shot gathers along with their

respective f-k spectra. In Figure 3a, the recovery achieved using the proposed approach is

presented, with the corresponding f-k spectrum shown in Figure 3b. In addition, Figure

4a shows the result obtained using the CS method with the curvelet transform, opti-

mized through the iterative shrinkage-thresholding algorithm, and Figure 4b shows its f-k

spectrum.
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Figure 2 – Synthetic seismic data: (a) dense shot gather, (b) the f-k spectrum of (a), (c)
sparse shot gather with 50% randomly missing traces, and (d) the f-k spectrum
of (c).

Although both approaches may recover missing traces, the ResFFT-CAE network

is able to do so with a lower residual than the CS curvelet-based method, particularly

for traces toward the edges of the shot gather. The ResFFT-CAE network interpolation

achieves an S/N of 21.47 dB, whereas the curvelet transform achieves an S/N of 12.52

dB. Interpolation via the ResFFT-CAE network yields an average S/N of 17.30 dB for

the entire test set. Both solutions effectively remove the aliasing effect resulting from the

lack of traces. However, it is essential to observe the presence of some artifacts in the f-k

spectrum of the CS curvelet based due to missing traces at the margins of the shot gather
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that were not adequately recovered by the curvelet transform, as indicated by the white

arrows in Figure 4b.

Figure 3 – Synthetic seismic data: (a) shot gather interpolated by ResFFT-CAE, (b) the
f-k spectrum of (a), (c) the residual between original shot gather (Figure 1a)
and (a), and (d) the f-k spectrum of (c).

Nevertheless, this phenomenon is not visible in the f-k spectrum of the data retrieved

by the ResFFT-CAE network. Furthermore, the f-k spectra of the residuals demonstrate

that the lower amplitudes of the coefficients associated with interpolation through the

ResFFT-CAE network indicate that it can better represent the frequency content of the

original signal. The preceding examples demonstrate that the ResFFT-CAE network can

produce accurate results with a greater S/N than the CS method. The ResFFT-CAE
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network will be further validated through tests on field data.

Figure 4 – Synthetic seismic data: (a) shot gather interpolated by the CS method based
on curvelet transform, (b) the f-k spectrum of (a), (c) the residual between the
original shot gather (Figure 1a) and (a), and (d) the f-k spectrum of (c). White
arrows indicate presence of artifact in the f-k spectrum.

2.4.2 Field data examples

In this section, tests are conducted on a field data set to assess the generalization

capability of the proposed methodology in recovering sparse shot gathers. The learned

model weights from a specific data set are applied to other data sets to evaluate the

effectiveness and adaptability of the ResFFT-CAE network. Four different 2D marine

seismic data sets are used for this purpose, with one data set used exclusively for training
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and the remaining data set used only for testing. Table 2 describes the data attributes in

terms of the number of shots, traces per shot, sampling rate, and number of samples.

Table 2 – The data set properties used for training and testing the ResFFT-CAE network.

Data set Number of shots Traces per shot Samples dt (ms)

U135A 1482 48 3071 4
U32A 4792 48 3071 4
Line B 610 120 5000 4
Viking 101 120 1500 4

The ResFFT-CAE network is trained using only the U.S. Geological Society U135A

(TRIEZENBERG et al., 2016) data set, which was divided into two parts: one containing 80%

training data and the other containing 20% network validation data. For computational

efficiency, we use only the first 1500 samples of the seismic data during training, which

took approximately 11,781 s.

Sparsity is created by randomly eliminating 50% of the seismic traces from each

shot gather to create the input and label pairs for network training, as shown in Figure 5.

In addition, the learning rate is set to 0.001, the batch size is set to four, and the early

stopping technique is used to prevent overtraining.

The data set called line U32A (TRIEZENBERG et al., 2016), line B of the Great

Lakes International Multidisciplinary Program for Crustal Evolution survey (AGENA et

al., 1988), and the Mobil Viking Graben Line 12 data set (KEYS; FOSTER, 1998) are used

to test the efficiency and capacity of the ResFFT-CAE network in restoring sparse shot

gathers.

For all subsequent analyses, we use modeling conditions as close to reality as

feasible; it is assumed that the data were genuinely sparse, suggesting that there were

no dense data, resulting in the inability to form pairs (sparse and dense) to retrain the

ResFFT-CAE network.

Furthermore, 50% of the traces in each shot gather are eliminated randomly in all

situations. In addition, sparsity is generated without any specific criteria. This means that

there is no control over the number of consecutive missing traces, and the removed traces

can be anywhere in the shot gather.
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Figure 5 – Example shot gather pairs used for training the ResFFT-CAE network: (a)
dense shot gather used with the label and (b) sparse shot gather with 50%
randomly missing traces generated with (a) used as input.

Initially, the flexibility and effectiveness of the ResFFT-CAE network in interpolat-

ing corrupted shot gathers are assessed using the training from the U135A data set and

applying it directly to the U32A data set. The original data are reduced to 1500 samples

with a total acquisition duration of 6 s. Figure 6 shows the original and sparse shot gathers,

along with their respective f-k spectra. The recovery achieved using the proposed approach

is shown in Figure 7a, achieving an S/N of 13.40 dB. The f-k spectrum of the recovery is

shown in Figure 7b. The average S/N for all shot gathers is 11.91 dB. Figure 7c shows the

difference between the original and recovered data. The f-k spectrum of the regularization
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residue is shown in Figure 7d.

Figure 6 – Field data U32A: (a) dense shot gather, (b) the f-k spectrum of (a), (c) sparse
shot gather with 50% randomly missing traces, and (d) the f-k spectrum of (c).

Comparing the f-k spectra of the dense, sparse, and recovered shot gathers reveals

that the aliasing effects introduced by the absence of traces (highly noisy spectrum in Figure

6d) are practically all removed after interpolation using the ResFFT-CAE network. This

results in a cleaner output f-k spectrum. In addition, the f-k spectrum of the residual can

be accessed to evaluate the quality of the interpolation through a graphical representation

of amplitudes for the different frequencies present in the residue, where small amplitudes

are observed, indicating that the interpolations effectively replicated the frequencies of the

original data.
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Figure 7 – Interpolation result on field data U32A: (a) shot gather interpolated by ResFFT-
CAE, (b) the f-k spectrum of (a), (c) the residual between the original shot
gather (Figure 6a) and (a), and (d) the f-k spectrum of (c).

Then, the ResFFT-CAE network is evaluated using the second data set (line B),

which used the first 1500 samples and the same workflow. Figure 8 shows pairs of regularly

and irregularly sampled shot gathers along with their respective f-k spectra. Figure 9a

shows an example of recovery on a shot gather with an S/N of 14.45 dB. The f-k spectra in

Figure 9b and 9d exhibit properties similar to the first data set, where the aliasing effect

introduced by the absence of seismic traces can be significantly reduced after interpolation.

Using the ResFFT-CAE network for the entire data set, we achieve an interpolation with

an average S/N of 14.03 dB.
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Figure 8 – Field data line B: (a) dense shot gather, (b) the f-k spectrum of (a), (c) sparse
shot gather with 50% randomly missing traces, and (d) the f-k spectrum of (c).
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Figure 9 – Interpolation result of field data line B: (a) shot gather interpolated by ResFFT-
CAE, (b) the f-k spectrum of (a), (c) the residual between the original shot
gather (Figure 8a) and (a), and (d) the f-k spectrum of (c).

Finally, the Viking Graben data set is used to evaluate the ResFFT-CAE network.

We use the same retrieval approach as before by applying the U135A learned model directly

without a retraining phase of the ResFFT-CAE network. Figure 10a shows an example of

a dense original shot gather, and Figure 10c shows its sparse representation.

The respective f-k spectra are shown in Figure 10b and 10d. In Figure 11a, the result

of recovering the sparse shot gather (Figure 10c) with an S/N of 14.25 dB is shown, and

Figure 11c shows the difference between the original and interpolated data. The respective

f-k spectra are shown in Figure 11b and 11d. By analyzing the f-k spectrum of the restored
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shot gather, we see that the previously present aliasing effect in the sparse shot gather has

been nearly completely suppressed after applying the proposed methodology. In addition,

the low amplitudes in the f-k spectrum of the residue indicate that the interpolation

was capable of replicating the frequencies present in the original data, demonstrating the

success of the interpolation.

Figure 10 – Field data Viking Mobil Line 12: (a) dense shot gather, (b) the f-k spectrum
of (a), (c) sparse shot gather with 50% randomly missing traces, and (d) the
f-k spectrum of (c).

The results of these experiments indicate that the ResFFT-CAE network can

effectively deal with the generalization tests in the interpolation of randomly missing

seismic traces without retraining and that it has flexibility in terms of the number of
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traces embedded in a shot gather that the ResFFT-CAE network can restore, as the

ResFFT-CAE network was trained on data with 48 traces per gather and applied to data

with 120 traces per gather.

Figure 11 – Interpolation result of field data Viking Mobil Line 12: (a) shot gather inter-
polated by ResFFT-CAE, (b) the f-k spectrum of (a), (c) the residual between
the original shot gather (Figure 10a) and (a), and (d) the f-k spectrum of (c).

Furthermore, using the Mobil Viking Graben Line 12 data set, we evaluate the

ResFFT-CAE network’s performance in interpolating corrupted data over shots, i.e.,

sparsity was generated by removing the shot gather itself. We randomly remove 50% of the

shots, resulting in a minimum of one and a maximum of eight consecutive missed shots.

It should be noted that similar to the experiments performed in the trace domain, the
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elimination of shots was performed completely randomly. Figure 12 shows the positions of

the seismic line shots from the original and sparse data. This new sparsity configuration

provides favorable conditions for creating the training data set using the remaining full

shot gathers.

Figure 12 – Schematic representation of the dense (the blue line) and sparse (the red line)
acquisitions. The discontinuities in the red line illustrate the positions of the
shots that were removed.

This data set is used to train a new model, called ResFFT-CAE-SHOT, from

scratch, without reusing any existing weights and without freezing any layers. The new

training data set is created using the same method as the U135A data (Figure 5a and 5b).

Both networks performances are evaluated against only the missing shot gathers.

Figure 13 shows three consecutive shot gathers (360 traces) to demonstrate the

performance of both networks when interpolating missing shot gathers, where the in-

termediate (zeroed) shot gather in Figure 13b coincides with the shot gather in Figure

10a.

The reconstructions promoted by the ResFFT-CAE and ResFFT-CAE-SHOT

networks have S/Ns of 14.73 and 16.07 dB, respectively, whereas the average S/Ns for the

entire data set are 9.33 and 12.55 dB. Figure 14 shows portions of the waveforms of the

recovered and original shot gathers in which both networks were able to reconstruct the

shot gather correctly. However, the error for the ResFFT-CAE network is higher than for

the ResFFT-CAE-SHOT network because the retraining offered a better response to the

original shot gather.
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Figure 13 – Example of the three consecutive shot gathers of the Viking Graben data: (a)
complete shot gathers, (b) shot gathers with 1 shot missing, (c) shot gathers
recovered using the ResFFT-CAE network, (d) residual between (a and c),
(e) shot gathers recovered applying the ResFFT-CAE-SHOT network, and (f)
residual between (a and e).
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Table 3 shows the S/Ns obtained for each network with respect to the number of

consecutive missed shots. The results reveal that the quality of the data recovered after

interpolation decreases as the number of consecutive shots grows using the ResFFT-CAE

and ResFFT-CAE-SHOT networks. Comparing the recoveries demonstrates that the

RT-ResFFT-CAE network retrains for satisfactory interpolation even when there are four

consecutive missing shots.

Table 3 – Comparison between the waveforms of the first 11 traces of the original and
recovered data from Figure 13d and 13f. (a) Interpolation performed using the
ResFFT-CAE network and (b) interpolation applying the ResFFT-CAE-SHOT
network.

Number of consecutive missing shots

1 2 3 4 5 6 7 8

ResFFT-CAE 14.73 10.06 7.34 6.58 5.63 3.39 2.55 1.46
ResFFT-CAE-SHOT 16.07 13.03 13.10 11.87 10.01 9.83 8.55 8.46

Figure 14 – Comparison between the waveforms of the first 11 traces of the original and
recovered data from Figure 13d and 13f. (a) Interpolation performed using
the ResFFT-CAE network and (b) interpolation applying the ResFFT-CAE-
SHOT network.

Likewise, using a basic processing flow, the original data, which were sparse in the

shot domain and recovered by the ResFFT-CAE and ResFFT-CAE-SHOT networks, are

processed to evaluate how interpolation can help improve seismic image quality. Figure 15

shows the seismic sections after processing the four data sets and their receptive errors,

which are the residuals between the original data stacked seismic section and the other

data’s stacked sections. Analyzing the section related to the sparse data shows significant

artifacts, interfering directly with the image quality and generating discontinuities in the

reflections, according to its residue (Figure 15c), achieving an S/N of 5.96 dB.
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Figure 15 – Stacked seismic sections of the Viking Graben data: (a) section of the original
dense data, (b) section of the sparse data with 50% of the shots randomly
missing, (c) residual between sections of (a and b), (d) section of the data
restored using the ResFFT-CAE network, (e) residual between sections of
(a and d), (f) section of the data recovered using the ResFFT-CAE-SHOT
network, and (g) residual between sections of (a and f).
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However, an S/N of 11.66 dB is observed when the data were processed following

regularization using the ResFFT-CAE network, indicating that interpolation improves

artifact removal and reflection continuity. Finally, when interpolation is performed with the

ResFFT-CAE- SHOT network, the improvement is more pronounced, with an S/N of 13.76

dB. In addition, the error between the original section (Figure 15a) and the previously

interpolated segment using the ResFFT-CAE-SHOT network (Figure 15f) prove to be

smaller than the others.

These results demonstrate that the interpolations used by the ResFFT-CAE and

ResFFT-CAE-SHOT networks can significantly improve the outcome. Although both

networks produce promising results, the data interpolated by the ResFFT-CAE-SHOT

network produces a more refined final product than the others, implying that retraining

allows the extraction of essential characteristics that the initial data used (U135A) in the

network training did not have, favoring a more appropriate interpolation.

2.5 Discussion

In previous experiments, we tested the generalization capability of the ResFFT-

CAE network by training it on data sets different from those used for regularization,

considering a single sparsity context. To further explore the performance of the proposed

method, we evaluated new sparsity scenarios, various training contexts, and transfer

learning. In addition, we compared the results with other network architectures, such as

the convolutional AE (CAE) and U-Net, which were suggested by (WANG et al., 2020) and

(MANDELLI et al., 2019), respectively.

To account for field conditions where the number of missing traces can vary, we

introduced two additional sparsity contexts, creating irregularly sampled datasets with 30%

and 70% sparsity. We then applied the model trained on the U135A data to interpolate

the new percentages of sparsity. The results in Table 4 demonstrate that the ResFFT-CAE

network has superior regularization performance for all sparsity scenarios compared to

other architectures.

Table 4 – The S/Ns of the interpolations performed by the U-Net, CAE, and ResFFT-CAE
from the training on the U135A data.

30% 50% 70%

U-Net 16.03 12.10 7.50
CAE 16.70 13.50 8.75
ResFFT-CAE 18.10 14.61 9.60

Furthermore, we evaluated the performance of the ResFFT-CAE network by

training it on a small portion of the dataset to be recovered. Specifically, from the Viking
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Graben field data, we generated a training dataset containing 20% of the total shot gathers,

while the remaining 80% constituted the test dataset. The input-label data pairs were

created using the same procedure as used for the U135A data. This new training approach

was extended to the CAE and U-Net networks.

Table 5 presents the results of the average SNRs obtained for the different irreg-

ularities, using the ResFFT-CAE, CAE, and U-Net networks. We observed that using

even a small portion of the data for training led to significant performance improvements

across all networks. Comparing the amplitudes of the recovery coefficients of the respective

network interpolations on the data in Figure 10c, it is evident that the ResFFT-CAE

network is more efficient in replicating the frequencies of the original signal, as illustrated

in Figure 16. The ResFFT-CAE network outperformed the others, suggesting that the

proposed method is capable of learning more quickly and with greater precision, enabling

high-quality reconstructions of seismic data with irregular sampling.

Table 5 – The S/Ns of the interpolations performed by the U-Net, CAE, and ResFFT-CAE
from training on a small portion of the Viking Graben data.

30% 50% 70%

U-Net 18.40 15.34 10.52
CAE 15.69 14.32 11.08
ResFFT-CAE 18.91 16.08 12.46

Next, we evaluated the transfer learning technique on the Viking Graben test

dataset using the ResFFT-CAE network pretrained on synthetic data to initialize the

retraining of new networks. We created two new retraining scenarios: the first used the

U135A dataset, denoted as TL1, while the second used the Viking Graben training dataset,

called TL2. We kept the same training settings as before, except for the learning rate

and batch size, which were adjusted to 0.0001 and 1, respectively. The transfer learning

strategy was applied with 10 epochs in training.

Exhaustive experiments demonstrated that the quality of regularization of irregu-

larly sampled seismic data is directly affected by the number of epochs used in training.

For example, when the ResFFT-CAE network was trained with 10 epochs on the Viking

data, it obtained an average SNR of 16.42 dB. However, when the number of epochs was

increased to 20, the average SNR decreased to 15.71 dB. This indicates that increasing the

number of training epochs does not necessarily result in performance improvement and

may even worsen it. Table 6 presents the results obtained through the application of the

ResFFT-CAE network in conjunction with the transfer learning technique. We observed

that when the network is retrained using a small portion of the data to be regularized,

it can improve the interpolation. However, the use of distinct data (GOM and U135A)

proved ineffective, reducing the average SNR. This highlights the importance of carefully
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Figure 16 – Interpolation comparisons using ResFFT-CAE, U-Net, and CAE networks
applied to the shot gather in Figure 10c. (a) Shot gather recovered by ResFFT-
CAE, (b) residue between the original shot gather (Figure 10a) and panel
(a), (c) f-k spectrum of panel (b), (d) shot gather interpolated by U-Net, (e)
residue between the original shot gather (Figure 10a) and panel (d), (f) f-k
spectrum of panel (e), (g) shot gather restored by CAE, (h) residue between
the original shot gather (Figure 10a) and panel (g), (i) f-k spectrum of panel
(h).
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selecting the training dataset when applying transfer learning for the regularization of

seismic data.

Table 6 – The S/Ns of the interpolations performed by the ResFFT-CAE applying the
transfer learning technique.

30% 50% 70%

TL1 17.23 14.54 10.34
TL2 19.65 16.42 12.79

Finally, we evaluated the generalization capability of the ResFFT-CAE network in

interpolation by training it solely on synthetic data and applying it to field data. For this

comparison, we included results for the CAE and U-Net networks. The results shown in

Table 7 indicate that all three networks demonstrated efficiency in regularization using

only training on synthetic data.

Table 7 – The S/Ns of the interpolations performed by the ResFFT-CAE, U-Net, and
CAE from training on synthetic data.

30% 50% 70%

U-Net 17.55 14.89 11.23
CAE 14.83 13.87 11.48
ResFFT-CAE 16.23 14.53 12.39

While the U-Net network provided slightly higher results for 30% and 50% sparsity

scenarios, the ResFFT-CAE network exhibited significant improvements in severe sparsity

conditions. Specifically, the ResFFT-CAE network obtained an average SNR of 12.39 dB

for the data with 70% of traces missing, while the U-Net network achieved an average

SNR of 11.25 dB. This suggests that the ResFFT-CAE network is more capable of dealing

with data that have a high degree of sparsity.

2.6 Conclusion

In this study, we tested the generalization ability of the ResFFT-CAE network

for interpolating randomly missing seismic traces. We trained the network on a dataset

with 50% missing data and evaluated its performance on interpolating 30%, 50%, and

70% missing data. The results showed that the ResFFT-CAE network generalizes well

to different sparsity levels, producing satisfactory results even when the missing data are

significant.

The experiments were conducted on both synthetic and corrupted 2D field data

to test the generalization capability of the ResFFT-CAE network in both trace and
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shot domains. The results confirmed the efficiency and effectiveness of the ResFFT-CAE

network in regularizing sparse seismic data in both scenarios. The results obtained through

transfer learning proved promising in enhancing the quality of regularization for irregularly

subsampled seismic data. However, it is important to note that the transfer learning strategy

had limitations when retraining on the field data from the synthetic data initialization. In

this condition, no effective gains in data regularization were observed. Therefore, careful

selection of training datasets is crucial to avoid potential degradation in the final results

when using transfer learning.

The ResFFT-CAE network, being supervised, has the disadvantage of requiring

input-label pairs for training. Additionally, it exhibited degradation in recovery as the

number of consecutive traces increased. When compared to the U-Net network, the

ResFFT-CAE showed some limitations in recovering seismic data when trained solely on

synthetic data and applied for regularization on real data. Although the ResFFT-CAE

network’s performance in terms of SNR was satisfactory in both trace and shot domains,

further investigation is needed to improve its performance by adding more data to the

training set, including scenarios with significant gaps between traces.

Despite these limitations, our results demonstrate that using exclusively synthetic

data achieved reasonable performance in seismic data interpolation, suggesting that this

approach may be relevant for future studies. Additionally, we recommend exploring

experiments in 3D and utilizing generative networks for generating training datasets,

especially in scenarios with extremely sparse acquisitions where constructing training data

pairs is not feasible.
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3 Unlocking high-resolution seismic data from

sparse acquisitions: a deep learning ap-

proach

A. L. Campi and R. M. Missagia.

Adaptation of the paper under submission for IEEE Transactions on Geoscience

and Remote Sensing, 2024.

3.1 Abstract

The demand for high-resolution data in seismic exploration is always increasing,

driven by the requirement for accurate subsurface imaging and reservoir characterization.

However, operational and economic constraints frequently make it difficult to collect densely

sampled seismic data. We propose a novel strategy that uses deep learning techniques,

specifically the Enhanced Deep Super-Resolution (EDSR) network, to improve seismic

data resolution from sparse acquisitions to address these challenges.

Our method focuses on reconstructing low-resolution seismic data obtained from

sparse acquisitions into high-resolution counterparts, thus enabling more detailed subsurface

imaging. We present a comprehensive overview of the EDSR network and its application

in seismic image super-resolution. Unlike traditional interpolation methods, the EDSR

network learns complex mappings between low-resolution and high-resolution seismic data,

allowing more accurate and realistic reconstructions.

Through extensive experimentation using synthetic and real-world seismic datasets,

we demonstrate the effectiveness and versatility of the proposed approach. The EDSR

network exhibits remarkable performance in restoring high-frequency details and preserving

structural integrity, even in scenarios with high data sparsity or sharp signal variations.

Overall, our study highlights the significant potential of deep learning techniques,

particularly the EDSR network, in revolutionizing seismic data processing and interpreta-

tion. By enabling the generation of high-resolution seismic data from sparse acquisitions, our

approach opens new avenues for enhancing subsurface imaging capabilities and optimizing

exploration efforts in the oil and gas industry.



3.2 Introduction

In the offshore seismic exploration domain, there has been a growing trend towards

adopting Ocean Bottom Nodes (OBN) and Ocean Bottom Cable (OBC) technologies.

These seafloor receiver technologies have gained popularity, particularly for 4D reservoir

monitoring, as noted by Wang et al. (2018). While offering valuable advantages like

complete azimuthal coverage, broad bandwidth, and long offsets, OBN acquisitions incur

high operational costs due to ROV (Remotely Operated Vehicles)-assisted deployment and

recovery of nodes (DONDURUR, 2018). Historically, seismic acquisitions have predominantly

employed more regular source-receiver patterns (MOLDOVEANU et al., 2020). However, the

development of oil fields, especially in intricate environments, often presents challenges,

leading to acquisitions with irregular sampling patterns and consequently, a sparser

receiver distribution (RONDON et al., 2023). Additionally, sparse seismic acquisitions can

be strategically designed to optimize time and operational costs (SEYMOUR et al., 2021).

These spatial sampling irregularities, encompassing both missing regular and irregular

traces, introduce aliasing effects that compromise data quality and hinder subsequent

processing and interpretation steps.

Regularization and interpolation techniques are critical to overcoming these issues.

These approaches seek not only to impute missing information but also to construct an

accurate depiction of the subsurface. Deep learning (DL) (GOODFELLOW et al., 2016)

has emerged as a powerful tool for this goal, with two primary areas of application:

regularization/interpolation and computer vision techniques.

Generative adversarial networks (GANs) and autoencoders (AEs) are widely

adopted for data regularization/interpolation . GANs have been used in seismic data

reconstruction (SIAHKOOHI et al., 2018), seismic imaging applications, modeling and image

transfer learning (SIAHKOOHI et al., 2019), seismic inversion (MOSSER et al., 2020), and

interpolation of 3D post-stack seismic data with various missing traces (DOU et al., 2022).

Autoencoders have also been used for interpolation and noise reduction, as demonstrated

by Mandelli et al. (2019) in 2D pre-stack seismic data. Notably, Wang et al. (2020) achieved

promising results in reconstructing shot gathers with irregular missing traces using an

adapted denoising autoencoder, substituting noisy data with spatially undersampled seis-

mic data. Campi e Missagia (2023) successfully applied residual autoencoders based on

the fast Fourier transform in both the shot and trace domains of pre-stack seismic data.

Computer vision algorithms take advantage of the inherent textural similarity

between seismic and natural images. Deep learning super-resolution networks have been

used successfully in a variety of seismic applications, including interpretation, reconstruction

of low-resolution seismic pictures, and full-waveform seismic inversion. For example, Oliveira

et al. (2019) used the Pix2Pix architecture to improve the spatial resolution of seismic

sections, which aids geological interpretation. Zeng et al. (2023) then used a super-resolution
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network known as DFMN, which was trained on a limited dataset and produced satisfactory

results in reconstructing low-resolution seismic pictures. Li et al. (2022a) suggested a

successful approach for super-resolution and noise removal using the U-NET network

architecture. Min et al. (2023) proposed the D2UNet architecture that uses Canny edge

detection to obtain super-resolution in seismic imagery. Li et al. (2022b) created the

M-RUDSRv2 network, which boosts the resolution of velocity models in FWI applications.

Deep learning (DL) methods in seismic data processing have typically employed the

techniques described above in isolation. In this article, we propose a novel super-resolution

method that merges computer vision and regularization/interpolation techniques, enabling

efficient generation of high-resolution (dense) 3D seismic data from low-resolution (sparse)

data. This method builds upon the low-resolution image reconstruction approach presented

by Lim et al. (2017). Unlike this author who employed bicubic interpolation (WANG;

ZHAO, 2009), we generate low-resolution data through regular trace removal on a regular

receiver grid, mimicking sparse acquisition scenarios. We first present a concise overview of

the super-resolution method, encompassing its training process and dataset construction.

Subsequently, we delve into the method’s development based on the aforementioned low-

resolution image reconstruction approach. The effectiveness of the proposed method is

evaluated using both real-world field data, demonstrating its ability to handle realistic

errors, and synthetic data, providing clearer insights into its performance under simulated

realistic conditions. Additionally, we compare the reconstruction performance of our

method against the traditional bicubic interpolation technique.

This article’s innovation is the application of the super-resolution approach on 4D

pre-stack seismic data. The method leverages a combination of computer vision techniques,

data regularization, and interpolation to efficiently generate high-resolution (dense) data

from low-resolution (sparse) inputs. Our approach builds upon the low-resolution image

reconstruction method proposed by Lim et al. (2017) without using bicubic interpolation.

Instead, we simulate sparse acquisition scenarios by strategically removing traces from

a regular receiver grid to generate the low-resolution data. The paper is structured as

follows: First, we present a concise overview of the super-resolution method, including

details of the training process and dataset construction. Subsequently, we delve into the

detailed development of the method. To evaluate the effectiveness of the proposed method,

we perform reconstructions on both real-world field data (demonstrating its ability to

handle realistic noise) and synthetic data (providing controlled conditions for performance

analysis). Finally, we compare the reconstruction performance of our method against the

traditional bicubic interpolation technique.
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3.3 Methodology

Image super-resolution (SR) is a technique aimed at recovering high-resolution (HR)

details from low-resolution (LR) images, seeking to restore high-frequency information

that may be lost in LR images. In seismic exploration, this technique can be employed to

upscale sparsely acquired seismic data, obtaining densely sampled high-resolution data,

thus favoring more agile and cost-effective surveys. A super-resolution network that fits

this context is the Enhanced Deep Super-Resolution (EDSR) (LIM et al., 2017). The LR

image is represented by a tensor R
w×h×c, where w and h denote the width and height of

the image, respectively, and c is the number of channels (for seismic images, c=1). The

HR image is represented by a tensor R
w×h×c, where w and h are the desired width and

height of the image, with w ≤ w and h ≤ h. Thus, the relationship between an LR and

HR image is established through a scale factor r, where w = rw and h = rh. Generally,

the LR image ILR is modeled as the output of the following degradation (MOSER et al.,

2023):

ILR = D(IHR; δ), (3.1)

where D denotes the degradation mapping function, IHR is the corresponding HR image,

and δ are the degradation process parameters (e.g., scale factor r and noise). The process

of recovering an estimated SR image ISR, also known as a super-resolved image, which

closely approximates IHR from ILR is defined as:

ISR = F(ILR; Θ), (3.2)

where F represents the super-resolution model and Θ are the respective parameters.

We employ the Mean Absolute Error (MAE) loss function to minimize the discrep-

ancy between the high-resolution (HR) ground truth images (labels) and the reconstructed

images generated by our model (SR). MAE calculates the average of the absolute differences

between the corresponding pixel values in the label images and the model’s predictions.

Mathematically, MAE is defined as:

L(Θ) =
1

N

N
∑

n=1

♣IHR − ISR♣, (3.3)

where Θ represents the parameters of the trained model and N is the total number of

samples in the training dataset.

3.3.1 Network architecture

The EDSR network, as shown in Figure 17, consists of a series of layers designed to

perform image super-resolution. The architecture combines convolutional layers, residual

blocks, skip connections, and upsampling. EDSR has two 2D convolutional layers, one

initial and one final. The initial layer has 64 filters and applies the ReLU (Rectified Linear

49



Unit) activation function (KRIZHEVSKY et al., 2012). The final layer has only 1 filter and a

linear activation function. The majority of the network architecture consists of 16 residual

blocks. Each block consists of two 2D convolutional layers. Both layers have 64 filters,

with the first layer having a ReLU activation function and the second layer having no

activation function. Additionally, each block incorporates a skip connection, which adds

the input data to its output. All convolutional layers have kernel size of 3 × 3.
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Figure 17 – The EDSR Network Architecture.

Following the residual blocks, the network employs another 2D convolutional layer

with hyperparameters identical to the initial layer. A second skip connection is implemented,

adding the output from this last layer to the output from the first convolutional layer of

the EDSR network. Resolution enhancement is achieved through sub-pixel convolutions

leveraging the pixel-shuffling technique (SHI et al., 2016) according to the chosen super-

resolution scale. This operation effectively rearranges the output data into a larger spatial

grid, where each block of rearranged elements corresponds to a set of high-resolution pixels.

All layers utilize strides of 1×1. The EDSR network architecture is summarized in Table 8.
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Table 8 – The EDSR convolutional layers details.

Layer Type Number of kernels Kernel size Stride

1 Input – – –
2 Conv2D 64 3 × 3 1 × 1
3 Resblock 1 64 3 × 3 1 × 1
... ...

...
...

...
19 Resblock 16 64 3 × 3 1 × 1
20 Conv2D 64 3 × 3 1 × 1
21 Add – – –
22 Upsampling 256 3 × 3 1 × 1
23 Conv2D 1 3 × 3 1 × 1

3.3.2 EDSR-based Reconstruction Method

The EDSR network operates in a supervised context, requiring pairs of input

data (low resolution) and their corresponding labels (high resolution). Typically, the

input data are derived from high-resolution data through bicubic resampling, following a

predefined scale factor r. However, in this study, the low-resolution data originate from

sparse acquisitions, while the high-resolution data are characterized by densely sampled

acquisitions. The low-resolution data come from coarser receiver grids, resulting in fewer

data points compared to dense grids. The relationship between the grid resolution and

sparsity scale factors is illustrated in Figure 18.

To ensure a more precise and detailed characterization of the oil field, it is assumed

that the initial acquisition, known as baseline, is performed with a dense arrangement

of receivers (Figure 18a), while the acquisition intended to monitor changes over time,

called monitor, is conducted on a sparse grid (Figure 18c, for example), providing a more

efficient and cost-effective acquisition, as it requires less data during the survey.

For a more precise and detailed characterization of the oil field, we propose acquiring

an initial, high-resolution baseline seismic survey using a dense receiver grid (Figure 18a).

This dense baseline serves as a reference point for subsequent monitoring surveys. To

efficiently monitor changes in the reservoir over time, we then employ a sparse receiver

grid for subsequent monitor surveys (e.g., Figure 18c). This sparse acquisition reduces

data volume and survey costs compared to the baseline survey.

Time-slice images are analogous to natural images, except that each pixel represents

a sample in the seismic signal’s time domain, with the sum of all pixels over time forming

the complete seismic trace. Thus, the training dataset consists of pairs of low- and high-

resolution time-slice images from the baseline. Since the receiver grid has odd dimensions

in both directions, we apply zero-padding to ensure that the data pairs are divisible by r,

avoiding dimensionality issues.
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Figure 18 – Acquisition grid example: (a) dense grid, (b) grid with r = 2, (c) grid with
r = 4, and (d) grid with r = 8. Note that for the same acquisition area, the
number of receivers decreases according to r.

Seismic data reconstruction using the EDSR network follows a two-stage process:

training and prediction. During training, the EDSR network is fed with pairs of low-

and high-resolution seismic data. The network processes each low-resolution image and

generates a super-resolved prediction. This prediction is then compared to the actual

high-resolution ground truth (label) using a Mean Absolute Error (MAE) measure (Eq.

3.3). The network aims to minimize this error by adjusting its internal parameters, such

as weights and biases, to produce progressively more accurate super-resolved images.

These parameters are updated at each epoch to optimize the network’s performance. We

employ the Adam optimizer (KINGMA; BA, 2017), a first-order gradient descent technique,

to minimize the loss function. The training process was conducted on the TensorFlow

platform (ABADI et al., 2016).

The dataset is divided into training and validation sets. The training set is used

to update the network’s parameters, while the validation set allows for assessing the

model’s performance on unseen data, promoting better generalization. The prediction

stage involves feeding new low-resolution seismic data to the trained model to generate

super-resolved seismic data. We opted to train the EDSR network using the complete

time-slice data as input, rather than using image patches.
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3.4 Results

We investigate the efficacy of our time-lapse seismic data reconstruction method

using two datasets: synthetic SEG Advanced Modeling (SEAM OBN 4D) data (SEAM,

2017) and field data from the Sleipner field (SLEIPNER, 2019). We create sparse acquisition

conditions by periodically removing receivers from both datasets. This procedure simulates

various data acquisition densities, retaining 1/2, 1/4, and 1/8 of the original data. We

use Sleipner field data to validate the suggested method’s effectiveness in realistic field

situations. To further evaluate the method’s robustness in complicated settings, we add

SEAM OBN 4D data, which includes 3D shot collection, to the testing procedure. This

addition enables a more comprehensive evaluation, including realistic 3D geometries

encountered in seismic surveys. The reconstruction quality is evaluated using the signal-to-

noise ratio metric, defined as:

S/R = 10log10

(

∥IHR∥2

2

∥IHR − ISR∥2
2



, (3.4)

where IHR is the original high-resolution image and ISR is the high-resolution image

reconstructed by applying the EDSR network.

3.4.1 Field Data Example

Initially, we tested our sparse seismic data reconstruction method using the Sleipner

dataset. The dataset includes baseline data acquired in 1994 and subsequent monitoring

seismic acquisitions from 1999, 2001, 2004, 2006, 2008, and 2010. The program was

developed to continuously monitor CO2 injection into a saline aquifer (CHADWICK et al.,

2010; ROMERO et al., 2023). The data comprises 468 crosslines and 248 inlines, with 1001

samples and dt = 2 ms.

For evaluation, we selected data from 1994 (baseline) and 2006 (monitor). Figure 19

displays the seismic volumes for baseline, monitor, sparse monitor, and low-resolution data.

Comparing the baseline and monitor seismic volumes (Figures 19a and 19b), we observe

that CO2 injection caused changes in the seismic signature, clearly visible due to strong

reflections. The low-resolution data (Figure 19d), with a scale factor of 4, comprises 62

inlines and 117 crosslines, maintaining the original number of samples. Despite preserving

the main reservoir structure, the subsampled data exhibits low sharpness, rendering precise

analyses and interpretations infeasible. This limitation is evident in the crossline section

(Figure 20) of the sparsely sampled data, where tracking and identifying seismic events

are hindered by the lack of information.

The EDSR network, trained with the baseline dataset, is applied to reconstruct the

corrupted monitor data. The original monitor data served as a reference for a quantitative
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Figure 19 – Sleipner seismic data volume: (a) baseline, (b) monitor, (c) sparse monitor
with r = 4, and (d) low-resolution monitor.

evaluation of the reconstruction result, using Equation 3.4. We evaluated the EDSR

network performance in a scenario of regular sparsity, where 75% of the traces are missing

in both the x and y directions (with a subsampling factor of r = 4).

The results, obtained by the EDSR network, applying the same sparsity config-

uration, are compared with the bicubic interpolation method, and are shown in Figure

21. Although both methods can recover sections with low levels of residue, they exhibit a

certain degree of blur. The EDSR network provided superior restoration, with an S/N of

15.20 dB, while bicubic interpolation resulted in an S/N of 14.94 dB. For the complete

data, the average S/Ns were 17.67 dB and 17.45 dB, respectively.

Moreover, the presented examples allow some preliminary observations: the EDSR

network achieved reasonable results in reconstructing low-resolution images into high-

resolution (super-resolved) images. Compared to the bicubic interpolation method, the

EDSR network outperformed in restoring the sections, exhibiting a higher S/N. This simu-

lation demonstrates that our method effectively reconstructs complex data characteristics,

as evidenced by the high S/N and superior performance compared to bicubic interpolation.
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Figure 20 – Cross-section of the data volume of Figure 19: (a) original monitor data and
(b) sparse monitor with r = 4.

3.4.2 Synthetic data example

In this section, we conduct a series of experiments using the synthetic time-lapse

SEAM data. The purpose of this example is to demonstrate the effectiveness of the

EDSR network in reconstructing low-resolution images into 3D shot gathers. The SEAM

time-lapse data simulates a complex turbidite reservoir in the Gulf of Mexico, designed to

study the viability of using modern numerical methods to understand, predict, and detect

changes occurring over time in oil field conditions - changes in rocks, porous fluids, and

pressures accompanying reservoir flow and production (OPPERT et al., 2017). Despite being

synthetic data, they offer a robust set for evaluating our proposed method.

The data consists of only one shot in the center of the array in both surveys. Figure

22 illustrates the 3D shot gathers of both baseline and monitor data, along with their

respective f-k spectra. Each acquisition is formed by a regular grid of 501 × 501 receivers

with a spacing of 25 m, totaling 251,001 traces per shot. Each seismic trace contains 875

samples with a sampling interval of 8 ms.

The training dataset was derived from the baseline data and randomly divided

into two parts: 80% (700 time slices) are used as training data, while the remaining 20%

(175 time slices) are used for validation. To simulate a scenario of sparse monitor data,

we regularly remove r (r = 2, 4, 8) of the total traces. The test dataset, unseen by the

network during training, is generated from the monitor data.

The EDSR network, trained with the training dataset, is applied to restore the

low-resolution data from the test dataset. We test the performance of the EDSR network

on 3 scale factors: (1) r = 2; (2) r = 4; and (3) r = 8. For each r value, we train the
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Figure 21 – Monitor data time slice: (a) original monitor, (b) low-resolution monitor, (c)
monitor reconstructed by the EDSR network, (d) monitor reconstructed using
bicubic interpolation, (e) difference between (a) and (c), and (f) residual
between (a) and (d).

network separately, as single-image super-resolution demonstrates greater effectiveness

than multiple-image super-resolution (YANG et al., 2019).

Figures 23, 24, and 25 illustrate the sparse monitor data for different scale factors.

Each of these figures presents four subfigures showcasing various aspects of the dataset:

sparse data with zeroed receivers, data without zeroed receivers, and their corresponding

f-k spectra. As This is due to the reduced spatial resolution caused by the increased

distance between adjacent receivers, resulting in a serrated visual appearance. The f-k

spectra reveal that subsampling causes aliasing and energy leakage effects, which become

more pronounced with increasing r values. These effects manifest as distortions, loss

of resolution, and diminished magnitude of the Fourier coefficients, indicating a loss of
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Figure 22 – (a) Original baseline data, (b) f-k spectrum of panel (a), (c) original monitor
data, and (d) f-k spectrum of panel.
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frequency content.

Figure 23 – Low-resolution monitor data with scale factor r = 2: (a) sparse data containing
zeroed receivers, (b) f-k spectrum of panel (a), (c) low-resolution data without
zeroed receivers, and (d) f-k spectrum of panel (c).

After training, the low-resolution data is processed using the trained model. Figures

26a – 28a present the restoration results for different r values. Taking time slice sections

in the reservoir region as an example, the signal-to-noise ratio (S/N) achieved by the

EDSR network is 23.482 dB for r = 2, 15.294 dB for r = 4, and 14.014 dB for r = 8. As

expected, S/N levels decrease with increasing r. Table 9 summarizes the S/N values for

other sections.

Residual errors between the original and super-resolved data are shown in Figures
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Figure 24 – Low-resolution monitor data with scale factor r = 4: (a) sparse data containing
zeroed receivers, (b) f-k spectrum of panel (a), (c) low-resolution data without
zeroed receivers, and (d) f-k spectrum of panel (c).
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Figure 25 – Low-resolution monitor data with scale factor r = 8: (a) sparse data containing
zeroed receivers, (b) f-k spectrum of panel (a), (c) low-resolution data without
zeroed receivers, and (d) f-k spectrum of panel (c).

60



Table 9 – Signal-to-noise ratio (S/N) of the sections of Figures 26a – 28a.

Scale Inline Crossline Time slice

r = 2 23.466 23.431 23.482
r = 4 15.328 15.441 15.294
r = 8 12.462 13.106 14.014

26c – 28c. The method exhibited limitations in reconstructing direct waves, indicating

difficulty handling large signal amplitude variations. However, for other signals, minimal

residual errors were observed, suggesting good capability for reconstructing high-resolution

data from low-resolution data, particularly for r = 2 and r = 4.

Figures 26b – 28b display the f-k spectra of the restored sections. While some

artifacts remain, the aliasing and energy leakage issues caused by subsampling have been

significantly reduced. Additionally, the magnitudes of the Fourier coefficients have been

restored to nearly the same level as the original data. Furthermore, the low amplitude of

the Fourier coefficients in Figures 26d – 28d demonstrates the EDSR network’s ability to

restore frequency content similar to the original data.
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Figure 26 – (a) Recovered monitor data for scale factor r = 2, (b) f-k spectrum of panel
(a), (c) residual between the original data and (a), and (d) f-k spectrum of
panel (c).
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Figure 27 – (a) Recovered monitor data for scale factor r = 4, (b) f-k spectrum of panel
(a), (c) residual between the original data and (a), and (d) f-k spectrum of
panel (c).
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Figure 28 – (a) Recovered monitor data for scale factor r = 8, (b) f-k spectrum of panel
(a), (c) residual between the original data and (a), and (d) f-k spectrum of
panel (c).
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Figure 29 shows the comparison of 4D signals between the baseline, original, and

EDSR-restored monitors in the highlighted reservoir region. The results indicate that

reservoir reflections can be clearly mapped for scales r = 2 and r = 4. However, for r = 8,

despite the reflections being present, there is a considerable loss of signal. Additionally,

by analyzing the differences between the 4D signals presented in Figure 30, it is observed

that for the scale factor r = 8, the differences refer to both noise and signal reflections,

indicating difficulty of the EDSR network in dealing with data with very high sparsity. On

the other hand, for smaller scales, the differences refer only to noise, without indicating

loss of useful information.

Figure 29 – The 4D signal cross-section: (a) difference between original monitor and
baseline, (b) difference between the super-resolved monitor r = 2 and baseline,
(c) difference between the super-resolved monitor r = 4 and baseline, and (d)
difference between the super-resolved monitor r = 8 and baseline.
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Figure 30 – Sections of the difference between the original time-lapse data and the time-
lapse of the recovered data: (a) residue between Figure 29a and Figure 29b,
(b) residue between Figure 29a and Figure 29c, and (c) residue between Figure
29a and Figure 29d.

The EDSR network emerges as a promising tool for reconstructing low-resolution

seismic data, enabling the recovery of high-resolution information from low-quality inputs

with satisfactory accuracy. While its effectiveness is generally high, its performance may

vary in specific scenarios, such as when dealing with highly sparse data or sharp variations

in signal amplitude. However, its advantages in terms of computational efficiency and

adaptability to different data sparsity levels highlight its potential in various seismic

image super-resolution applications. This allows for more optimized and economical data

acquisition without compromising the retrieval of relevant information. Furthermore, the

EDSR network has demonstrated versatility by being effective in different types of seismic

data, including both post-stack and pre-stack data.

66



3.5 Conclusion

The Enhanced Deep Super-Resolution (EDSR) network offers several advantages in

the domain of seismic data processing. Firstly, it provides a powerful tool for reconstructing

low-resolution seismic data into high-resolution images, enhancing the quality of seismic

interpretation and analysis. This can lead to improved understanding of subsurface

structures and geological features, ultimately aiding in reservoir characterization and

hydrocarbon exploration.

Moreover, the adaptability of the EDSR network to different levels of data sparsity

is notable. It can effectively handle scenarios with irregular sampling patterns or sparse

receiver distributions, making it suitable for a wide range of seismic acquisition settings.

However, the EDSR network does have limitations. Its performance can be variable

in scenarios with highly sparse data (e.g., less than 20% sampling density) or significant

variations in signal amplitude. In such cases, the network may struggle to accurately

reconstruct high-resolution details, potentially leading to information loss or artifacts in

the output images.

Despite these challenges, the advantages of the EDSR network in terms of enhanced

seismic image resolution, computational efficiency, and adaptability make it a valuable

tool for seismic data processing tasks. Continued research and development efforts aimed

at addressing its limitations and refining its performance can further unlock its potential

for advancing seismic exploration and reservoir monitoring techniques.

Furthermore, like many deep learning models, the EDSR network requires large

amounts of training data to achieve optimal performance. The acquisition and labeling

of such datasets can be time-consuming and resource-intensive, especially for complex

geological environments or specialized applications. In this context, the use of unsupervised

or self-supervised training emerges as a promising approach to overcome the limitations of

labeling training datasets, providing an effective alternative to enhance model performance

without relying solely on labeled data.
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4 Conclusion

Deep learning architectures have emerged as powerful tools for addressing various

challenges in seismic data processing. In synthesis, we analyze the performance and

capabilities of two prominent networks: the ResFFT-CAE and the Enhanced Deep Super-

Resolution (EDSR) network. Through rigorous experimentation and evaluation, both

networks demonstrate significant potential in enhancing seismic data interpretation and

analysis.

The ResFFT-CAE network exhibits robust generalization abilities, effectively

interpolating randomly missing seismic traces across different levels of sparsity. By training

on a dataset with 50% missing data and evaluating on interpolations ranging from 30% to

70% missing data, the network consistently produces satisfactory results.

Furthermore, experiments conducted on synthetic and corrupted 2D field data

underscore its efficiency and effectiveness in regularizing sparse seismic data in both trace

and shot domains. However, the transfer learning strategy, while promising in enhancing

regularization quality for irregularly subsampled seismic data, shows limitations when

retraining on field data from synthetic data initialization. This highlights the importance

of careful dataset selection to mitigate potential degradation in results.

Despite requiring input-label pairs for training and exhibiting degradation in re-

covery with an increasing number of consecutive traces, the ResFFT-CAE network’s

performance in terms of signal-to-noise ratio (SNR) remains satisfactory. Future investiga-

tions should focus on augmenting the training set with more data, particularly in scenarios

with significant gaps between traces, and exploring experiments in 3D alongside generative

networks for generating training datasets, especially when the sparsity is greater than

70%.

In contrast, the EDSR network offers notable advantages in reconstructing low-

resolution seismic data into high-resolution images, thereby allowing more optimized

seismic acquisition. Its adaptability to different levels of data sparsity enables effective

handling of scenarios with regular sampling patterns or sparse receiver distributions,

making it suitable for seismic time lapse acquisition with economic restriction.

with a large number of missing features

Nonetheless, the network faces challenges in scenarios with a large number of

missing traces or significant variations in signal amplitude, which may lead to variable

performance and potential information loss or artifacts in output images. Despite these

challenges, the EDSR network’s advantages in terms of enhanced seismic image resolution,



computational efficiency, and adaptability position it as a valuable tool for seismic data

processing tasks.

The ongoing efforts in research and development should focus on addressing their

limitations and improving performance through the acquisition and labeling of large

training datasets. In this context, the use of generative adversarial networks (GANs) can

be useful in constructing training datasets. GANs can generate high-quality synthetic data

that increases the diversity and quantity of examples available for training, helping to

overcome the shortage of labeled data.

Additionally, exploring unsupervised or self-supervised training approaches can

offer promising alternatives to improve model performance without relying solely on labeled

data. Specifically, in the context of image super-resolution networks, improvements in the

EDSR (Enhanced Deep Super-Resolution) network architecture should be investigated to

enhance its ability to handle signals with a wide range of amplitudes.

In conclusion, both the ResFFT-CAE and EDSR networks represent significant

advancements in seismic data processing through deep learning architectures. Their

respective strengths and limitations underscore the importance of ongoing research and

development efforts aimed at unlocking their full potential for advancing seismic exploration

and reservoir monitoring techniques.
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Appendix



APPENDIX A – ResFFT-CAE network code

This appendix includes the code used to train the ResFFT-CAE network for this

thesis. The code outlines all the steps involved in training the model, from data preparation

to neural network configuration and training. We wrote it using Tensorflow framework

(ABADI et al., 2016). All experiments performed for the development of this work were

using my laptop with an Intel (R) CoreTM i7-9750H CPU at 2.60GHz, 32GB of RAM,

and a GeForce GTX 1660 Ti Mobile (6Gb) video card. We use the GNU/Linux Debian

11.9 (bullseye) system with CUDA 11.4, TensorFlow 2.9.0, and Python 3.9. The code’s

availability fosters openness and collaboration, potentially accelerating advancements in

the field by allowing researchers to replicate our findings and adapt the model. Below is

the ResFFT-CAE network code:

1 import tensorflow as tf

2 from tensorflow .keras. models import Model

3

4 def ResBlockFFT (x):

5 x_complex = tf. complex (x, tf. zeros_like (x))

6 x_complex = tf.cast(x_complex , dtype=tf. complex128 )

7 x_fft = tf. signal .fft( x_complex )

8 x_real , x_imag = tf.math.real(x_fft), tf.math.imag(x_fft)

9 x_real = tf.keras. layers . Conv2D (32, 5, activation =’relu ’,padding =’

same ’)( x_real )

10 x_imag = tf.keras. layers . Conv2D (32, 5, activation =’relu ’,padding =’

same ’)( x_imag )

11 x_real = tf.keras. layers . Conv2D (32, 5, activation =’relu ’,padding =’

same ’)( x_real )

12 x_imag = tf.keras. layers . Conv2D (32, 5, activation =’relu ’,padding =’

same ’)( x_imag )

13 x_ifft = tf. signal .ifft(tf. complex (x_real , x_imag ))

14 output = tf.keras. layers .Add ()([x ,tf.math.real( x_ifft )])

15 return output

16

17

18 def ResFFT_CAE ( input_shape , filters =32, ks=5, num_blocks =3, kernel_size

=3):

19 x_in = tf.keras. layers .Input(shape= input_shape )

20 x = tf.keras. layers . Conv2D (64, kernel_size , padding =’same ’)(x_in)

21 x = tf.keras. layers . Conv2D (32, kernel_size , activation =’relu ’,

padding =’same ’)(x)

22

23 for _ in range( num_blocks ):

24 x = ResBlockFFT (x)



25

26 x = tf.keras. layers . Conv2D (64, kernel_size , activation =’relu ’,

padding =’same ’)(x)

27 x = tf.keras. layers . Conv2D (1, kernel_size , activation =’linear ’,

padding =’same ’)(x)

28

29 return Model(x_in , x)

30

The sparsity generation, according to the chosen percentage, is parformed usaing

the following code:

1

2 def irregular_mask2d (data , rate):

3 n = np.size(data , 1)

4 mask = np.zeros(data.shape)

5 v = round (n * rate)

6 TM = np. random . choice (range (n), v, replace =False)

7 mask [:, TM] = 1

8 return mask

9

10 def sg_sparse (data , rate):

11 raw_list =[]

12 raw_arr = np.zeros(data.shape)

13 for i in range (data.shape [1]):

14 m = irregular_mask2d (data [:,i,:], rate)

15 raw_arr [:,i ,:] = m * data [:,i ,:]

16 raw_list . append ( raw_arr [:,i ,:])

17 masked = np. asarray ( raw_list ). transpose (1 ,0 ,2)

18 print (" Sparsity : ", (1- rate)*100 , "%")

19 return masked
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APPENDIX B – EDSR network code

This appendix provides the code used to train the Enhanced Deep Residual Network

(EDSR) for this thesis. The code encompasses all stages of model training, from data

preprocessing to network configuration and execution. We implemented the code using

the widely adopted TensorFlow framework (ABADI et al., 2016), and he same technical

specifications used for training the ResFFT-CAE network are used. The code was written

by Lim et al. (2017) and is illustrated below:

1 import tensorflow as tf

2 from tensorflow .keras. layers import Add , Conv2D , Input , Lambda

3 from tensorflow .keras. models import Model

4

5 def pixel_shuffle (scale):

6 return lambda x: tf.nn. depth_to_space (x, scale)

7

8 def edsr(scale =4, num_filters =128 , num_res_blocks =16, res_block_scaling =

None):

9 x_in = Input(shape =(None , None , 1))

10

11 x = b = Conv2D ( num_filters , 3, activation =’relu ’,padding =’same ’)(

x_in)

12

13 for i in range( num_res_blocks ):

14 b = res_block (b, num_filters , res_block_scaling )

15 b = Conv2D ( num_filters , 3, activation =’relu ’, padding =’same ’)(b)

16 x = Add ()([x, b])

17

18 x = upsample (x, scale , num_filters )

19

20 x = Conv2D (1, 3, padding =’same ’, activation =’linear ’)(x)

21

22 return Model(x_in , x, name="edsr")

23

24 def res_block (x_in , filters , scaling ):

25 x = Conv2D (filters , 5, activation =’relu ’,padding =’same ’)(x_in)

26 x = Conv2D (filters , 3, padding =’same ’)(x)

27 if scaling :

28 x = Lambda ( lambda t: t * scaling )(x)

29 x = Add ()([x_in , x])

30 return x

31

32 def upsample (x, scale , num_filters ):

33 def upsample_1 (x, factor ):



34 x = Conv2D ( num_filters * ( factor ** 2), 3, activation =’relu ’,

padding =’same ’)(x)

35 return Lambda ( pixel_shuffle (scale= factor ))(x)

36

37 if scale == 2:

38 x = upsample_1 (x, 2)

39 elif scale == 3:

40 x = upsample_1 (x, 3)

41 elif scale == 4:

42 x = upsample_1 (x, 2)

43 x = upsample_1 (x, 2)

44 elif scale == 8:

45 x = upsample_1 (x, 2)

46 x = upsample_1 (x, 2)

47 x = upsample_1 (x, 2)

48

49 return x

The following code provides a structured approach to generating these datasets

in different resolutions for training the EDSR network, applying padding techniques to

ensure that the data meets specific size requirements for subsequent processing.

1 import numpy as np

2 # This class combines the functionalities of creating sparse and LR

representations .

3 #It has a constructor __init__ () that takes num_rows , num_cols , and

fator as input and creates a sparse grid using create_sparse_grid ().

4

5 class Sparsity :

6 def __init__ (self , num_rows =501 , num_cols =501 , fator =4):

7 self. num_rows = num_rows

8 self. num_cols = num_cols

9 self.fator = fator

10 self. sparse_grid = self. create_sparse_grid ()

11

12 # Creates a sparse grid using the provided parameters and factor .

13 def create_sparse_grid (self):

14 print (’################################################### ’)

15 print (’Grid reduction factor :’, self.fator)

16 print (’################################################### ’)

17 print (’\n’)

18 grid = [[0 for j in range (self. num_cols )] for i in range(self.

num_rows )]

19 for i in range(self. num_rows ):

20 if i % self.fator == 0:

21 for j in range(self. num_cols ):

22 if j % self.fator == 0:

23 grid[i][j] = 1
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24 return np.array(grid)

25

26 # Generates sparse data by multiplying the input data with the pre -

created sparse grid.

27 def generate_sparse_data (self , data):

28 sparse_list = []

29 for i in range(data.shape [0]):

30 time_slice_spr = data[i, :, :] * self. sparse_grid

31 sparse_list . append ( time_slice_spr )

32 return np.array( sparse_list )

33

34 # Creates LR (low - resolution ) data using the non -zero elements from the

sparse grid.

35 def create_lr_data (self , data):

36 flat_grid = self. sparse_grid .ravel ()

37 idx_non_zero = np. nonzero ( flat_grid )[0]

38 size_re = int(np.sqrt(len( idx_non_zero )))

39 non_zero_list = []

40 for i in range(data.shape [0]):

41 flat_data = data[i, :, :]. ravel ()

42 flat_spr = flat_data [ idx_non_zero ]

43 data_re = np. reshape (flat_spr , (size_re , size_re ))

44 non_zero_list . append ( data_re )

45 return np.array( non_zero_list )

46 # Calls generate_sparse_data and create_lr_data to obtain both sparse

and LR representations .

47 def run_combined_functions (self , data):

48 sparse_data = self. generate_sparse_data (data)

49 lr_data = self. create_lr_data (data)

50 return self. sparse_grid , sparse_data , lr_data

51

52 # --------------------------------------------------------------------

53

54 # This class represents a helper for handling division with remainder .

55 # __init__ (): Initializes the class with larger_number , smaller_number ,

and factor (f.

56

57 class DivideWithRemainder :

58 def __init__ (self , larger_number , smaller_number , factor ):

59 self. larger_number = larger_number

60 self. smaller_number = smaller_number

61 self.fator = factor

62

63 # Finds the closest value to make larger_number divisible by

smaller_number with a remainder of factor . It considers even/odd

cases of smaller_number .

64 def find_closest_value (self):
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65 resto = self. larger_number % self. smaller_number

66 if resto == self. factor :

67 return 0

68 elif self. smaller_number % 2 == 0:

69 return (self. smaller_number - remainder ) % self.

smaller_number

70 else:

71 return self. smaller_number - remainder + self. factor

72 # Ensures smaller_number is even.

73 def make_even (self):

74 if self. smaller_number % 2 == 0:

75 return self. smaller_number

76 else:

77 return self. smaller_number + 1

78 # Checks if larger_number is indeed greater than smaller_number and

prints an error message if not. It also makes smaller_number even if

necessary .

79

80 def check_division_with_remainder (self):

81 if self. larger_number <= self. smaller_number :

82 print ("The larger number must actually be greater than the

smaller number .")

83 return None

84

85 if self. smaller_number % 2 == 1:

86 self. smaller_number = self. tornar_par ()

87

88 additional_value = self. find_closest_value ()

89 self. larger_number += additional_value

90

91 return self. larger_number

92

93 # This function pads either HR (high - resolution ) or LR (low - resolution )

data to ensure compatibility with the sparse grid.

94 def pad_data (data , hr_shape , lr_shape , factor , data_type =’hr’):

95 # Function valid only for square data

96 division_with_remainder = DivideWithRemainder (hr_shape , lr_shape ,

fator)

97 division_with_remainder . check_division_with_remainder ()

98

99 # Extract factors after potential adjustments for divisibility

100 hr_factor = division_with_remainder . larger_number # larger_number (

after adjustment )

101 lr_factor = division_with_remainder . smaller_number # smaller_number (

after adjustment )

102

103 # Calculate padding sizes based on factors and original shapes
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104 lr_pad_shape = lr_factor - lr_shape # padding needed for LR data

105 hr_pad_shape = hr_factor - hr_shape # padding needed for HR data

106

107 if data_type == ’lr’:

108 print (’Shape 3D LR Seismic Data:’, data.shape) # Print original LR

data shape

109 print (’Original Time -Slice Shape:’, (data.shape [1], data.shape [2]))

110 print (’LR pad shape:’, lr_pad_shape )

111 print (’LR final Shape:’, ( division_with_remainder . smaller_number ,

division_with_remainder . smaller_number ))

112 print (’\n’)

113

114 lr_list = []

115 for i in range(data.shape [0]):

116 padded_lr_data = np.pad(data[i, :, :], ([0, lr_pad_shape ], [0,

lr_pad_shape ]))

117 lr_list . append ( padded_lr_data )

118 return np.array( lr_list ) # Return padded LR data

119

120 elif data_type == ’hr’:

121 print (’Shape 3D HR Seismic Data:’, data.shape) # Print original HR

data shape

122 print (’Original Time -Slice Shape:’, (data.shape [1], data.shape [2]))

123 print (’HR pad shape:’, hr_pad_shape )

124 print (’HR final shape:’, ( division_with_remainder . larger_number ,

division_with_remainder . larger_number ))

125 print (’\n’)

126

127 hr_list = []

128 for j in range(data.shape [0]):

129 padded_hr_data = np.pad(data[j, :, :], ([0, hr_pad_shape ], [0,

hr_pad_shape ]))

130 hr_list . append ( padded_hr_data )

131 return np.array( hr_list ) # Return padded HR data

132

133 else:

134 raise ValueError (’Data type must be "lr" or "hr"’)
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APPENDIX C – Loss

Introducing the training and validation curves in relation to the training epochs

provides invaluable insight into the learning dynamics and performance of a machine

learning model over time. These curves, typically plotted against the number of training

epochs, offer a visual representation of how the model’s performance evolves during the

training process. Table 1 summarizes the computational technical characteristics used for

training the ResFFT-CAE and EDSR networks. The network training curves are presented

below.

C.1 ResFFT-CAE network

This report only shows results for when both synthetic and field data were set to

be 50% sparse.

C.1.1 GOM data

The Figure presents the training and validation loss results per epoch for GOM

synthetic data. The total training time is 03h 33m 16s.

Figure 31 – The training and validation loss results per epoch for GOM dataset.

C.1.2 U135A data

The Figure presents the training and validation loss results per epoch for U135A

field data. The total training time is 03h 16m 21s.



Figure 32 – The training and validation loss results per epoch for U135A dataset.

C.1.3 Vikinng data

This data refers to the training of the ResFFT-CAE-SHOT network with 50% of

shots missing, as described in section 2.4.2. The figure presents the training and validation

loss results per epoch. The total training time is 2h 8m 10s.

Figure 33 – The training and validation loss results per epoch for Viking dataset.

C.2 EDSR network

The results shown in this section refer only to SEAM OBN 4D synthetic data. We

consider the scale factors of r = 2, r = 4, and r = 8.
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C.2.1 SEAM OBN 4D - r = 2

The figure presents the training and validation loss results per epoch for OBN 4D

data with an r = 2 scale factor. The total training time is 6h 42m 12s.

Figure 34 – The training and validation loss results per epoch for r = 2 scale factor.

C.2.2 SEAM OBN 4D - r = 4

The figure presents the training and validation loss results per epoch for OBN 4D

data with an r = 4 scale factor. The total training time is 5h 21m 31s.

Figure 35 – The training and validation loss results per epoch for r = 4 scale factor.
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C.2.3 SEAM OBN 4D - r = 8

The figure presents the training and validation loss results per epoch for OBN 4D

data with an r = 8 scale factor. The total training time is 4h 51m 5s.

Figure 36 – The training and validation loss results per epoch for r = 8 scale factor.
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