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Resumo 
 

A injeção de polímeros é o método químico de recuperação avançada mais utilizado. 

A adição de polímeros aumenta a viscosidade da água de injeção, o que resulta em 

um aumento da eficiência de varrido. Recentemente, observou-se que a injeção de 

água de baixa salinidade e com concentração controlada de cátions e pH poderia ser 

utilizada para aumentar a recuperação de petróleo. A inversão de molhabilidade 

resultante da substituição de um cátion bivalente por um cátion monovalente na rocha 

é o principal fenômeno físico responsável pela mobilização de óleo residual na injeção 

de água de baixa salinidade. Usualmente, a injeção de produtos químicos é feita na 

forma de um banco com os produtos dissolvidos e deslocado por água. 

Matematicamente, esse cenário significa que a condição de contorno é descontínua. 

Neste trabalho apresentamos a solução para a injeção unidimensional de um banco 

contendo 𝑛 produtos químicos dissolvidos e deslocado por água em reservatórios de 

petróleo. Como exemplos apresentamos os casos de um banco contendo dois e três 

polímeros dissolvidos, e ainda o caso da injeção de água de baixa salinidade 

considerando três cátions dissolvidos e os efeitos do pH. Os componentes químicos 

adsorvem no meio poroso segundo uma isoterma do tipo Langmuir multicomponente. 

A solução desses problemas é construída a partir do desacoplamento do sistema 

original de equações hiperbólicas em um sistema auxiliar e em uma equação de 

levantamento. O sistema auxiliar inclui apenas as propriedades termodinâmicas do 

sistema, e a equação de levantamento depende das propriedades hidrodinâmicas. O 

sistema auxiliar foi resolvido utilizando a teoria da cromatografia multicomponente, e 

sua solução é utilizada para resolver a equação de levantamento pelo método das 

características. Em seguida, a solução do sistema auxiliar e da equação de 

levantamento é mapeada para o plano espaço-tempo. Na solução de concentração é 

possível observar o desenvolvimento completo de um ciclo cromatográfico no meio 

poroso. As diferentes distribuições de concentração de componentes químicos no 

reservatório resultam no surgimento de bancos de água e de óleo na solução de 

saturação de água. A formulação matemática apresentada na solução do problema 

de injeção de água de baixa salinidade expande a teoria da cromatografia 

multicomponente para o caso em que os coeficientes da isoterma de adsorção 

dependem do pH. 

 



Palavras-chave: Métodos Químicos de Recuperação Avançada de Petróleo, Injeção 

de Polímeros, Injeção de Água de Baixa Salinidade, Leis de Conservação, Sistemas 

de Equações Diferenciais Parciais Hiperbólicas. 

 

  



 

Abstract 
 

Polymer flooding is the most important chemical method of enhanced oil recovery. 

Adding polymer to injection water increases water viscosity and optimize the sweep 

efficiency. Recently, it was observed that injection of controlled water salinity, cation 

concentration and pH improve oil recovery. The cation exchange on clay surfaces 

results in wettability alteration, which is the main physical phenomenon related to 

mobilization of residual oil in low salinity waterflooding. Usually, a chemical slug is 

displaced by pure water, leading to a discontinuity in the boundary condition of the 

mathematical problem. In this work we present the solution for the one-dimensional 

multicomponent chemical slug injection driven by water in oil reservoirs. The solution 

for the cases of slugs containing two or three dissolved polymers and for the low salinity 

waterflooding considering three dissolved cations and pH effect are presented. The 

chemical components adsorb on the rock following a multicomponent Langmuir-type 

adsorption isotherm. The introduction of a potential function replacing time in the 

original system of equations decouples the system of conservation laws into an 

auxiliary system and a lifting equation. The auxiliary system depends on the 

thermodynamic equilibrium conditions, and the lifting equation depends on the solution 

of the auxiliary system and on the hydrodynamic properties of the flow. The auxiliary 

system was solved applying the theory of the multicomponent chromatography, and its 

solution is used to solve the lifting equation applying the method of characteristics. 

Next, the solution is mapped onto the space-time plane. In the concentration solution 

it is possible to observe the development of a full chromatographic cycle. The different 

concentration distributions in the reservoir results on the appearance of water and oil 

banks in the water saturation solution. The mathematical formulation presented in the 

low salinity waterflooding problem extends the theory of multicomponent 

chromatography to the case where the adsorption coefficients depend on pH. 

 

Keywords: Chemical Methods of Enhanced Oil Recovery, Polymer Flooding, Low 

Salinity Waterflooding, Conservation Laws, Hyperbolic Systems of Partial Differential 

Equations. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 – Water Slug Injection Containing n Polymers in Porous Media 
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Abstract

Injection of water containing dissolved chemicals is an efficient oil recovery technique.

One of the problems of this method is the loss of the chemical components due to

interactions between rock and fluid. In polymer injection, adsorption may happen and

lead to low process efficiency. The interaction between rock and fluid is governed by

the adsorption isotherm, which relates the polymer concentration in water with the

adsorbed amount on the rock. In this paper the problem of oil displacement by a water

slug containing n chemical components that may be adsorbed is analyzed. The system

of conservation laws is solved and the structure of the solution for the case of Henry´s

adsorption isotherm is completely described. The concentration profile of each compo-

nent and the chromatographic cycle is calculated through simple expressions. The com-

plete and detailed solution for the case of slug injection containing three chemical

components is presented. The general solution developed can be used to model sev-

eral Enhanced Oil Recovery techniques, in which the chemical components adsorb in

porous media following Henry's adsorption isotherm.

K E YWORD S

chemical enhanced oil recovery, conservation laws, enhanced oil recovery, hyperbolic systems

of partial differential equations, polymer flooding

1 | INTRODUCTION

Different techniques can be employed to improve recovery in oil

fields. Water injection is the most used and the one-dimensional

mathematical problem was solved analytically.1 It was considered

immiscible and incompressible phases (oil and water). Adding polymer

to the injection water reduces water mobility and modifies the frac-

tional flow curve, hence increasing the sweep efficiency.

Chemical enhanced oil recovery (EOR) has been applied in

onshore and offshore petroleum fields. The most used chemical com-

ponents dissolved in the injected water are polymer, surfactants, and

alkalis. This technique recovers part of the remaining oil mainly due to

a favorable mobility ratio change.

One of the first offshore chemical EOR projects took place at

West Bay and Quarantine Bay Field, in Louisiana shallow waters, in

1981. Later, other chemical EOR projects were applied in Cuadras

field in California, Bohai Bay in China, Dalia in Angola and Captain in

North Sea, among others.2

Laboratory, analytical and numerical analyses must be performed

before field application of enhanced oil recovery methods. Injection of

one dissolved chemical component causes thermodynamic and hydro-

dynamic interactions between porous media and reservoir fluids (orig-

inal oil and injected water) and can be mathematically modeled by a

2x2 nonlinear mass conservation system. One-dimensional multiphase

flow in porous media with constant initial and boundary conditions

can be solved by the method of characteristics and the solution con-

sists of a combination of shocks and rarefaction waves, and constant

states.

The different enhanced recovery methods can lead to mul-

ticomponent multiphase flow problems in porous media. In general, it

may be considered that the components are distributed among

n phases in thermodynamics equilibrium, and the phase composition

affects its physical properties (density, viscosity, surface tension, etc.).

Some problems may be solved analytically depending on the physical

approach. One of the approaches is the theory of multicomponent

chromatography, which describes the behavior of a two-phase
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system, one mobile and the other stationary, composed of

n components, and each component concentration affects the distri-

bution of all others. The second case is based on immiscible fluid flow

in porous media considering two mobile phases, however, this theory

does not include the distribution of the components between the

phases.

Helfferich3 solved a general problem consisting of n phases and

n components using the coherence conditions showing the composi-

tion paths. The system of hyperbolic partial differential equations was

solved by the method of characteristics and the consistency condition

already adopted for modeling chromatography was also used. This

theory was subsequently applied by Hirasaki4 in a three-component

system which simulates surfactant injection in a two-phase system.

Johansen and Winther5 developed the Riemann problem solution for

a hyperbolic system composed by n equations using an “S” fractional

flow curve.

In general, the continuous injection of aqueous solutions con-

taining chemicals is not economically feasible; a more attractive alter-

native is the slug injection. In this case, the boundary conditions are

functions of time and lead to interactions between waves in the math-

ematical solution. Therefore, in slug injection problems only part of

the solution is self-similar. This part of the solution is identical to the

case of continuous injection and was applied to three adsorption

isotherms.6

The introduction of a potential function associated with the aque-

ous phase volume conservation can be used to solve the system of

hyperbolic equations that represents the two-phase multicomponent

flow in porous media. This variable is used to replace the variable time

and splits the original system into an auxiliary system and a lifting

equation. In the case of polymer injection considering adsorption, the

parameters of the flow function of the auxiliary system are related

only to the thermodynamic properties and are defined by the adsorp-

tion isotherms, that is, independent of hydrodynamic properties such

as relative permeabilities and viscosities.7

This methodology was later applied to solve the problem of water

injection containing a polymer in the presence of salt that does not

adsorb nor alter the fractional flow curve,8 and to the injection of one

and n polymers.9 In the last case, it was only considered continuous

injection of aqueous solutions containing chemicals, leading to self-

similar solutions. Ribeiro and Pires10 developed an analytical solution

using the same model for the case of water slug injection containing

one polymer, considering linear (Henry), convex (Langmuir) and con-

cave isotherms for an “S” shape fractional flow function. For convex

fractional flow function, it was also presented a solution for the injec-

tion of slugs containing two polymers that adsorb according to

Henry´s isotherm; a solution for the injection of a slug containing a

polymer and a surfactant which does not adsorb but changes residual

oil saturation; and the solution for the injection of a water slug con-

taining one polymer in the presence of salt that changes the polymer

adsorption.

Borazjani et al.11 solved the problem of water slug injection con-

taining one polymer in the presence of salt, considering an “S” shape

fractional flow function and the linear Henry adsorption isotherm. De

Paula and Pires12 presented the solution to the problem of oil dis-

placement by water slugs containing one polymer in the presence of

salt, considering Langmuir's isotherm to model the adsorption phe-

nomena and an “S” shape fraction flow curve. They used the splitting

method developed by Pires et al.7 to build the solution, which is com-

posed by concentration discontinuities (jumps) and rarefactions

waves. A sensitivity analysis was performed considering different

parameters and slug sizes showing that a smaller adsorption leads to a

more homogeneous profile and more effective oil displacement.

The splitting technique can also be applied to EOR problems con-

sidering advective transport, parabolic terms and relaxation non-

equilibrium equations. In cases where the auxiliary system allows the

development of an analytical solution, the complete exact solution

can be constructed.13

Borazjani et al.14 presented an analytical solution for a nonself-

similar, two-phase, one dimensional problem of displacement of oil by

a polymer slug with changing salinity, showing that the low salinity

front moves faster than the polymer due to adsorption. It was also

presented the solution to the injection of a polymer slug in a low salin-

ity system displaced by a low salinity or high salinity water drive.

Compared to the low salinity case, the high salinity increases the

velocity of water front, causing an early water breakthrough time and

increase of water-cut after water breakthrough. It was considered an

“S” fractional flow function and Henry isotherm.

Khorsandi et al.15 showed the analytical solution for low salinity

polymer flood using the splitting method. Wettability alteration based

on cation exchange reactions was considered in the problem, and the

results were compared to numerical and experimental data.

Hamid and Muggeridge16 developed the analytical solution to the

problem of polymer slug injection in porous media considering viscous

fingering effects. The solution was built using the method of characteris-

tics and the splitting technique. The results were compared to numerical

simulation and were used to estimate the minimum polymer slug size

needed to avoid an early breakthrough due to the viscous fingering.

Despite of the advances in the development of solutions to enhanced

oil recovery problems, a general solution that considers a variable bound-

ary condition has not been presented in the literature. Therefore, in this

paper the 1D two-phase problem of water slug injection containing

n polymers whose adsorption is governed by Henry´s isotherm is ana-

lyzed. We consider that the polymer does not dissolve in the oil phase

and changes only the water viscosity. Next section presents the mathe-

matical model, followed by the detailed solution for the case of three dis-

solved components. After that, the general solution for any number of

polymers is shown. The developed solution can be applied to several

problems that arise in enhanced oil recovery, like polymer and surfactant

flooding, and low salinity waterflooding with polymers.

2 | MATHEMATICAL DERIVATION

In this section the mathematical model for one-dimensional oil dis-

placement by the injection of a water slug containing n polymers in

porous media is presented.
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The following assumptions are considered:

• one dimensional and isothermal flow;

• homogeneous porous media;

• incompressible system;

• no dispersive and diffusive effects;

• gravity and capillary effects negligible;

• chemicals are dissolved only in the aqueous phase;

• water density is independent of the concentration of chemical

additives.

The system that represents the physical process of oil displace-

ment by water slug containing n dissolved polymers is composed of

(n + 1) equations derived from volume conservation of water and

mass of each dissolved component:

ϕ
∂s

∂t
+ uT

∂f s, c
!

� �

∂x
=0

ϕ
∂ c1s + a1 c1ð Þð Þ

∂t
+ uT

∂ c1f s, c
!

� �� �

∂x
=0

ϕ
∂ c2s + a2 c2ð Þð Þ

∂t
+ uT

∂ c2f s, c
!

� �� �

∂x
=0

.

.

.

ϕ
∂ cns+ an cnð Þð Þ

∂t
+ uT

∂ cnf s, c
!

� �� �

∂x
=0

8

>

>

>

>

>

>

>

>

>

>

>

>

>
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<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð1Þ

where c
!
is the concentration vector of the chemical components dis-

solved in water, a
!

is the vector of the amount adsorbed on the rock

surface, f s, c
!

� �

is the water fractional flow function, s is the saturation

of the aqueous phase, ϕ is the porosity of the reservoir and uT is the

total flow velocity. Using the following dimensionless variables:

X =
x
Ωs

A

ð2Þ

T =

Ð t

0
uT τð Þdτ

φΩs

A

ð3Þ

we can rewrite Equations 1 in its dimensionless form:

∂s

∂T
+
∂f s, c

!
� �

∂X
=0

∂ c1s+ a1 c1ð Þð Þ

∂T
+
∂ c1f s, c

!
� �� �

∂X
=0

∂ c2s+ a2 c2ð Þð Þ

∂T
+
∂ c2f s, c

!
� �� �

∂X
=0

.

.

.
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:

ð4Þ

where T is the number of slug volumes injected, X is the dimensionless

position related to the length of the slug, Ωs is the volume of the

injected slug and A is the cross-sectional area of the porous media.

Moreover, we will normalize the saturation by:

s =
s X,Tð Þ−s Ið Þ

s Jð Þ−s Ið Þ
ð5Þ

where s(I) is the initial water saturation and s(J) is the water saturation

at the porous media inlet (injection point).

From now on, we use Henry´s adsorption isotherm, which states

that the adsorbed amount of each component is a function of the

concentration of the component itself:

ai cið Þ=Γici ð6Þ

In the case of slug injection containing dissolved chemicals, we

consider that when the slug injection begins, the reservoir water satu-

ration is irreducible, and no polymers are present in the reservoir. Dur-

ing the injection of the slug, water fractional flow and polymers

concentration are specified. At the end of the slug injection (T = 1),

the water drive begins (injection of pure water, no chemicals dis-

solved). Thus, we have the following initial and boundary conditions:

s X,0ð Þ=0,

c
!

X,0ð Þ= c
! Ið Þ

,

(

X > 0 ð7Þ

f 0,Tð Þ= f Jð Þ =1 T > 0

c
!

0,Tð Þ=
c
! Jð Þ

,

0,

8

<

:

0< T <1

T >1

8

>

>

>

<

>

>

>

:

ð8Þ

To solve the system of Equations 4 subject to the initial and bound-

ary conditions given in Equations 7 and 8, we introduce the following

potential function, associated with volume conservation of water7:

dφ= f s, c
!

� �

dT−sdX ð9Þ

Replacing this potential function as an independent variable splits

the original (n + 1) × (n + 1) system into an n × n system, that depends

only on the adsorption isotherm (thermodynamics properties), and a

lifting equation that is a function of the transport properties and of

the solution of the auxiliary system. Thus, this technique separates

thermodynamics equilibrium and transport properties. Applying the

splitting technique in Equations 4 gives:

∂

∂φ

s

f s, c
!

� �

0

@

1

A−
∂

∂X

1

f s, c
!

� �

0

@

1

A=0

∂ai cið Þ

∂φ
+
∂ci

∂X
=0, i=1,2,…,n

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð10Þ

In the space (X, φ), the initial and boundary conditions given by

Equations 7 and 8 become:
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s X,0ð Þ=0,X >0

c
!

X,0ð Þ= c
! Ið Þ

,X >0

(

ð11Þ

f 0,φð Þ= f Jð Þ
φð Þ=1, φ>0

c
!

0,φð Þ=
c
! Jð Þ

, 0 <φ<1

0, φ>1

8

<

:

8

>

>

>

<

>

>

>

:

ð12Þ

Defining 1

f s, c!ð Þ
as U s, c

!
� �

and −
s

f s, c!ð Þ
as F U, c

!
� �

, the system of

Equations (10) becomes:

∂ F U, c
!

� �

∂φ
+
∂U s, c

!
� �

∂X
= 0

∂ai cið Þ

∂φ
+
∂ci

∂X
=0, i=1,2,…,n

8

>

>

>

>

<

>

>

>

>

:

ð13Þ

Applying the initial and boundary conditions (Equations 11 and

12) in the definitions of U s, c
!

� �

and F U, c
!

� �

we obtain the initial and

boundary conditions for the new independent variables of the lifting

equation:

U! +∞

F! −∞

, φ=0

�

ð14Þ

U=1

F = −1
, X =0

�

ð15Þ

After the solution is found in space (X, φ), the inversion mapping

to time domain is obtained from the following expression:

dT =
dφ

f s X,φð Þc
!

X,φð Þ
� � +

s

f s X,φð Þc
!

X,φð Þ
� �dX ð16Þ

3 | RESULTS AND DISCUSSIONS

Now we will present the solution for the case of oil displacement by a

water slug containing three dissolved polymers. In such case, the sys-

tem of Equations 4 becomes:

∂s

∂T
+
∂f s, c
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� �

∂X
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ð17Þ

Applying the potential function (9) in (17), the system of equations is

splitted in two parts: a lifting equation and an auxiliary system, given by:

∂F U, c
!

� �

∂φ
+
∂U s, c

!
� �

∂X
=0 ð18Þ

∂a1 c1ð Þ

∂φ
+
∂c1

∂X
=0

∂a2 c2ð Þ

∂φ
+
∂c2

∂X
=0

∂a3 c3ð Þ

∂φ
+
∂c3

∂X
=0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð19Þ

Considering the thermodynamic behavior ruled by Henry´s adsorp-

tion isotherm, where the amount adsorbed is proportional to the chem-

ical component concentration in the aqueous phase, we have:

a1 c1ð Þ=Γ1c1 ð20Þ

a2 c2ð Þ=Γ2c2 ð21Þ

a3 c3ð Þ=Γ3c3 ð22Þ

The components will be ordered according to the value of its

adsorption constant (Γi), so that Γ1 > Γ2 > Γ3. The water viscosity

without chemical additives will be named μ0w , and αi is a parameter

related to the contribution of component i to the solution viscosity. It

will be also considered that the polymer solution viscosity is described

by the expression:

μw c
!

� �

= μ0w 1+ α1c1 + α2c2 + α3c3ð Þ ð23Þ

According to Henry's law, the viscosity of the aqueous solution is

proportional to the polymer concentration in the water phase. We will

also consider that, the smaller the polymer adsorption, the smaller the

solution viscosity. Therefore, we have α1 > α2 > α3 and we will choose

αi terms so that α1 + α2 > α1 + α3 > α2 + α3.

Rewriting the auxiliary system (19) in matrix form we find:

1 0 0

0 1 0

0 0 1

2

6

4

3

7

5

c1

c2

c3

2

6

4

3

7

5

X

+

da1 c1ð Þ

dc1
0 0

0
da2 c2ð Þ

dc2
0

0 0
da3 c3ð Þ

dc3

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

c1

c2

c3

2

6

4

3

7

5

φ

=

0

0

0

2

6

4

3

7

5
ð24Þ

The eigenvalues λi of this system of equations are real and distinct:

λ1 = a
0
1 c1ð Þ; λ2 = a

0
2 c2ð Þ and λ3 = a

0
3 c3ð Þ. Moreover, the corresponding

eigenvectors are linearly independent, and therefore, the system is

strictly hyperbolic. Recalling that the adsorption of the components is

governed by Henry's isotherm and the assumption that the compo-

nent (n−1) adsorbs less than the component n, we can write the

eigenvalues in terms of adsorption isotherm's constants: λ1 = Γ1;

λ2 = Γ2 and λ3 = Γ3. So, the solution of the auxiliary system (19) sub-

ject to initial and boundary conditions (11)–(12), which is composed

by jumps of concentration, is given by:
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c1 X,φð Þ=

0, 0≤φ≤Γ1X

c
Jð Þ
1 , Γ1X ≤φ≤Γ1X +1

0, Γ1X +1≤φ≤ +∞

8

>

<

>

:

ð25Þ

c2 X,φð Þ=

0, 0≤φ≤Γ2X

c
Jð Þ
2 , Γ2X ≤φ≤Γ2X +1

0, Γ2X +1≤φ≤ +∞

8

>

<

>

:

ð26Þ

c3 X,φð Þ=

0, 0≤φ≤Γ3X

c
Jð Þ
3 , Γ3X ≤φ≤Γ3X +1

0, Γ3X +1≤φ≤ +∞

8

>

<

>

:

ð27Þ

The solution of the auxiliary system divides the plan (X, φ) into

10 regions (Figure 1). It can be observed the development of the chro-

matographic cycle, where all the injected components are completely

separated. The distribution of the components within each region is

given by:

• Regions 1; 7; 9 and 10: c1 = 0, c2 = 0 and c3 = 0;

• Region 2: c1 = 0, c2 = 0 and c3 = 1;

• Region 3: c1 = 0, c2 = 1 and c3 = 1;

• Region 4: c1 = 1, c2 = 1 and c3 = 1;

• Region 5: c1 = 0, c2 = 1 and c3 = 1;

• Region 6: c1 = 0, c2 = 0 and c3 = 1;

• Region 8: c1 = 0, c2 = 1 and c3 = 0.

The coordinates of the points that separate the regions (shock cur-

ves intersection) can be written as functions of isotherm constants Γi:

• Point A:

XA =
1

Γ1−Γ3

; φA =
Γ1

Γ1−Γ3

ð28Þ

• Point B:

XB =
1

Γ2−Γ3

; φB =
Γ2

Γ2−Γ3

ð29Þ

• Point C:

XC =
1

Γ1−Γ2
; φC =

Γ1

Γ1−Γ2
ð30Þ

The concentration profile is calculated from the auxiliary problem

solution (Equations 25–27). During the slug injection, all three compo-

nents are present in the reservoir, and component 3 travels ahead of

components 1 and 2 due to its smaller adsorption rate (Figure 2a).

Figure 2b presents the slug displacement by pure water injection

(no dissolved components). Figure 2c shows the splitting of the com-

ponents in the porous media and no longer exists a region where all

three components coexist. When φB < φ < φC, component 3 is

completely separated from components 1 and 2 (Figure 2d). For

φ > φC, all components are separated, and the chromatographic cycle

is completed (Figure 2e).

Once the solution of the auxiliary problem is found and the con-

centration profile in the auxiliary plane is known, the next step is to

solve the lifting equation to calculate the saturation. Recalling that the

concentration of each component remains constant in each of the dif-

ferent regions, applying the chain rule in Equation (18), leads to:

∂F

∂U

∂U

∂φ
+
∂U

∂X
=0 ð31Þ

The solution of Equation 31 is found by the method of character-

istics. The characteristic speed is given by:

dφ

dX
=
∂F

∂U
ð32Þ

On each characteristic curve the value of U is constant. The solu-

tion U(X, φ) of Equation 31 (Figure 3) is composed by five different

regions limited by the crossing points of the shock waves of the auxil-

iary system solution:

U X,φð Þ=

UI, 0 <φ<1

UII, 1 <φ<φA

UIII, φA <φ<φB

UIV , φB <φ<φC

UV , φC <φ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð33Þ

The solution path in (F × U) plane is presented in Figures 4–8. The

superscript (n) indicates the value of U at point n and corresponds to a

constant state region, and the subscript (n) represents a rarefaction

wave in region n. Values of U before a shock are defined as U+, and

U− corresponds to the value of the variable after the shock. Each part

of the solution of U(X, φ) (Equation 33) is given by:

(7)

c c c1 2 3= = = 0

c c c1 2 3= = = 0

(1)

(2)

c
c

c

1

2

3

=
= 0;

= 1

(3)
c1=0

c2=1
c3=1

(8)

c1=0

c2=1
c3=0

(4)

c1=1
c2=1

c3=1

(5)

c1=0
c2=1

c3=1

(6)

c1=0
c2=0

c3=1

(10)

c c c1 2 3= = =0

(9)

c c c1 2 3= = =0

F IGURE 1 Solution of the auxiliary problem
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(a) (b)

(c) (d)

(e)

F IGURE 2 (a) Polymer concentration profile during slug injection; (b) polymer concentration profile: 1 < φ < φA; (c) polymer concentration

profile: φA < φ < φB; (d) polymer concentration profile: φB < φ < φC; (e) polymer concentration profile: φ > φC
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• For φ < 1:

UI =

U Jð Þ, X =0

U4 X,φð Þ,
φ

∂F U=1, c
!
= c

! Jð Þ
� �

∂U

<X <
φ

Γ1

U 3ð Þ,
φ

Γ1
<X <

φ

Γ2

U 2ð Þ,
φ

Γ2

<X <
φ

Γ3

U 1ð Þ,
φ

Γ3

<X < +∞

U Ið Þ, φ=0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð34Þ

• For 1 < φ < φA:

UII =

U Jð Þ, X =0

U+
7 X,φð Þ,

φ

∂F U=1, c
!
=0

� �

∂U

<X <
φ−1ð Þ

Γ1

U−

6 X,φð Þ,
φ−1ð Þ

Γ1
<X <

φ−1ð Þ

Γ2

U−

5 X,φð Þ,
φ−1ð Þ

Γ2
<X <

φ−1ð Þ

Γ3

U−

4 X,φð Þ,
φ−1ð Þ

Γ3

<X <
φ

Γ1

U 3ð Þ,
φ

Γ1
<X <

φ

Γ2

U 2ð Þ,
φ

Γ2

<X <
φ

Γ3

U 1ð Þ,
φ

Γ3

<X < +∞

U Ið Þ, φ=0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð35Þ

• For φA < φ < φB:

(X , )A A

(7)

(6)

(5)

(4)

(3) (2)

(8)

(10)

(9)

(X , )B B

(X , )C C

A

B

C

(1)

F IGURE 3 U-characteristics in plane (X, φ)

(J)

H

E

B

A

A: c  = c  = c  = 01 2 3

B: c  = c  = 0; c  = 11 2 3

E: c  = 0; c  = c  = 11 2 3

H: c  = c  = c  = 11 2 3

(I)

4

3

2

1

F IGURE 4 Solution of UI in plane (F × U)

(a) (b)

F IGURE 5 (a) Solution of UII in plane (F × U); (b) zoom in solution UII
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(a) (b)

F IGURE 6 (a) Solution of UIII in plane (F × U); (b) zoom in solution UIII

(a) (b)

F IGURE 7 (a) Solution of UIV in plane (F × U); (b) zoom in solution UIV

(a) (b)

F IGURE 8 (a) Solution of UV in plane (F × U); (b) zoom in solution UV
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UIII =

U Jð Þ, X =0

U +
7 X,φð Þ,

φ

∂F U=1, c
!
=0

� �

∂U

<X <
φ−1ð Þ

Γ1

U−

6 X,φð Þ,
φ−1ð Þ

Γ1

<X <
φ−1ð Þ

Γ2

U−

5 X,φð Þ,
φ−1ð Þ

Γ2

<X <
φ

∂F U 5−ð Þ,c1 = c2 =1,c3 =0
� �

∂U

U 5−ð Þ,
φ

∂F U 5−ð Þ ,c1 = c2 =1,c3 =0
� �

∂U

<X <
φ

Γ1

U 8ð Þ,
φ

Γ1

<X <
φ−1

Γ3

U 3ð Þ,
φ−1

Γ3

<X <
φ

Γ2

U 2ð Þ,
φ

Γ2

<X <
φ

Γ3

U 1ð Þ,
φ

Γ3

<X < +∞

U Ið Þ , φ= 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð36Þ

• For φB < φ < φC:

UIV =

U Jð Þ, X =0

U+
7 X,φð Þ,

φ

∂F U=1, c
!
=0

� �

∂U

<X <
φ−1ð Þ

Γ1

U−

6 X,φð Þ,
φ−1ð Þ

Γ1
<X <

φ

∂F U 6−ð Þ,c1 = 1,c2 = c3 =0
� �

∂U

U 6−ð Þ ,
φ

∂F U 6−ð Þ,c1 =1,c2 = c3 = 0
� �

∂U

<X <
φ−1ð Þ

Γ2

U 5−ð Þ ,
φ−1ð Þ

Γ2

<X <
φ

Γ1

U 8ð Þ,
φ

Γ1

<X <
φ

Γ2

U 10ð Þ φ

Γ2

<X <
φ−1

Γ3

U 2ð Þ,
φ−1

Γ3

<X <
φ

Γ3

U 1ð Þ,
φ

Γ3

<X < +∞

U Ið Þ , φ=0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð37Þ

• For φ > φC:

UV =

U Jð Þ, X = 0

U+
7 X,φð Þ,

φ

∂F U= 1, c
!
=0

� �

∂U

<X <
φ

∂F U 7+ð Þ c
!
=0

� �

∂U

U 7+ð Þ ,
φ

∂F U 7 +ð Þ, c
!
=0

� �

∂U

<X <
φ−1ð Þ

Γ1

U 6−ð Þ,
φ−1ð Þ

Γ1

<X <
φ

Γ1

U 9ð Þ,
φ

Γ1
<X <

φ−1ð Þ

Γ2

U 8ð Þ,
φ−1ð Þ

Γ2

<X <
φ

Γ2

U 10ð Þ φ

Γ2

<X <
φ−1

Γ3

U 2ð Þ,
φ−1

Γ3

<X <
φ

Γ3

U 1ð Þ,
φ

Γ3

<X < +∞

U Ið Þ , φ= 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð38Þ

The path of UI(X, φ) is shown in Figure 4 and is given by J

− 4 ! 3 ! 2 ! 1 ! I, where the symbol (!) indicates a shock and

(−) a rarefaction. This solution starts with a rarefaction wave from

the injection condition U(J) to the point U(4) on the curve F(U,

c1 = c2 = c3 = 1). At this point, there is a jump with velocity Γ1 up to

the point U(3) on the curve F(U; c1 = 0, c2 = c3 = 1). Subsequently,

there is a jump with velocity Γ2 to the point U(2) on F(U; c1 = c2 = 0,

c3 = 1), and finally a new jump to U(1) on F(U; c1 = c2 = c3 = 0) with

velocity Γ3. Note that through each jump with velocity Γi, the com-

ponent i disappears. The Buckley-Leverett jump is achieved only

when X ! + ∞.

The rarefaction waves can be calculated by:

∂F U,c1 = c2 = c3 =1ð Þ

∂U
=
φ

X
ð39Þ

The jump that connects U(4) and U(3) begins in F(U, c1 = c2 = c3 = 1)

where:

∂F U=U 4ð Þ,c1 = c2 = c3 =1
� �

∂U
=Γ1 ð40Þ

From the Rankine–Hugoniot conditions we find the constant

states U(3), U(2), and U(1):

F½ �

U½ �
=
F Uð4Þ;c1 = c2 = c3 =1
� �

−F U 3ð Þ;c1 =0,c2 = c3 =1
� �

U 4ð Þ
−U 3ð Þ

=Γ1 ð41Þ

F U 3ð Þ;c1 =0,c2 = c3 = 1
� �

−F U 2ð Þ;c1 = c2 =0,c3 = 1
� �

U 3ð Þ
−U 2ð Þ

=Γ2 ð42Þ

F U 2ð Þ;c1 = c2 =0,c3 =1
� �

−F U 1ð Þ;c1 = c2 = c3 =0
� �

U 2ð Þ
−U 1ð Þ

=Γ3 ð43Þ

The shock path given by φ = Γ3X + 1 separates the self-similar

region (regions 1–4 in Figure 3, which corresponds to solution

UI(X, φ)), from regions where the pure water injected interacts with

the polymer slug (regions 5, 6 and 7 in Figure 3). The rarefaction

waves resulting from these interactions (U+
7 X,φð Þ, U−

6 X,φð Þ, and

U−

5 X,φð Þ) are calculated through the solution of the following system

of transcendental equations:

φ* =ΓiX
* +1 ð44Þ

∂F U+ , c
!+

� �

∂U
=
φ*

X*
ð45Þ

F U+ , c
!+

� �

−F U− , c
!−

� �

U+
−U−

=Γi ð46Þ

∂F U− , c
!−

� �

∂U
=
φ−φ*

X−X*
ð47Þ

Therefore, for U−

5 Xφð Þ, we have:
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φ* =Γ3X
* + 1 ð48Þ

∂F U+ ,c1 = c2 = c3 =1
� �

∂U
=
φ*

X*
ð49Þ

F U+ ,c1 = c2 = c3 =1
� �

−F U−

5 ;c1 = c2 =1,c3 =0
� �

U+
−U−

5

=Γ3 ð50Þ

∂F U−

5 ,c1 = c2 =1,c3 =0
� �

∂U
=
φ−φ*

X−X*
ð51Þ

For the calculation of U−

6 X,φð Þ we recall that

U+
6 X,φð Þ=U−

5 X,φð Þ. Thus,

φ* =Γ2X
* + 1 ð52Þ

∂F U+
6 =U−

5 ;c1 = c2 =1,c3 =0
� �

∂U
=
φ*

X*
ð53Þ

F U+
6 =U−

5 ,c1 = c2 =1,c3 =0
� �

−F U−

6 ;c1 =1,c2 = c3 =0
� �

U−

6 −U
−

5

=Γ2 ð54Þ

∂F U−

6 ,c1 =1,c2 = c3 =0
� �

∂U
=
φ−φ*

X−X*
ð55Þ

Similarly, for U−

7 X,φð Þ, we know that U+
7 X,φð Þ=U−

6 X,φð Þ:

φ* =Γ1X
* + 1 ð56Þ

∂F U+
7 =U−

6 ;c1 = 1,c2 = c3 =0
� �

∂U
=
φ*

X*
ð57Þ

F U+
7 =U−

6 ,c1 =1,c2 = c3 =0
� �

−F U−

7 ;c1 = c2 = c3 =0
� �

U−

6 −U
−

7

=Γ1 ð58Þ

∂F U−

7 ;c1 = c2 = c3 =0
� �

∂U
=
φ−φ*

X−X*
ð59Þ

So, the solution UII(X, φ) is given by (Figures 3 and 5):

• Injection condition: U constant and equal to U(J) with

c1 = c2 = c3 = 0;

• Region (7): U-rarefaction where c1 = c2 = c3 = 0, and U varies from

U(J) to U+
7 X,φð Þ;

• Region (6): U-shock with velocity Γ1 from the end of the rarefac-

tion U+
7 X,φð Þ where c1 = c2 = c3 = 0 to U−

6
0 X,φð Þ where c1 = 1,

c2 = c3 = 0, followed by a rarefaction wave from U−

6
0 X,φð Þ

to U−

6
00 X,φð Þ;

• Region (5): U-shock with velocity Γ2 from the end of the rare-

faction U−

6
00 X,φð Þ with c1 = 1, c2 = c3 = 0 to U−

5
0 X,φð Þ with

c1 = c2 = 1, c3 = 0, followed by a rarefaction wave from U−

5
0 X,φð Þ

to U−

5
00 X,φð Þ;

• Region (4): U-shock with velocity Γ3 from the end of the rarefac-

tion U−

5
00 X,φð Þ where c1 = 1, c2 = c3 = 0 to U−

4
0 X,φð Þ where

c1 = c2 = c3 = 1, followed by a rarefaction wave from U−

4

0

X,φð Þ

to U−

4
00 X,φð Þ;

• Region (3): U-shock with velocity Γ3 from the end of rarefaction

U−

4
00 X,φð Þ where c1 = c2 = c3 = 1 to U(3) in which c1 = 0, c2 = c3 = 1,

followed by a constant state U(3);

• Region (2): jump from U(3) to U(2) with velocity Γ2, followed by a

constant state U(2) where c1 = c2 = 0, c3 = 1;

• Region (1): jump from U(2) to U(1) with velocity Γ3, followed by a

constant state U(1) where c1 = c2 = c3 = 0;

• For φ = 0: jump from U(1) to initial condition U(I).

The superscripts 0 and 00 indicate, respectively, the values of U at

the beginning and at the end of each rarefaction wave resulting from

the interaction between waves of different families. For example, 6
0

in

solution UII (Figure 5b) is the point where the solution jumps from

region 7 to region 6, and 600 is the end of rarefaction in region 6 where

the solution jumps from region 6 to region 5. Note that for different

values of φ, the beginning, the end and the length of the rarefaction

will also be different.

Analogously to the solution UII(X, φ), we can write the solution

path for UIII(X, φ), UIV(X, φ), and UV(X, φ). These solutions are given by:

UIII X,φð Þ : Jð Þ−7 +
00

!6−
0

−6−
00

!5− 0
−5− !8!3!2!1! I

UIV X,φð Þ : Jð Þ−7+
00

!6−
0

−6−
00

!5− !8!10!2!1! I

UV X,φð Þ : Jð Þ−7+
00

−7+
0

!6− !9!8!10!2!1! I

The rarefaction and shock waves in each region are calculated fol-

lowing the same procedures already described to the solu-

tion UII(X, φ).

Once the solution of the problem in the auxiliary plane is found

we can determine f s X, φð Þc
!

� �

and s(X,φ) from the definitions of F

and U:

f =
1

U X,φð Þ
ð60Þ

s= −
F U, c

!
� �

U X,φð Þ
ð61Þ

At this point both lifting equation and auxiliary system have

already been solved. The next step is the inverse mapping from the

plane (X × φ) to plane (X × T), calculated from Equation (16), and

determining s(X, T) and c(X, T). As the adsorption is modeled by

Henry´s isotherm, U rarefactions are straight lines carrying constant

saturations. This condition is also applied to shocks at the front of the

slug (Di, i = 1, 2, 3). However, shocks at the rear of the slug (φA = Γ1X

+ 1, φB = Γ2X + 1, and φC = Γ3X + 1) are not straight lines in (X × T)
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domain due to interactions between water injection waves (φ > 1) and

polymers slug waves (Figure 9).

The relations between shock waves in (X × T) plane (Dj) and

(X × φ) (Vi) are
7:

Dj =
f�

s� + 1
V i

; i=1,2,3; j=A,B,C ð62Þ

where Vi is found from the Rankine–Hugoniot conditions of the auxil-

iary system:

V i =
ci½ �

ai½ �
ð63Þ

In the solution of the auxiliary system, there is a jump from a con-

stant state in region 1 (U(1)) to the initial condition (U(I) ) when φ = 0.

This shock is similar to a Buckley–Leverett shock (Buckley and

Leverett, 1942) in (X × φ) plane. Therefore,

VBL =
φ

X
=0 ð64Þ

Thus, the Buckley–Leverett shock in the (X × φ) plane is a straight

line on the axis φ = 0. Applying Equation 64 in Equation 62, we find

this shock in (X × T) plane:

DBL =
f +

s+
ð65Þ

Rarefaction waves slopes in space (X × φ), carrying constant satu-

ration and concentration, are used to determine the characteristic

waves slopes in (X × T) using Equation 16.

So, the solution of s(X, T) in plane (X × T) is also divided in five

parts (Figure 9):

s X,Tð Þ=

sI, 0 < T <1

sII, 1 < T < TA

sIII, TA < T < TB

sIV , TB < T < TC

sV , T > TC

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð66Þ

The solution sI(X, T) is:

sI X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ,c1 = c2 = c3 = 1
� �

∂s
T

s4 X,Tð Þ,
∂f s Jð Þ,c1 = c2 = c3 =1
� �

∂s
T <X <D1T

s 3ð Þ, D1T <X <D2T

s 2ð Þ, D2T <X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ, DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð67Þ

The solution sII(X, T) is given by:

sII X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ,c1 = c2 = c3 =0
� �

∂s
T

s+7 X,Tð Þ,
∂f s Jð Þ,c1 = c2 = c3 =0
� �

∂s
T <X <DA T−1ð Þ

s−6 X,Tð Þ, DA T−1ð Þ<X <DB T−1ð Þ

s−5 X,Tð Þ, DB T−1ð Þ<X <DC T−1ð Þ

s−4 X,Tð Þ, DC T−1ð Þ<X <D1T

s 3ð Þ, D1T <X <D2T

s 2ð Þ, D2T <X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ, DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð68Þ

The solution to sIII(X, T) is divided in three parts, separated by TIIIa

and TIIIb. Therefore, we have for TA < T < TIIIa:

sIIIa X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ, c

!
=0

� �

∂s
T

s+7 X,Tð Þ,
∂f s Jð Þ, c

!
=0

� �

∂s
T <X <DA T−1ð Þ

s−6 X,Tð Þ, DA T−1ð Þ<X <DB T−1ð Þ

s−5 X,Tð Þ, DB T−1ð Þ<X <
∂f s 5−ð Þ,c1 = c2 = 1,c3 =0
� �

∂s

s 5−ð Þ,
∂f s 5−ð Þ,c1 = c2 =1,c3 =0
� �

∂s
T <X <D1T

s 8ð Þ, D1T <X <DC T−1ð Þ

s 3ð Þ, DC T−1ð Þ<X <D2T

s 2ð Þ, D2T <X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð69Þ

(I)

(1)

(2)

(3)

(4)

(5)

(6)
(8)

(9) (10)

(X , T )C C

(X , T )B B

(X , T )A A

T1

T2

T3

T4

T5

T7

T6

D3

D2

D1

f/s

(7)

TIIIa

TIIIb

F IGURE 9 Solution in (X × T) plane
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For TIIIa < T < TIIIb we have:

sIIIb X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ, c

!
=0

� �

∂s
T

s+7 X,Tð Þ,
∂f s Jð Þ, c

!
=0

� �

∂s
T <X <DA T−1ð Þ

s−6 X,Tð Þ, DA T−1ð Þ<X <
∂f s 6−ð Þ,c1 =1,c2 = c3 =0
� �

∂s
T

s 6−ð Þ,
∂f s 6−ð Þ,c1 = 1,c2 = c3 =0
� �

∂s
T <X <DB T−1ð Þ

s 5−ð Þ, DB T−1ð Þ<X <D1T

s 8ð Þ, D1T <X <DC T−1ð Þ

s 3ð Þ, DC T−1ð Þ<X <D2T

s 2ð Þ, D2T <X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð70Þ

and for TIIIb < T < TB:

sIIIc X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ, c

!
= 0

� �

∂s
T

s+7 X,Tð Þ,
∂f s Jð Þ, c

!
= 0

� �

∂s
T <X <

∂f s 7+ð Þ, c
!
=0

� �

∂s

s 7+ð Þ,
∂f s 7+ð Þ, c

!
=0

� �

∂s
<X <DA T−1ð Þ

s 6−ð Þ, DA T−1ð Þ<X <DB T−1ð Þ

s 5−ð Þ, DB T−1ð Þ<X <D1T

s 8ð Þ, D1T <X <DC T−1ð Þ

s 3ð Þ, DC T−1ð Þ<X <D2T

s 2ð Þ, D2T <X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð71Þ

The solution to sIV(X, T) is:

sIV X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ, c

!
=0

� �

∂s
T

s+7 X,Tð Þ,
∂f s Jð Þ, c

!
=0

� �

∂s
T <X <

∂f s 7+ð Þ, c
!
=0

� �

∂s
T

s 7+ð Þ,
∂f s 7+ð Þ, c

!
= 0

� �

∂s
T <X <DA T−1ð Þ

s 6−ð Þ, DA T−1ð Þ<X <D1T

s 5−ð Þ, D1T <X <DB T−1ð Þ

s 8ð Þ, DB T−1ð Þ<X <DC T−1ð Þ

s 10ð Þ, DC T−1ð Þ<X <D2T

s 2ð Þ, D2T <X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð72Þ

For sV(X, T) we have the solution:

sV X,Tð Þ=

s Jð Þ, X <
∂f s Jð Þ, c

!
=0

� �

∂s
T

s+7 X,Tð Þ,
∂f s Jð Þ, c

!
=0

� �

∂s
T <X <

∂f s 7+ð Þ, c
!
= 0

� �

∂s
T

s 7+ð Þ,
∂f s 7+ð Þ, c

!
=0

� �

∂s
T <X <DA T−1ð Þ

s 6−ð Þ, DA T−1ð Þ<X <D1T

s 9ð Þ, D1T <X <DB T−1ð Þ

s 8ð Þ, DB T−1ð Þ<X <D2T

s 10ð Þ, D2T <X <DC T−1ð Þ

s 2ð Þ, DC T−1ð Þ<X <D3T

s 1ð Þ, D3T <X <DBLT

s Ið Þ DBLT <X

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð73Þ

The solution of c(X, T) for T < 1 is:

c1 X,Tð Þ=
c

Jð Þ
1 , X <D1T

c
Ið Þ
1 , D1T <X

(

ð74Þ

c2 X,Tð Þ=
c

Jð Þ
2 , X <D2T

c
Ið Þ
2 , D2T <X

(

ð75Þ

c3 X,Tð Þ=
c

Jð Þ
3 , X <D3T

c
Ið Þ
3 , D3T <X

(

ð76Þ

And for T > 1 we find:

c1 X,Tð Þ=

0, 0 <X <DA T−1ð Þ

c
Jð Þ
1 , DA T−1ð Þ<X <D1T

c
Ið Þ
1 , D1T <X

8

>

<

>

:

ð77Þ

c2 X,Tð Þ=

0, 0 <X <DB T−1ð Þ

c
Jð Þ
2 , DB T−1ð Þ<X <D2T

c
Ið Þ
2 , D2T <X

8

>

<

>

:

ð78Þ

c3 X,Tð Þ=

0, 0 <X <DC T−1ð Þ

c
Jð Þ
3 , DC T−1ð Þ<X <D3T

c
Ið Þ
3 , D3T <X

8

>

<

>

:

ð79Þ

Figure 10 shows the saturation profile for the different regions of

solutions of s(X, T). When T < 1, the self-similar solution is composed by

a saturation rarefaction from the injection condition to the first concen-

tration shock, followed by three concentration and one saturation

shocks, and the initial condition. Note that this part of the solution is

similar to the case of continuous injection of water containing three dis-

solved polymers. Figure 10a presents saturation profiles for three differ-

ent slug volumes injected, where T1 < T2 < T3 < 1 (Figure 9). It is

important to point out that, for T < 1, the number of slug volumes

injected is equal to the number of porous volumes injected.
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When 1 < T < TA, the injection of pure water leads to waves

interactions with the polymer slug waves, and three rarefaction

waves appear: one without chemical components, one with only

component 1 and a third one with components 1 and 2 dissolved.

In this region, at the beginning of water drive (pure water, no

chemical components dissolved), the initial part of the chromato-

graphic cycle can be observed, in which the polymer with the

lowest adsorption rate travels slightly ahead of the others. The

(a) (b)

(c) (d)

(e)

F IGURE 10 (a) Saturation profile for T < 1; (b) saturation profile when 1 < T < TA; (c) saturation profile when TA < T < TB; (d) saturation profile

when TB < T < TC; (e) saturation profile when T > TC
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profile for this part of the solution is calculated at T4 (Figure 9)

and is shown in Figure 10b.

For TA < T < TB, the separation of the chemical components of the

polymer slug can be observed. It can be noted that component 3 is

completely separated from component 1, and no longer exists a

region where all the components are present. In other words, there is

no region in porous media where the water viscosity is equal to the

viscosity when all the components are dissolved (slug viscosity). The

solution profile is determined at T5 (Figure 10c).

In the case where TB < T < TC, component 2 separates from com-

ponent 3, and after TB, component 3 is completely separated from the

other chemicals in porous media (Figure 10d).

Finally, for T > TC, the chromatographic cycle is completed, and all

components injected in porous media are separated (Figure 10e).

It can be also observed in the solution profiles several regions of

higher water saturation surrounded by lower saturations (T > TA). This

is a feature present in the non-self-similar parts of solutions of mul-

ticomponent slug injection problems due to the separation of the

components in the porous media.

In the case of polymer slug injection, the appearance of higher water

saturation regions occurs whenever there is a decreasing in concentra-

tion (which leads to a lower value of solution viscosity) followed by an

increasing in concentration, which results in a higher value of solution

viscosity. In other words, high water saturation regions can be formed in

multicomponent polymer slug injection when a lower viscosity solution

is surrounded by higher viscosity solution (see Figures 10c-10e ).

The different solution paths in (f × s) plane are presented in Fig-

ures 11–15. Note that the solution paths are related to the solution

presented in Figure 10.

The solution for three components can be generalized to solve the

displacement of oil by water slug containing n chemicals dissolved.

This problem is modeled by the following system of equations:

∂s

∂T
+
∂f s, c

!
� �

∂X
=0

∂ c1s+ a1 c1ð Þð Þ

∂T
+
∂ c1f s, c

!
� �� �

∂X
=0

∂ c2s+ a2 c2ð Þð Þ

∂T
+
∂ c2f s, c

!
� �� �

∂X
=0

.

.

.

∂ cns + an cnð Þð Þ

∂T
+
∂ cnf s, c

!
� �� �

∂X
=0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð80Þ

Introducing the potential function (Equation 9) into the system of

Equations 80, the auxiliary system is rewritten as:

∂a1 c1ð Þ

∂T
+
∂c1

∂X
=0

∂a2 c2ð Þ

∂T
+
∂c2

∂X
=0

.

.

.

∂an cnð Þ

∂T
+
∂cn

∂X
=0

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð81Þ

In this case, there is also the independent lifting equation:

∂ F U, c
!

� �

∂φ
+
∂U s, c

!
� �

∂X
=0 ð82Þ

The initial and boundary conditions for this problem are given by:

s X,0ð Þ=0,

c
!

X,0ð Þ= c
! Ið Þ

,

(

X > 0 ð83Þ

f 0,Tð Þ= f Jð Þ T > 0

c
!

0,Tð Þ=
c
! Jð Þ

,

0,

8

<

:

0< T <1

T >1

8

>

>

>

<

>

>

>

:

ð84Þ

where, c
!
= c1,c2,…,cnð Þ.

s
(1)

s
(2)

s
(3)

s
(4)

(J)

(I)

A

B

E
H

A: = = = 0c c c1 2 3

B: = = 0; = 1c c c1 2 3

E: = 0; = = 1c c c1 2 3

H: = = = 1c c c1 2 3

F IGURE 11 Solution path in plane (f × s) for region sI

F IGURE 12 Solution path in plane (f × s) for region sII
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In this work, we consider that the fractional flow function depends

on the concentration of the n components dissolved in the water,

given by the vector c
!
, while the component adsorption, modeled by

Henry's isotherm, depends only on its dissolved concentration. The

components are numbered in order of decreasing adsorption, so that

Γ1>Γ2>…>Γn..

To solve the thermodynamic part of the problem we write the

auxiliary system in matrix form (see Equation 24), and the eigenvalues

are λ1 = Γ1 > λ2 = Γ2 > … > λn = Γn. These eigenvalues are the charac-

teristic velocities of the auxiliary problem solution. So, the solution to

the problem of oil displacement by a water slug containing n dissolved

components in the auxiliary plane is composed by 2n concentration

shocks:

c
!

X,φð Þ=

c1 X,φð Þ=

0, 0≤φ≤Γ1X

c
Jð Þ
1 , Γ1X ≤φ≤Γ1X +1

0, Γ1X +1≤φ≤∞

8

>

>

<

>

>

:

c2 X,φð Þ=

0, 0≤φ≤Γ2X

c
Jð Þ
2 , Γ2X ≤φ≤Γ2X +1

0, Γ2X +1≤φ≤∞

8

>

>

<

>

>

:

.

.

.

cn X,φð Þ=

0, 0≤φ≤ΓnX

c
Jð Þ
n , ΓnX ≤φ≤ΓnX +1

0, ΓnX + 1≤φ≤∞

8

>

>

<

>

>

:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð85Þ

This solution divides the plane into regions separated by straight

lines (shock waves) (Figure 16), similarly to the case of a water slug

containing three polymers presented previously. The number of

regions (NR) and the number of crossing points dividing regions of

constant concentration (NP) can be expressed as functions of the

number of components (n):

NR nð Þ=2n+1+
X

n

r =1

n− rð Þ ð86Þ

F IGURE 13 Solution path in plane (f × s) for region sIII

F IGURE 14 Solution path in plane (f × s) for region sIV

F IGURE 15 Solution path in plane (f × s) for region sV

R=1 R=2

R=3

R=n

n

1

F IGURE 16 Solution of the slug injection containing n polymers

in plane (X × φ)
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NP nð Þ=
X

n−1

r =0

n−1ð Þ− r½ � ð87Þ

The points that separate the regions of the auxiliary physical plane

are determined by the intersection of two shocks. The coordinates of

the intersection points of shock trajectories φ = ΓiX and φ = Γj + 1,

where i = 1, 2, …, n − 1, j = 2, 3, …, n, and j > i , are given by the follow-

ing expressions:

Xij =
1

Γj−Γi

; φij =
Γj

Γj−Γi

ð88Þ

It can be noted that:

• There are n + 1 regions where: c1 = c2 = … = cn = 0;

• There are n regions where only one component is present;

• There is only one region where all the n components are present,

so that: c1 = c2 = … = cn = 1.

From the solution of the thermodynamic part of the problem, it

is possible to determine, from the lifting equation, the saturation

solution following a procedure analogous to the one presented in

the previous section. For regions of constant concentration,

we have:

∂F

∂U

∂U

∂φ
+
∂U

∂X
= −

∂F

∂c1

∂c1

∂φ
= −

∂F

∂c2

∂c2

∂φ
=…= −

∂F

∂cn

∂cn

∂φ
=0 ð89Þ

The expression dφ
dX

= ∂F
∂U

defines the speed of the U characteristics.

Since the concentration in each region is constant (∂ci
∂φ

= 0), each char-

acteristic carries a constant value of U.

In order to map the solution in plane (X × T), we need to invert the

solution using the expression:

dT =
dφ

f s X,φð Þc
!

X,φð Þ
� � +

s

f s X,φð Þc
!

X,φð Þ
� �dX ð90Þ

For this case we can also generalize the expression for time in a

region R. We consider the following nomenclature:

• R is a region of constant concentration in plane (X × φ);

• Γ
(R) is the adsorption constant of the upper limit of region R;

• X(R) is the position of the shock with slope Γ
(R).

So, for the self-similar region (R = n);

X

T
=
∂f

∂s
ð91Þ

For the region where R = n − 1 (first non-self-similar region):

T =
Γ nð Þ + s nð Þ
� �

X nð Þ +1

f nð Þ
−

Γ R+1ð Þ + s Rð Þ
� �

X R+1ð Þ + 1

f Rð Þ
+
X
∂f
∂s

ð92Þ

For the other regions (R < n − 1):

T =
Γ nð Þ + s nð Þ
� �

X nð Þ +1

f nð Þ
+
X

R−1

k =1

Γ kð Þ + s kð Þ
� �

X kð Þ
− Γ k +1ð Þ + s kð Þ
� �

f kð Þ

−
Γ R+1ð Þ + s Rð Þ
� �

X R+1ð Þ +1

f Rð Þ
+
X
∂f
∂s

ð93Þ

Note that this general solution comprises 2n concentration shocks

and one saturation shock (Buckley-Leverett shock type). It is impor-

tant to point out that the chromatographic cycle also takes place

(complete separation of components in porous media) and interac-

tions between the rarefaction families appear. The procedure to

develop a solution for any number of chemical components follows

the steps presented in the previous section (three component

system).

4 | CONCLUSIONS

In this paper the analytical solution for the problem of oil displace-

ment by a chemical slug containing n components displaced by

pure water is presented. By using a splitting technique based on

the water conservation, a new independent variable was intro-

duced and the system of n + 1 conservation laws is splitted into an

n × n auxiliary system and a lifting equation. The auxiliary system

depends only on the thermodynamics features of the problem,

which in this case is the Henry's adsorption isotherm. The lifting

equation is a function of the solution of the auxiliary system and of

the transport properties (phases relative permeabilities and

viscosities).

For Henry's adsorption isotherm, the solution of the auxiliary sys-

tem is composed by 2n shock waves separated by constant states.

Expressions for the number of regions and for the coordinates of the

intersection points between the shock waves in the auxiliary plane are

also presented. The solution in the auxiliary plane is mapped to

space–time plane through simple expressions. A detailed construction

of the solution is presented for the case of a slug containing

3 components.

The solution in the physical plane shows the complete develop-

ment of the chromatographic cycle (separation of the components

in porous media) and the saturation profiles along the porous

media.

The procedure presented in this paper can be applied to several

other physical systems that arise in enhanced oil recovery, like poly-

mer and surfactant flooding, low salinity waterflooding with

polymers, etc.
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Chapter 2 – Injection of Water Slug Containing Two Polymers in Porous 
Media: Analytical Solution for Two-Phase Flow Accounting for Adsorption 

Effects 
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A B S T R A C T   

Polymer flooding is the most applied chemical method of enhanced oil recovery (EOR). Usually this process 
consists of injecting a slug containing dissolved chemicals displaced by water. This technique is modeled by a 
system of conservation laws with constant initial condition and not constant boundary conditions. In this paper 
we extend the two solute one-dimensional chromatography problem solution (Rhee et al., 2001) for a two-phase 
environment. The exact solution for the injection of a slug containing two dissolved polymers driven by water in 
an oil reservoir is developed. It is considered that both polymers may adsorb in porous media following Lang-
muir’s adsorption isotherm. The solution is built splitting the original system into a purely chromatographic 
problem (auxiliary system), and a lifting equation that considers the hydrodynamics properties of the system. 
Due to the chase water drive, interactions between waves arise along the space-time plane and change the path of 
the characteristics at the rear of the slug. The presented solution is composed by rarefaction and shock waves, 
and constant states. Moreover, a complete chromatography cycle develops in the porous media (complete sep-
aration of the chemical components).   

1. Introduction 

Injection of aqueous polymer solutions is the most applied chemical 
method of enhanced oil recovery (Sheng et al., 2015). Adding polymers 
to injection water increases the viscosity of the solution and reduces its 
mobility, avoiding viscous fingering and early water breakthrough 
(Kargozarfard et al., 2018). The polymers commonly used in enhanced 
oil recovery (EOR) do not modify the interfacial tension between 
aqueous and oleic phase, and therefore do not change the residual oil 
saturation. In fact, the remarkable effect of polymers solution injection 
in a reservoir is the increase of oil production, i.e., a larger volume of oil 
is produced for a particular volume of polymeric solution injected when 
compared to the same volume of pure water (Sorbie, 1991). This effect 
results in a higher oil recovery at the end of the production life of res-
ervoirs subjected to polymer injection. 

The design of a polymer flooding process depends on the adsorption 
of the chemicals on the rock. The presence of divalent cations in the 
reservoir, either on the rock or in the connate water, can increase the 
adsorption of the polymer by the rock, which reduces the viscosity of the 
polymeric solution and the efficiency of the process (Sorbie, 1991; Taber 
et al., 1997). The injection of a water pre-flush slug containing low 

concentration of divalent cations can minimize the adsorption of the 
polymers in sandstone reservoirs (Maitin and Volz, 1981; Davison and 
Mentzer, 1982; Algharaib et al., 2014). For carbonate reservoirs, use of 
salinity resistant biopolymers or neutral pH water pre-flush with low 
concentration of Ca2þ and high concentration of SO2�

4 are the best op-
tions to avoid severe polymer adsorption (Ali and Barrufet, 1984; Lee 
et al., 2019). 

Due to injectivity issues, to presence of divalent cations and to 
chemical components storage, polymer flooding is most used in onshore 
high permeable sandstone reservoirs saturated with low/medium vis-
cosity oil (Taber et al., 1997; Torrealba and Hoteit, 2019). However, it 
has been reported successful implementation of this technique in 
different environments, including offshore reservoirs (Boardman et al., 
1982). In Bohai Bay field, in China, the injection of polymers in an 
offshore reservoir containing heavy oil resulted in an increase of 3% in 
oil recovery, and a reduction of 5% in water cut (Zhou et al., 2008). In a 
deep-water field in Angola, despite of the heavy oil, polymer injection 
resulted in 7% incremental oil production and 10% water cut reduction 
(Morel et al., 2012). 

Numerical simulation and analytical models are two of the most 
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important tools to design polymer flooding projects. Numerical simu-
lators can model complex scenarios and reduce the uncertainty of 
polymer flooding projects design (Alsofi & Blunt, 2010, 2014). On the 
other hand, analytical models can provide effective sensitive analysis on 
the performance of this technique under more restrictive assumptions 
(Bedrikovetsky, 1993). 

The mathematical model that governs the flow of water containing 
dissolved chemicals is composed by the water volume conservation and 
mass conservation of each component. These equations result in a hy-
perbolic system of conservation laws. For a one-dimensional problem 
with constant initial and boundary conditions, the solution can be ob-
tained by the method of characteristics and is composed by rarefaction 
and shock waves, and constant states (Bedrikovetsky, 1993). 

For the case of water containing one polymer, the mathematical 
problem is composed by a 2 � 2 hyperbolic system of conservation laws. 
The solution is obtained by an extension of Buckley and Leverett (1942) 
theory, and its structure is formed by a saturation rarefaction wave 
followed by a concentration shock and the Buckley-Leverett shock 
(Patton et al., 1971). This structure can be generalized to include other 
enhanced oil recovery methods (Pope, 1980), such as surfactant or alkali 
injection, and to different adsorption isotherms (Langmuir, Henry or 
Freundlich adsorption isotherms) (Johansen and Winther, 1988). 

The multicomponent polymer injection is modeled by a system of 
ðnþ1Þ � ðnþ1Þ conservation laws, where n is the number of polymers 
dissolved in water. The solution to the continuous injection problem was 
presented in Johansen and Winther (1989), and it was developed from 
the associated chromatography problem (one-phase multicomponent 
problem), followed by an extension to the two-phase problem. It is 
important to point out that this solution is not applied for varying 
boundary conditions (slug injection). 

Despite the efficiency of the continuous injection of chemicals to 
increase oil production, due to economic criteria and injectivity issues, 
usually a finite volume of polymeric solution is injected in the reservoir 
(polymer slug) followed by pure water (water drive) (Torrealba and 
Hoteit, 2019). In this case, a discontinuity arises in the boundary con-
dition at the beginning of the water drive. At this point, interaction 
between waves of different families occurs along the space-time plane. 
Therefore, in the case of slug injection of chemicals, the solution is not 
self-similar (Vicente et al., 2014). 

A theory to solve chemicals slug injection into oil reservoirs prob-
lems is presented in Pires et al. (2006). A potential function related to 
the conservation of water volume replaces the independent variable 
time in the system of hyperbolic equations. Considering a slug con-
taining n chemical components dissolved, the potential function splits 
the original ðnþ1Þ � ðnþ1Þ system into an auxiliary system of n equa-
tions and a lifting equation. The auxiliary system depends on the ther-
modynamic model and represents a pure chromatographic process 
(one-phase problem), whereas the lifting equation depends on the 
transport properties of the flow and on the solution of the auxiliary 
system. For a multicomponent polymer slug injection, it can be noted 
that after applying the splitting technique, the auxiliary system is similar 
to the one obtained in multicomponent chromatography (Rhee et al., 
2001, Borazjani et al., 2016). 

The splitting technique has been applied to solve several problems 
involving polymer injection in porous media. Boa and Pires (2006) 
considered the case of one polymer continuous injection where the 
polymer may adsorb according to Langmuir isotherm, and the amount 
adsorbed is affected by the water salt concentration. Silva et al. (2007) 
presented the solution for the continuous multicomponent polymer in-
jection. Ribeiro and Pires (2008) considered different adsorption iso-
therms and fractional flow functions to solve the polymer slug injection 
problem. 

Vicente et al. (2014) presented the solution to the problem of slug 
injection containing one polymer that adsorbs following Langmuir 
adsorption isotherm. The solution presented was built using the splitting 
technique and compared to the results obtained in numerical simulators. 

Borazjani et al. (2014) developed the exact solution to the case of 
polymer slug injection considering salt effects, and the polymer adsorbs 
following Henry’s isotherm. de Paula and Pires (2015) considered 
Langmuir’s adsorption isotherm and salt effects in the adsorption curve 
to model polymer slug injection in porous media. 

Borazjani et al. (2016) applied the splitting technique to solve the 
two-phase problem of polymer slug injection with varying salinity. It 
was considered that the polymer follows a linear adsorption isotherm 
and that the salt does not adsorb in porous media. The solution includes 
implicit formulae for saturation, polymer and salt concentrations and 
front trajectories of the components. 

Khorsandi et al. (2016) presented the exact solution to the problem 
of low salinity polymer slug injection considering cation exchange ef-
fects that lead to wettability alteration. The results were compared to 
experimental data and numerical simulations. 

De Paula et. al. (2019) presented the solution to the problem of slug 
injection containing n dissolved polymers that may adsorb following 
Henry’s isotherm. The solution was composed by a water saturation 
rarefaction, 2n concentration shock waves and the Buckley-Leverett 
shock. The solution also included the effects of the interaction be-
tween saturation and concentration waves. Due to the separation of the 
chemicals in the porous media, water banks appeared in the water 
saturation solution. 

It has been shown that it is also possible to build a solution to EOR 
problems considering advective transport, parabolic terms and relaxa-
tion non-equilibrium equations applying the splitting technique for the 
cases where the auxiliary system allows the development of an analyt-
ical solution (Borazjani et al., 2016). 

In this paper we present the solution for the one-dimensional two- 
phase isothermal two-component polymer slug injection followed by 
water drive problem. It is considered that both polymers may be 
adsorbed by the porous media following Langmuir’s isotherm. It was 
also considered that the slug and water drive salinity are the same as the 
connate water. The presented solution is a two-phase generalization of 
the one-dimensional two-component chromatography solution pre-
sented by Rhee et al. (2001). This solution is general and may be applied 
to any problem with two dissolved chemical components, for instance: 
one polymer and one surfactant, one polymer and one salt, and so on. 
The restriction is that the adsorption must follow Langmuir adsorption 
isotherm. 

Next section presents the mathematical description of the physical 
model followed by the detailed procedure of solution using the splitting 
technique (Pires et al., 2006) and the chromatography theory (Rhee 
et al., 2001). Then, the solution in auxiliary space is mapped onto the 
space-time plane. The paper ends with some discussions and 
conclusions. 

2. Mathematical model 

We consider the injection of a water slug containing two dissolved 
polymers displaced by pure water. The following assumptions are 
adopted:  

� Two-phase, one-dimensional isothermal flow;  
� Incompressible system;  
� Homogeneous porous media;  
� Dispersion, gravity and capillarity are neglected;  
� Polymers are dissolved only in the aqueous phase;  
� Water density is not a function of polymer concentration;  
� Newtonian flow. 

According to these hypotheses, the physical model is governed by the 
volume balance of water and by the mass conservation of each dissolved 
polymer in the slug. The resulting system of equations is given by: 
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>

>

>

>

>

>

:

ϕ
∂s

∂t
þ uT

∂f ðs; c1; c2Þ

∂x
¼ 0

ϕ
∂ðc1s þ a1ðc1; c2Þ Þ

∂t
þ uT

∂ðc1f ðs; c1; c2Þ Þ

∂x
¼ 0

ϕ
∂ðc2s þ a2ðc1; c2Þ Þ

∂t
þ uT

∂ðc2f ðs; c1; c2Þ Þ

∂x
¼ 0

(1)  

where s is the water saturation, c1 and c2 are the concentration of the 
components in the flowing phase, a1 and a2 the amount adsorbed by the 
rock, f is the water fractional flow, ϕ is the rock porosity and uT is the 
total flow velocity. We introduce the following dimensionless variables 
in the system of equation (1): 

xD ¼
x
Ωs

A

(2)  

tD ¼

R t

0
uTðτÞdτ

ϕ Ωs

A

(3)  

where xD is the dimensionless position related to the length of the slug, 
tD represents the number of slug volumes injected, ΩS is the injected slug 
volume and A is the cross-sectional area of the reservoir. 

So, we can rewrite (1) in dimensionless form: 
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

∂s

∂tD

þ
∂f ðs; c1; c2Þ

∂xD

¼ 0

∂ðc1s þ a1ðc1; c2ÞÞ

∂tD

þ
∂ðc1f ðs; c1; c2ÞÞ

∂xD

¼ 0

∂ðc2s þ a2ðc1; c2ÞÞ

∂tD

þ
∂ðc2f ðs; c1; c2ÞÞ

∂xD

¼ 0

(4) 

Water saturation is normalized using the relation: 

s¼
sðxD; tDÞ � sðIÞ

sðJÞ � sðIÞ
(5)  

where sðIÞ is the reservoir initial water saturation and sðJÞ is the water 
saturation at the injection point. 

In this problem, the adsorption of both polymers is governed by 
Langmuir’s isotherm: 

aið c!Þ¼
Kici

1 þ
P

2

j¼1
Kjcj

(6)  

where c! ¼ ðc1;c2Þ. 
When the slug injection begins (tD ¼ 0), there is no polymer in the 

reservoir (cðIÞ1 ¼ cðIÞ2 ¼ 0), and the water saturation is irreducible (s ¼

0). During the injection of the slug, the water fractional flow is 1 at the 
inlet point (xD ¼ 0), and the injection concentration is constant (cðJÞ1 ;

cðJÞ2 ). After the injection of the slug (xD ¼ 0; tD ¼ 1), the water drive 
begins (c1 ¼ c2 ¼ 0). Thus, the initial and boundary conditions of the 
problem are given by: 

tD ¼ 0;

8

>

>

<

>

>

:

sðxD; 0Þ ¼ 0;

c1ðxD; 0Þ ¼ c
ðIÞ
1
;

c2ðxD; 0Þ ¼ c
ðIÞ
2
;

0 < xD <
L
Ωs

A

(7)  

xD ¼ 0;
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>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

f ð0; tDÞ ¼ f ðJÞ tD > 0

c1ð0; tDÞ ¼

(

c
ðJÞ
1

;

0;

0 < tD < 1

tD > 1

c2ð0; tDÞ ¼

(

c
ðJÞ
2

;

0;

0 < tD < 1

tD > 1

(8)  

2.1. Splitting between thermodynamics and hydrodynamics 

At this point we introduce the following potential function associated 
to water conservation: 
dφ ¼ f ðs; c!ÞdtD � sdxD (9)  

in the system of conservation laws in dimensionless form (Equation (4)), 
leading to: 
∂

∂φ

�

s

f ðs; c1; c2Þ

�

�
∂

∂xD

�

1

f ðs; c1; c2Þ

�

¼ 0 (10)  
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>

>

>

>

>

<

>

>

>

>

>

:

∂a1ðc1; c2Þ

∂φ
þ

∂c1

∂xD

¼ 0

∂a2ðc1; c2Þ

∂φ
þ

∂c2

∂xD

¼ 0

(11) 

This procedure splits the original 3 � 3 system of equations (Equa-
tion (4)) into a 2 � 2 system (Equation (11)), which is a function of 
thermodynamic properties only and is similar to the chromatography 
problem (Rhee et al., 2001), and a lifting equation (Equation (10)), 
which is a function of hydrodynamic properties of the system and of the 
solution of the auxiliary system (Pires et al., 2006). 

The initial and boundary conditions (Equations (7) and (8)) in xD � φ 

space become: 

φ ¼ 0;

8

>

>

<

>

>

:

sðxD; 0Þ ¼ 0;

c1ðxD; 0Þ ¼ c
ðIÞ
1
;

c2ðxD; 0Þ ¼ c
ðIÞ
2
;

0 < xD <
L
Ωs

A

(12)  

xD ¼ 0;
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>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

f ð0;φÞ ¼ f ðJÞðφÞ ¼ 1 φ > 0

c1ð0;φÞ ¼

8

<

:

c
ðJÞ
1

;

0;

0 < φ < 1

φ > 1

c2ð0;φÞ ¼

8

<

:

c
ðJÞ
2

;

0;

0 < φ < 1

φ > 1

(13) 

Defining 1
fðs;c1 ;c2Þ as Uðs; c1; c2Þ and � s

fðs;c1 ;c2Þ as FðU; c1; c2Þ, the lifting 
equation (Equation (11)) becomes: 
∂FðU; c1; c2Þ

∂φ
þ

∂Uðs; c1; c2Þ

∂xD

¼ 0 (14) 

The initial and boundary conditions (Equations (12) and (13)) for the 
lifting equation (Equation (14)) are: 

ϕ¼ 0;

�

U→ þ ∞

F→ � ∞
(15)  

xD ¼ 0;

�

U ¼ 1

F ¼ �1
(16) 

After both auxiliary system (Equation (10)) and lifting equation 
(Equation (14)) are solved in xD � φ plane, the inverse mapping to xD �

tD plane is obtained from the following expression: 

dtD ¼
dφ

f ðsðxD;φÞ; c1ðxD;φÞ; c2ðxD;φÞ Þ
þ

s

f ðsðxD;φÞ; c1ðxD;φÞ; c2ðxD;φÞ Þ
dxD

(17)  

2.2. Solution of the auxiliary 2 � 2 problem 

The methodology to build the solution of the auxiliary problem fol-
lows the steps presented in Rhee et al. (2001) for the problem of 
two-component chromatography: 
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� Apply the hodograph transformation to determine the concentration 
waves in the c1 � c2 plane;  

� Build the solution path in c1 � c2 plane;  
� Map the solution from c1 � c2 plane onto xD � φ plane. 

The derivation of the characteristic and shock waves in the hodo-
graph plane for the system of equation (11) is presented in Appendix A. 
The detailed theory for the two-component chromatography problem 
can be found in chapters 1 and 2 of Rhee et al. (2001). 

In the hodograph plane, the slopes of the characteristic curves are 
given by: 

Γþ : α¼

�

dc1

dc2

�

þ

¼ ξþ ¼
1

2
a�1

21

h

ða11 � a22Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða11 � a22Þ
2 þ 4a21a12

q

i

(18)  

Γ� : β¼

�

dc1

dc2

�

�

¼ ξ� ¼
1

2
a�1

21

h

ða11 � a22Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða11 � a22Þ
2 þ 4a21a12

q

i

(19) 

The characteristic velocities of the rarefaction waves are: 

λþ ¼
dφ

dxD

¼ K2γab2 (20)  

λ� ¼
dφ

dxD

¼ K2γa2b (21)  

where the parameters a and b are functions of α and β, which are defined 
as: 

a¼ aðαÞ¼
α þ 1

α þ γ
(22)  

b¼ bðβÞ¼
β þ 1

β þ γ
(23) 

From Rankine-Hugoniot conditions, it is possible to determine the 
shock velocity: 

Vþða; b
�
; bþÞ ¼

φ

xD

¼ K2γab�bþ (24)  

V�ða
�
; aþ

; bÞ ¼
φ

xD

¼ K2γba�aþ (25)  

where the superscripts þ and – represent the value of a or b before and 
after the shock, respectively. 

In equations (18-21), (24) and (25), the subscripts þ and – denote 
the slow and fast wave family, respectively. 

At this point we present a solution for an arbitrary initial and 
boundary condition. Fig. 1 shows the solution path in the concentration 

plane. The injection condition is represented by the point ðJÞ, and the 
initial condition is represented by the point ðIÞ. Points ðAÞ and ðPÞ are 
intermediary points along the solution path. We indicate a rarefaction 
wave as “–”, and a shock wave as “→”. 

During the slug injection (φ < 1), the solution is self-similar and is 
composed by two shock waves: ðJÞ→ðAÞ→ðIÞ. The first shock velocity is 
denoted as Vþ and is a b characteristic parameter jump. On the other 
hand, V� is the second shock velocity and is an a parameter jump in 
auxiliary space (Fig. 2). 

Across the shock ðJÞ→ðAÞ (b parameter jump), the concentration c2 
jumps to the initial condition, whereas the concentration c1 increases to 
a value higher than the injection condition (point A). On the other hand, 
the component 1 concentration jumps to the initial condition through 
the shock ðAÞ→ðIÞ. 

For φ > 1, the injected fluid does not contain dissolved polymers, 
and the solution in the concentration plane is composed by two rare-
faction waves: ðIÞ � ðPÞ and ðPÞ� ðJÞ. The first rarefaction wave is a Γþ

type family, whereas the second rarefaction is a Γ� characteristic family 
in concentration plane. 

The characteristic curves Cþ, with slope λþ in xD � φ plane, corre-
spond to the segment ðIÞ � ðPÞ in the hodograph plane; and the char-
acteristic curves C�, with slope λ� in xD � φ plane, correspond to the 
segment ðPÞ � ðJÞ in the hodograph plane. The slope of the rarefaction 
waves, which is a function of polymers concentration, is given by 
(Fig. 2): 
Cþ : λþ ¼K2½bðβÞ�

2 (26)  

C� : λ� ¼K2aðαÞbðJÞ (27)  

where bðJÞ denotes the value of b at injection condition. Along the 
rarefaction family Cþ, there is only component 2 in water (segment ðIÞ �
ðPÞ in Fig. 1, where c1 ¼ cðIÞ1 ¼ 0), and the concentration c2 is inversely 
proportional to the slope of the rarefaction characteristic. Along the 
family C�, both chemicals are dissolved in water, and their concentra-
tions are inversely proportional to the characteristic slope (Fig. 2). 

The water drive (used to displace the polymer slug) leads to in-
teractions between the characteristic waves. Waves of different families 
(Γþ and Γ�) are transmitted through each other and their slopes change. 
Waves of same families (Γþ and Γþ or Γ� and Γ�) adsorb each other, and 
a shock wave appears at the intersection point. The theory of interaction 
between rarefaction and shock waves is detailed in Rhee et al., 
2001et ​ al 

Fig. 2 shows the characteristic diagram in xD � φ plane. The shock 
waves OB and OE are straight lines whose slope is given by: 
VþðOBÞ

�

a¼ aðJÞ
; b� ¼ 1; bþ ¼ bðJÞ

�

¼K2γaðJÞbðJÞ (28)  

V�ðOEÞ

�

a� ¼
1

γ
; aþ ¼ aðJÞ

; b¼ 1

�

¼K2γaðJÞ (29) 

The coordinates of point B are: 

xB ¼
1

K2γaðJÞbðJÞ
�

1 � aðJÞ
� (30)  

φB ¼
1

ð1 � aðJÞ Þ
(31) 

At point B the interaction between the shock Vþ and rarefaction C�

begins (Fig. 2). At this point the shock wave is transmitted through the 
rarefaction wave, and the rarefaction wave through the shock wave. 
Each rarefaction characteristic C� carries a constant a value, whereas b 
jumps from bðJÞ to bðIÞ through the shock wave. Therefore, to calculate 
the shock path along the interaction, it is necessary to solve the Rankine- 
Hugoniot conditions considering the value of a carried by each rare-
faction wave. So, the new shock path is given by: 

Fig. 1. Solution path in the concentration plane.  
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x
ðBCÞ
D ðaÞ¼ xB

ð1 � aðJÞÞ
2

ð1 � aÞ2
(32)  

and φðBCÞ can be calculated by: 

φðBCÞðaÞ ¼

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2γbðJÞx
ðBCÞ
D

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

aðJÞ
� 1

r

!2

þ 1 (33) 

This shock path generated by its interaction with the rarefaction C�

is part of a parabola where the shock velocity decreases. At point C the 
interaction ends and the shock path of Vþ is a straight line with slope 
K2bðJÞ. Ahead of the shock Vþ the component 2 no longer exists, i.e., c2 ¼

0. The coordinates of point C are (Fig. 2): 

xC ¼
γ2ð1 � aðJÞÞ

K2γaðJÞbðJÞðγ � 1Þ2
(34)  

φC ¼

�

1 � aðJÞ
�

aðJÞð1 � γÞ2
(35)  

and the shock path CG is: 

x
ðCGÞ
D ¼

φ � φC

K2bðJÞ
(36) 

As the rarefaction C� intercepts shock Vþ, the slope of the charac-
teristics changes due to the jump of b. Thus, the new slope of rarefaction 
C� is given by: 
λð�Þ
� ¼K2γa2 (37) 

After the interaction with shock Vþ, the rarefaction C� intercepts 
shock V�. As both waves belong to the same family, the shock adsorbs 
the rarefaction, but its slope changes. The first interaction between the 
shock V� and the rarefaction C� occurs at point E, whose coordinates are 
(Fig. 2): 

xE ¼
φB � K2γ

�

aðJÞ
�2

xB

K2aðJÞð1 � aðJÞ Þ
(38)  

φE ¼ K2γ
�

aðJÞ
�2

ðxE � xBÞ (39) 
The shock path of V� along the interaction with C� is: 

x
ðE∞Þ
D ¼ xE

�

1

γ
� aðJÞ

�2

�

1

γ
� a

�2
(40)  

φðE∞Þ ¼ K2ax
ðE∞Þ
D (41)  

and when xD→ þ ∞ the shock slope tends to the last rarefaction char-
acteristic slope. 

After the interaction with rarefaction family C�, shock Vþ catches up 
rarefaction Cþ, and the shock adsorbs the rarefaction and its trajectory 
changes continuously (shock and rarefaction belong to the same family). 
The interaction begins at point G (Fig. 2): 

xG ¼

�

1 � φD þ K2bðJÞxC

�

K2bðJÞ
�

1 � bðJÞ
� (42)  

φG ¼ K2bðJÞðxG � xCÞ þ φC (43) 
After point G the shock path of Vþ is given by: 

x
ðG∞Þ
D ¼ xG

�

1 � bðJÞ
�2

ð1 � bÞ2
(44)  

φðG∞Þ ¼ K2b2x
ðG∞Þ
D þ 1 (45) 

Analogously to the case of the interaction between C� and V�, when 
xD→ þ ∞ the shock slope tends to the last rarefaction characteristic 
slope. 

The solution of the auxiliary system is divided in 6 parts (cI, cII, cIII, 
cIV , cV, and cVI), which are bounded by the end of the polymer slug in-
jection (φ ¼ 1), and by the first and the last points of the regions where 
waves interaction take place (points B, E, C, and G). Thus, the overall 
solution is: 

cðxD;φÞ ¼

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

cI ; φ < 1

cII ; 1 < φ < φB

cIII ; φB < φ < φE

cIV ; φE < φ < φC

cV ; φC < φ < φG

cVI ; φG < φ

(46) 

Fig. 2. Solution of the auxiliary system in plane xD � ϕ.  
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where, cIðxD;φÞ is the self-similar part of the solution, given by: 

cIðxD;φÞ ¼

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

c1 ¼ c
ðJÞ
1
; c2 ¼ c

ðJÞ
2
; xD <

ϕ

VþðOBÞ

c1 ¼ c
ðAÞ
1
; c2 ¼ c

ðIÞ
2
;

φ

VþðOBÞ
< xD <

φ

V�ðOEÞ

c1 ¼ c
ðIÞ
1
; c2 ¼ c

ðIÞ
2
;

φ

V�ðOEÞ
< xD

(47) 

The other parts of the solution are:    

cIIðxD;φÞ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

c1¼0; c2¼0; xD<
φ�1

λþ
�

aðIÞ
;bðIÞ

�

c1¼0; c2¼c2rþðxD;φÞ;
φ�1

λþ
�

aðIÞ
;bðIÞ

�<xD<
φ�1

λþ
�

aðIÞ
;bðJÞ

�

c1¼0; c2¼c
ðPÞ
2
;

φ�1

λþ
�

aðIÞ
;bðJÞ

�<xD<
φ�1

λ�
�

aðIÞ
;bðJÞ

�

c1¼c1r�ðxD;φÞ; c2¼c2r�ðxD;φÞ;
φ�1

λ�
�

aðIÞ
;bðJÞ

�<xD<
φ�1

λ�
�

aðJÞ
;bðJÞ

�

c1¼c
ðJÞ
1
; c2¼c

ðJÞ
2
;

φ�1

λ�
�

aðJÞ
;bðJÞ

�<xD<
φ

VþðOBÞ

c1¼c
ðAÞ
1
;c2¼c

ðIÞ
2
;

φ

VþðOBÞ
<xD<

φ

V�ðOEÞ

c1¼c
ðIÞ
1
;c2¼c

ðIÞ
2
;

φ

V�ðOEÞ
<xD

(48)   

cIIIðxD;φÞ ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

c1 ¼ 0; c2 ¼ 0; xD <
φ � 1

λþ
�

aðIÞ
; bðIÞ

�

c1 ¼ 0; c2 ¼ c2rþðxD;φÞ;
φ � 1

λþ
�

aðIÞ
; bðIÞ

� < xD <
φ � 1

λþ
�

aðIÞ
; bðJÞ

�

c1 ¼ 0; c2 ¼ c
ðPÞ
2
;

φ � 1

λþ
�

aðIÞ
; bðJÞ

� < xD <
φ � 1

λ�
�

aðIÞ
; bðJÞ

�

c1 ¼ cþ
1r�ðxD;φÞ; c2 ¼ cþ

2r�ðxD;φÞ;
φ � 1

λ�
�

aðIÞ
; bðJÞ

� < xD < x
ðBCÞ
D ðaðxD;φÞ Þ

c1 ¼ c�
1r�ðxD;φÞ; c2 ¼ c

ðIÞ
2
; x

ðBCÞ
D ðaðxD;φÞ Þ < xD <

φ � φðBCÞðaðxD;φÞ Þ

λ�
�

aðAÞ
; bðIÞ ¼ b�

�

c1 ¼ c
ðAÞ
1
; c2 ¼ c

ðIÞ
2
;

φ � φðBCÞðaðxD;φÞ Þ

λ�
�

aðAÞ
; bðIÞ ¼ b�

� < xD <
φ

V�ðOEÞ

c1 ¼ c
ðIÞ
1
; c2 ¼ c

ðIÞ
2
;

φ

V�ðOEÞ
< xD

(49)  

cIVðxD;φÞ ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

c1 ¼ 0; c2 ¼ 0; xD <
φ � 1

λþ
�

aðIÞ
; bðIÞ

�

c1 ¼ 0; c2 ¼ c2rþðxD;φÞ;
φ � 1

λþ
�

aðIÞ
; bðIÞ

� < xD <
φ � 1

λþ
�

aðIÞ
; bðJÞ

�

c1 ¼ 0; c2 ¼ c
ðPÞ
2
;

φ � 1

λþ
�

aðIÞ
; bðJÞ

� < xD <
φ � 1

λ�
�

aðIÞ
; bðJÞ

�

c1 ¼ cþ
1r�ðxD;φÞ; c2 ¼ cþ

2r�ðxD;φÞ;
φ � 1

λ�
�

aðIÞ
; bðJÞ

� < xD < x
ðBCÞ
D ðaðxD;φÞ Þ

c1 ¼ c�
1r�ðxD;φÞ; c2 ¼ c

ðIÞ
2
; x

ðBCÞ
D ðaðxD;φÞ Þ < xD < x

ðE∞Þ
D ðaþðxD;φÞ Þ

c1 ¼ c
�ðIÞ
1

; c2 ¼ c
ðIÞ
2
; x

ðE∞Þ
D ðaþðxD;φÞ Þ < xD

(50)   

Fig. 3. Concentration profile for solution cIðxD;φÞ.  

F. de O Apolin�ario et al.                                                                                                                                                                                                                       



Journal of Petroleum Science and Engineering 188 (2020) 106927

7

cVðxD;φÞ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

c1 ¼ 0; c2 ¼ 0; xD <
φ�1

λþ
�

aðIÞ
;bðIÞ

�

c1 ¼ 0; c2 ¼ c2rþðxD;φÞ;
φ�1

λþ
�

aðIÞ
;bðIÞ

�< xD <
φ�1

λþ
�

aðIÞ
;bðJÞ

�

c1 ¼ 0; c2 ¼ c
ðPÞ
2
;

φ�1

λþ
�

aðIÞ
;bðJÞ

�< xD < x
ðCGÞ
D

c1 ¼ 0;c2 ¼ 0; x
ðCGÞ
D < xD <

φ�φC

λ�
�

aðIÞ
;bðIÞ

�

c1 ¼ cþ
1r�ðxD;φÞ;c2 ¼ 0;

φ�φC

λ�
�

aðIÞ
;bðIÞ

�< xD < x
ðE∞Þ
D ðaþðxD;φÞÞ

c1 ¼ c
ðIÞ
1
;c2 ¼ c

ðIÞ
2
; x

ðE∞Þ
D ðaþðxD;φÞÞ< xD

(51)  

Fig. 4. Concentration profile for solution cIIðxD;φÞ.  

Fig. 5. Concentration profile for solution cIIIðxD;φÞ.  

Fig. 6. Concentration profile for solution cIVðxD;φÞ.  

Fig. 7. Concentration profile for solution cVðxD;φÞ.  

Fig. 8. Concentration profile for solution cVIðxD;φÞ.  
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cVIðxD;φÞ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

c1 ¼ 0; c2 ¼ 0; xD <
φ�1

λþ
�

aðIÞ
;bðIÞ

�

c1 ¼ 0; c2 ¼ cþ
2rþðxD;φÞ;

φ�1

λþ
�

aðIÞ
;bðIÞ

�< xD < x
ðG∞Þ
D

c1 ¼ 0;c2 ¼ 0; x
ðG∞Þ
D < xD <

φ�φC

λ�
�

aðIÞ
;bðIÞ

�

c1 ¼ cþ
1r�ðxD;φÞ;c2 ¼ 0;

φ�φC

λ�
�

aðIÞ
;bðIÞ

�< xD < x
ðE∞Þ
D ðaþðxD;φÞÞ

c1 ¼ c
ðIÞ
1
;c2 ¼ c

ðIÞ
2
; x

ðE∞Þ
D ðaþðxD;φÞÞ< xD

(52) 
In equations (47)–(52), cjðxD;φÞ denotes the rarefaction wave where 

component j concentration changes, subscripts rþ and r� denote the 
rarefaction waves Cþ and C�, respectively, and the superscript in 
parenthesis denotes a constant state in the phase plane. 

Figs. 3–8 show the concentration profiles for each part of the solution 
(Equation (46)) along the xD � φ plane. 

In Figs. 3–8 it is possible to see the development of the chromato-
graphic cycle. Note that component 1 front travels ahead of component 
2 due to its lower adsorption rate. 

In Fig. 3 there is a region where the concentration of both compo-
nents is the injection condition concentration (cðJÞ1 cðJÞ2 ). This region is 
followed by a shock wave where the concentration of both components 
change. After the shock wave, the concentration of component 2 jumps 
to its initial condition, whereas the concentration of component 1 in-
creases to a higher value than the injection condition (see Fig. 1). 

In Fig. 4, the water drive has begun, and a rarefaction wave appears 

at the rear of the polymer slug. Note that at this part of the solution the 
chromatographic cycle begins. Figs. 5 and 6 stress, besides the separa-
tion of the components, the development of a sharp edge on the con-
centration profile of both components. 

In Fig. 7, components 1 and 2 are completely separated and travel in 
porous media as two single component slugs separated by a pure water 
region. In Fig. 8, it is possible to see the spreading of the concentration at 
the rear part of each component slug. This effect is dependent on the 
adsorption isotherm. 

When φ→þ ∞, the rarefaction waves are completely absorbed by the 
shock waves, thus components 1 and 2 concentration along the porous 
media is equal to their water drive concentration (Rhee et al., 2001). 

2.3. Solution of the lifting equation 

In this subsection we present the solution of the lifting equation, 
which depends on the solution of the auxiliary system (previous section) 
and the transport properties (relative permeability and viscosity of each 
phase), using the method of characteristics. Applying the chain rule in 
equation (10) we find: 
∂F

∂U

∂U

∂φ
þ

∂U

∂xD

¼ �
∂F

∂c1

∂c1

∂φ
�

∂F

∂c2

∂c2

∂φ
(53) 

In constant concentration regions of the solution, we have ∂c1
∂φ

¼ ∂c2
∂φ

¼

0. Thus, 
∂F

∂U

∂U

∂φ
þ

∂U

∂xD

¼ 0 (54) 

In these regions each characteristic curve carries a constant value of 
U, and its velocity is given by: 
dφ

dxD

¼
∂FðU; c1; c2Þ

∂U
(55) 

In regions where c1 and/or c2 vary, U is no longer constant along the 
characteristic. In this case, U can be found through the following 
equation: 
dU

dxD

¼ �
∂F

∂c1

∂c1

∂φ
�

∂F

∂c2

∂c2

∂φ
(56) 

The viscosity of the polymer solution is calculated by: 
μwðc1; c2Þ¼ μ0

wð1þ η
1
c1 þ η

2
c2Þ (57)  

where μ0w is the viscosity of pure water, and the coefficient ηi is an 
empiric parameter that represents the effect of the polymer concentra-
tion in the solution viscosity. In this work, we assume η1 > η2. 

Fig. 9 presents the solution of the lifting equation in the xD � ϕ plane, 

Fig. 9. Lifting equation solution in auxiliary plane.  

Fig. 10. Solution UI in F � U plane.  
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which is divided in 9 regions:  

- Region (I): constant state: U ¼ UðIÞ, c1 ¼ c2 ¼ 0 (xD axis);  
- Region (1): constant state: U ¼ Uð1Þ, c1 ¼ c2 ¼ 0;  
- Region (2): constant state: U ¼ Uð2Þ, c1 ¼ cðAÞ1 and c2 ¼ 0 (Fig. 1);  

- Region (3): U3 rarefaction, c1 ¼ cðJÞ1 and c2 ¼ cðJÞ2 ; 
- Region (4): interaction between U4 rarefaction and C�, concentra-

tions vary from injection condition ðJÞ to the intermediate state ðPÞ
(Fig. 1); 

Fig. 11. Solution UII in F � U plane.  

Fig. 12. Solution UIII in F � U plane.  
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- Region (5): U5 rarefaction, c1 ¼ 0 and c2 ¼ cðPÞ2 ;  
- Region (6): interaction between U6 rarefaction and Cþ, c1 ¼ 0 and c2 

varies from cðPÞ2 to cðIÞ2 ¼ 0 (Fig. 1);  
- Region (7): U7 rarefaction, c1 ¼ c2 ¼ 0;  
- Region (4-): U�

4 rarefaction, c1 varies from cðAÞ1 to cðIÞ1 and c2 ¼ cðIÞ2 ¼

0;  
- Region (5-): constant state: U ¼ Uð5�Þ, c1 ¼ c2 ¼ 0. 

The solution of UðxD;φÞ is presented in six parts. When φ < 1, the 
solution is self-similar. The remaining regions are bounded by φ ¼ 1 
(part II), and by the waves interaction (points B, E, C, and G): 

UðxD;φÞ ¼

8
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>
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(58) 

The self-similar part is given by: 

UIðxD;φÞ ¼

8
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(59) 

The structural formula for this part is ðIÞ→ð1Þ→ð2Þ→ð3Þ � ðJÞ
(Fig. 10). 

The solution UIIðxD;φÞ is (Fig. 11):  

UIIðxD;φÞ ¼
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(60)   
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and its structural formula is ðIÞ→ð1Þ→ð2Þ→3’’ � 4’’ � 5’’ � 6’’ � 7’’ �

ðJÞ. The superscript ’’ denotes the first rarefaction wave in the region. 
For UIIIðxD;φÞ we have  

Fig. 13. Solution UIV in F � U plane.  
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(61)   
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The structural formula is ðIÞ→ð1Þ→ð2Þ � 400� � 40�
→400þ � 500 � 600 �

700 � ðJÞ (Fig. 12). The superscript ’ denotes the last rarefaction wave in 
the region. We also add superscripts “þ ” and “� ” in the rarefaction 
notation (either Y0 or Y00) to indicate that the rarefaction is a left or a 
right state of a shock wave, respectively. In Fig. 12, Y�ðxD;φÞ denotes 

the concentration rarefaction waves in region Y connected through a 
shock. This structure appears in concentration profiles that cross the 
shock waves φðBCÞ, φðE∞Þ and φðG∞Þ (regions where concentration rare-
factions waves interact with shock waves). 

The solution UIVðxD;φÞ is given by  

Fig. 14. Solution UVðxD;ϕÞ in F � U plane.  
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(62)   
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Fig. 15. Solution UVI in F � U plane.  

Fig. 16. Characteristic diagram in xD � tD plane.  

Fig. 17. Self-similar part of the solution.  
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Fig. 18. Solution path for sI in phase plane.  

Fig. 19. Solution profile for sIIðxD; tDÞ for tD4 (1 < tD4 < tB).  

Fig. 20. Solution path for sII in phase plane.  

Fig. 21. Solution profile for sIIIðxD; tDÞ for tD5 (tB < tD5 < tE).  

Fig. 22. Solution path for sIII in phase plane.  

Fig. 23. Solution profile for sIVðxD; tDÞ for tD6 (tE < tD6 < tC).  
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and its path in F � U plane is shown in Fig. 13. The structural formula for 
this part of the solution is ðIÞ→ð1Þ→4’’� � 4’�

→4’’þ � 5’’ � 6’’� 7’’ �

ðJÞ. 
For the region of solution UVðxD;φÞ, we have:   

Fig. 14 presents the solution path of UV in F � U plane, whose 
structural formula is ðIÞ→ð1Þ→4’’� � ð5�Þ→5’’þ � 6’’ � 7’’� ðJÞ. 

Finally, the solution UVIðxD;φÞ is given by   

Fig. 15 shows the solution path of UVI in F � U plane. Its structural 
formula is ðIÞ→ð1Þ→4’’� � ð5�Þ→6’’þ � 7’’� ðJÞ. 

From the definition of the variables U and F, the water fractional flow 
function fðsðxD;φÞ; c1; c2Þ and saturation sðxD;φÞ can be easily deter-

mined through the following expressions: 

f ¼
1

UðxD;φÞ
(65)  

sðxD;φÞ ¼ �
FðUðxD;φÞ; c1; c2 Þ

UðxD;φÞ
(66) 
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(63)   
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Fig. 24. Solution path for sIV in phase plane.  

Fig. 25. Solution profile for sVðxD; tDÞ for tD7 ðtC < tD7 < tGÞ.  

Fig. 26. Solution path for sV in f � s plane.  

Fig. 27. Solution profile for sVIðxD; tDÞ for tD8 (tD8 > tG).  

Fig. 28. Solution path for sVI in phase plane.  
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2.4. Inverse mapping to time domain 

At this point we have already calculated the solution of s, c1 and c2 in 
the xD � φ plane. The next step is the inverse mapping of these solutions 
onto the space-time plane through the relation: 

dtD ¼
dφ

f ðsðxD;φÞ; c1ðxD;φÞ; c2ðxD;φÞ Þ
þ

s

f ðsðxD;φÞ; c1ðxD;φÞ; c2ðxD;φÞ Þ
dxD

(67) 
Rarefaction waves and constant states are calculated directly from 

expression (75), whereas the shock trajectories are determined by (Pires 
et al., 2006): 

Di ¼
f�

s� þ Vi

; i ¼ þ;� (68)  

where Vi is the respective shock velocity in the auxiliary plane (Equa-
tions (24) and (25)). 

The complete mathematical derivation and the exact equations for 
the inverse mapping are presented in Appendix B. Fig. 16 presents the 

characteristic diagram of the solution in xD � tD plane. 
The solution is also divided in six regions. For tD < 1 the solution is 

self-similar. Beyond this point, the solution is bounded by the start and 
end of the waves interactions regions (points B, E, C, and G): 

sðxD;ϕÞ¼
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(69) 

The self-similar part of the solution (sI) is given by: 

sIðxD; tDÞ¼
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(70) 

Fig. 17 presents the self-similar part of the solution for three different 
times (tD1 < tD2 < tD3 < 1). 

The path of the solution sI in the f � s plane (phase plane) is shown in 
Fig. 18 (structural formula: ðJÞ � ð3Þ→ð2Þ→ð1Þ→ðIÞ). This part of the 
solution is equivalent to the solution of continuous water injection 
containing two dissolved polymers. 

The solution sII is   

The profile of the solution sII is presented in Fig. 19 and its path in the 
phase plane is shown in Fig. 20. The structural formula is ðJÞ� 7’’ � 6’’ �

5’’ � 4’’ � ð3Þ→ð2Þ→ð1Þ→ðIÞ. The same notation previously used for the 
F � U solution is followed for f � s plane. 

At the beginning of water drive, for 1 < tD < tB (Fig. 19), two con-
centration rarefaction waves appear at the rear of the slug. These rare-
factions interact with the saturation rarefaction waves from region 3 
(Fig. 16). Note that the separation of the components begins (chro-
matographic cycle), where component 1 travels ahead of component 2 
in porous media. 

The solution SIII is given by:  

sIIðxD; tDÞ¼
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(71)   
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where a�r� is the value of a on a rarefaction wave C� after its interaction 
with shock Dþ. Fig. 21 shows the profile of the solution sIII, and in Fig. 22 
we present its path in the phase plane. The structural formula for this 
region is: ðJÞ� 700 � 600 � 500 � 400þ

→40� � ð2Þ→ð1Þ→ðIÞ. 
In this part of the solution, a lower viscosity water region between 

two regions of higher viscosity appears (Fig. 21). This effect is caused by 
the separation of the dissolved polymers. In the low viscosity region, a 
peak in water saturation can be observed in the solution profile (see 
beginning of s�4 ðxD; tDÞ in Fig. 21). 

For the solution sIVwe have   

Fig. 23 presents the saturation profile for the solution sIV and Fig. 24 
shows its path in f � s plane. For this case the structural expression is ðJÞ
� 700 � 600 � 500 � 400þ

→40� � 400�
→ð1Þ→ðIÞ. 

At this point the polymers are almost separated, and there is only a 
small region where both components coexist (s4ðxD; tDÞ in Fig. 23). The 
peak of water saturation increases and the constant state (2) no longer 
appears in the solution. 

The solution sV is 
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Fig. 25 shows the profile for sV for tD7, where tC < tD7 < tG. The path 
of sV in the phase plane is presented in Fig. 26. Its structural represen-
tation is ðJÞ� 7’’ � 6’’ � 5’’þ

→ð5�Þ� 4’’�
→ð1Þ→ðIÞ. 

Note that the components are completely separated in porous media 
(full chromatographic cycle) (Fig. 25). The chemical components are 
traveling in two different slugs separated by a pure water bank (constant 
state sð5�Þ). 

Finally, sVI is given by:  

where bþrþ is the value of b on a rarefaction wave Cþ before its interaction 
with the shock Dþ. The saturation profile of the solution sVI is shown in 
Fig. 27. 

In Fig. 28 we present the solution path of sVIðxD;tDÞin f � s plane. The 
structural representation of the solution in this region is ðJÞ� 700 � 600þ

→ 

ð5�Þ� 400�
→ð1Þ→ðIÞ. 

In this part of the solution, the slugs containing the chemical com-
ponents travel with different velocities in the porous media, and the high 
water saturation region (water bank) becomes larger. Moreover, the 
constant state (5) no longer exists, which implies in no constant con-
centration regions in porous media. 

For tD→þ ∞, both concentration rarefaction waves are completely 
adsorbed by the respective shock waves of the same family. Thus, the 

chemical components concentrations are c1 ¼ c2 ¼ 0 and the water 
saturation is s ¼ sðJÞ (boundary condition for tD > 1) (Rhee et al., 2001). 
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3. Conclusions 

In this paper we derive the analytical solution to the one-dimensional 
two-phase water slug injection containing two dissolved polymers 
problem. The solution was built using the splitting technique, which 
consists in applying a potential function that splits the original system of 
equations into an auxiliary system and a lifting equation. The solution of 
the problem was obtained in the auxiliary plane and subsequently 
mapped to the space-time plane. Effects of interactions between waves 
of different families and between waves of same family were considered 
in the construction of the solution. 

The solution is divided in six regions bounded by the crossing points 
of the waves in the space-time plane. Analytical expressions and profiles 
for water saturation and polymer concentrations were presented for 
each region. 

It was shown the development of a full chromatographic cycle, and 
how the separation of the chemicals influences the saturation profile. It 
is highlighted that in regions where a lower viscosity aqueous solution 
appears between two regions of higher viscosity aqueous solution, water 
banks without polymers appear. We also showed that the water bank 
region increases with time due to the different velocities of the polymer 
slugs. 

The presented solution can be used to validate reservoir simulators 
and to evaluate the most important parameters to polymer flooding 
projects design. It is also possible to forecast fluids production, and 
water and polymer breakthrough. 

The solution methodology shown in this paper can be applied to 
solve similar slug injection problems, such as surfactant-polymer sys-
tems or low-salinity polymer systems. The only restriction is that the 
adsorption of the chemicals must follow Langmuir adsorption isotherm. 
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Appendix A 

In this appendix we present the detailed derivation of the solution of the auxiliary problem in the hodograph space, following the procedure 
presented in chapters 1 and 2 of Rhee et al. (2001). For the sake of clarity, we adopted the same notation as the one of Rhee et al. (2001). 

Applying the chain rule in the auxiliary system (Equation (11)), we find: 
8
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(A.1)  

where, 

aij ¼
∂ai
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; i ¼ 1; 2; j ¼ 1; 2 (A.2) 

It is possible to write xD and φ as a function of c1 and c2 applying the hodograph transformation. This procedure can only be applied if the Jacobian 
matrix does not vanish nor approaches infinite for any concentration pair: 
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If equation (A.3) is satisfied, we can write xD ¼ xDðc1; c2Þand φ ¼ φðc1; c2Þ, and apply the chain rule to find the relation between the partial 
derivatives of c1 and c2, and the hodograph variables: 
∂xD
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J
(A.4)  
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(A.6)  
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J
(A.7) 

Replacing equations A.4-A.7 in equation (A.1), we find the system of equations in the hodograph space: 
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The characteristic velocity of system of equation (A.8) are the roots of: 
a21ξ2 �ða11 � a22Þξ� a12 ¼ 0 (A.9)  

where ξ ¼ dc1dc2(see section 1.3 of Rhee et al. (2001) for details). 
Solving equation (A.9) for ξ, we find 

ξ¼

�

α

β

�

¼
1

2
a�1

21

h

ða11 � a22Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða11 � a22Þ
2 þ 4a21a12

q

i

(A.10) 

The characteristic curves Γþ and Γ�are denoted as: 
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In the phase plane (plane c1 � c2), the characteristic parameter α varies along Γþ and it is always negative, whereas β varies along Γ� and it is 
positive. 

From Langmuir’s adsorption isotherm, we calculate the partial derivatives of the adsorption isotherm with respect to the dissolved polymer 
concentrations: 
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(A.16) 

Substituting equations A.13-A.16 in equation (A.9) it is possible to obtain: 
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where, 
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Differentiating equation (A.17) with respect to c2leads to: 
d2c1

dc2

2

�

c2

dc1

dc2

�ðM � c2 þ c1Þ

�

¼ 0 (A.19) 

Solving the ordinary differential equation (A.19) we find: 

c1 ¼ ξc2 �
Mξ

ξ þ 1
(A.20)  

ðM þ c1 � c2Þ
2 þ 4c1c2 ¼ 0 (A.21) 

Equation (A.20) represents the characteristic curves (straight lines) in the phase plane. The equations for the two characteristic waves are found 
applying the parameters α and β in equation (A.20): 

Γþ : c1 ¼ βc2 �
Mβ

β þ 1
(A.22)  

Γ� : c1 ¼αc2 �
Mα

α þ 1
(A.23) 

As the parameter α is negative and β is positive, the family Γþ is composed by straight lines with positive slopes, and the family Γ� by straight lines 
with negative slopes. 

For any pair ðα;βÞ, the constant concentration state can be determined by the following relations (derived from equations A.22 and A.23): 
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c1 ¼ �
Mαβ

ðα þ 1Þðβ þ 1Þ
(A.24)  

c2 ¼
M

ðα þ 1Þðβ þ 1Þ
(A.25) 

We now establish a relation between the phase plane and the xD � φ plane. Consider the linear combination of the auxiliary system equations 
(Equation (A.1)): 

λ1

∂c1

∂xD

þ ðλ1a11 þ λ2a21Þ
∂c1

∂φ
þ λ2

∂c2

∂xD

þ ðλ1a12 þ λ2a22Þ
∂c2

∂φ
¼ 0 (A.26)  

where λ1and λ2are the eigenvalues of equation (A.1). If ωrepresents a characteristic parameter (either αor β), the derivatives ∂c1
∂ω

and ∂c2
∂ω

will be in the 
same direction if the following system of equations (Rhee et al., 2001): 

λ1

∂φ

∂ω
� ðλ1a11 þ λ2a21Þ

∂xD

∂ω
¼ 0 (A.27)  

λ2

∂φ

∂ω
� ðλ1a12 þ λ2a22Þ

∂xD

∂ω
¼ 0 (A.28)  

λ1

∂c1

∂ω
þ λ2

∂c2

∂ω
¼ 0 (A.29)  

ðλ1a11 þ λ2a21Þ
∂c1

∂ω
þðλ1a12 þ λ2a22Þ

∂c2

∂ω
¼ 0 (A.30)  

is satisfied. 
From equations A.27 and A.29, one can find that: 

∂φ

∂ω
� ða11 � ξa21Þ

∂xD

∂ω
¼ 0 (A.31) 

Moreover, we consider that the independent variables xD and φ can be written as a function of the parameter ω. The eigenvalues of the auxiliary 
system are given by 

λ ¼
∂φ

∂xD

¼
∂φ

∂ω
∂xD

∂ω

(A.32) 

Thus, 
∂φ

∂ω
� λ

∂xD

∂ω
¼ 0 (A.33) 

Defining βas the characteristic parameter for the family Cþ(Γþ family on the hodograph plane), and αfor the family C�(family Γ�on the hodograph 
plane), we have 
∂φ

∂β
� λþ

∂xD

∂β
¼ 0 (A.34)  

∂φ

∂α
� λ�

∂xD

∂α
¼ 0 (A.35) 

Comparing equations A.34 and A.35 with equation (A.31), we can establish the relation between the hodograph plane and the xD � φ plane: 

λþ ¼
dφ

dxD

¼ a11 � βa21 (A.36)  

λ� ¼
dφ

dxD

¼ a11 � αa21 (A.37) 

Replacing equation A13.-A.16 in equations A.36 and A.37, we find 

λþ ¼K2γ

�

α þ 1

α þ γ

��

β þ 1

β þ γ

�2

(A.38)  

λ� ¼K2γ

�

α þ 1

α þ γ

�2�

β þ 1

β þ γ

�

(A.39)  

where γ ¼ K2
K1. For convenience, we denote 

a¼ aðαÞ¼
α þ 1

α þ γ
(A.40)  
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b¼ bðβÞ¼
β þ 1

β þ γ
(A.41) 

The functions aðαÞand bðβÞrepresent a pair of characteristic parameters and their values lie between 0 � aðαÞ � 1
γ
� bðβÞ � 1. The plane aðαÞ�

bðβÞis spanned by orthogonal straight lines, where the awaves are vertical and bwaves are horizontal. The characteristic velocities are now recast as: 
λþ ¼K2γab2 (A.42)  

λ� ¼K2γa2b (A.43) 
After deriving the expressions for the characteristic waves of the auxiliary problem, the shock velocities are found from the Rankine-Hugoniot 

conditions: 
Vþða; b

�
; bþÞ ¼

φ

xD

¼ K2γab�bþ (A.44)  

V�ða
�
; aþ

; bÞ ¼
φ

xD

¼ K2γba�aþ (A.45)  

where the superscripts þ and –represent the value of aor bbefore and after the shock wave, respectively. 
Now we analyze how λþand λ�change along the phase plane. We denote D�the derivative of λþwith respect to the concentration along the family 

Γ�and Dþthe derivative of λ�with respect to the concentration along the family Γþ. We will consider K2 > K1, and therefore, γ > 1. Thus, we have: 
D�λþ

Dc2

¼

∂λþ
∂β

∂c2

∂β

¼ � 2K2

2
γ
ðα þ 1Þ2ðβ þ 1Þ3

ðα þ γÞðβ þ γÞ3
¼ � 2K2

2
γ
ð1 � γÞ

ða � 1Þ
a2b3

< 0 (A.46)  

Dþλ�

Dc2

¼
∂λþ
∂α
∂c2

∂α

¼ � 2K2

2
γ
ðα þ 1Þ3ðβ þ 1Þ2

ðα þ γÞ3ðβ þ γÞ
¼ � 2K2

2
γ
ð1 � γÞ

ðb � 1Þ
a3b2

< 0 (A.47) 

Since both derivatives (Equations A.46 and A.47) are negative, we conclude that λdecreases along Γþand Γ�as c2increases. 

Appendix B 

In this appendix the inverse mapping of the waves from the xD � φplane to the xD � tDplane is presented. We also derive the exact coordinates of the 
crossing points of these waves related to the beginning and the ending points of the interactions between the waves. 

The relation between the shock waves in the xD � φplane and xD � tDplane is given by (Pires et al., 2006): 

Di ¼
f�

s� þ Vi

; i ¼ þ;� (B.1)  

where Diis the shock velocity in the xD � tDplane and Viis the shock velocity in the xD � ϕplane. 
From equations (75) and (A.38), the velocity of the rarefaction family Cþin xD � tDplane is: 

dxD

dtD

¼
f

K2γab2 þ s
(B.2)  

and the velocity of the rarefaction family C�(Equations 75 and A.39): 
dxD

dtD

¼
f

K2γa2b þ s
(B.3) 

From equation (B.1), the shock path OBis given by: 

xD ¼ tD

f þ

K2γaðJÞbðJÞ þ sþ
(B.4) 

Following the same procedure, the shock path OEis: 

xD ¼ tD

f þ

K2γaðJÞ þ sþ
(B.5) 

From equations (A.43) and (A.44), we find the shock velocity BCin xD � ϕplane: 
�

dφ

dxD

�

BC

¼ K2γbðJÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

aðJÞ
� 1

q

K2γbðJÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2γbðJÞx
ðBCÞ
D

q (B.6) 

Then, through equation (B.1), the velocity of shock BCin xD � tDplane is: 
�

dxD

dtD

�

BC

¼
fþ

sþ þ

�

dφ

dxD

�

BC

(B.7) 
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Therefore, we can write the shock path BCas: 

xD ¼

�

dxD

dtD

�

BC

ðtD � tBÞ þ xB (B.8)  

where ðxB; tBÞis the point where the shock OBintercepts the first rarefaction characteristic of C�, given by: 

tB ¼
K2γaðJÞbðJÞ þ sþ

K2γaðJÞbðJÞð1 � aðJÞÞ
(B.9)  

xB ¼
f þ

K2γaðJÞbðJÞ þ sþ
tB (B.10) 

The rarefaction C�is transmitted through the shock BC, its new slope is: 
dxD

dtD

¼
f

K2γa2bðIÞ þ s
(B.11) 

The shock BCfinishes at point C, which is the point where the last characteristic of the rarefaction C�intercepts the shock BC. The coordinates of 
point Care: 

tC ¼

fþ

K2γ½aðIÞ �2bðJÞþsþ
� fþ

K2bðJÞþsþ
tB þ xB

fþ

K2γ½aðIÞ �2bðJÞþsþ
� fþ

K2bðJÞþsþ

(B.12)  

xC ¼
fþ

K2γ½aðIÞ�2bðJÞ þ sþ
ðtC � 1Þ (B.13) 

After the interaction with the rarefaction C�, the shock path continues from point Cas a straight line up to point G, which is the point where the 
interaction between shock Vþwith the rarefaction Cþbegins. The shock path CGis: 

xD ¼
fþ

K2bðJÞ þ sþ
ðtD � tCÞ þ xC (B.14)  

and point Gcoordinates are: 

tG ¼

fþ

K2bðJÞþsþ
tC � fþ

K2γaðIÞ½bðJÞ�
2

þsþ
� xC

fþ

K2bðJÞþsþ
� fþ

K2γaðIÞ½bðJÞ�
2

þsþ

(B.15)  

xG ¼
fþ

K2γaðIÞ
�

bðJÞ
�2

þ sþ
½tG � 1� (B.16) 

After point G, the rarefaction C�is absorbed and the path of shock G∞is: 

xD ¼
fþ

K2b þ sþ
ðtD � tGÞ þ xG (B.17) 

The last interaction occurs between the transmitted rarefaction C�and the shock OE. The rarefaction is absorbed by the shock wave, and the new 
shock path is defined as: 

xD ¼
f þ

K2γa þ sþ
ðtD � tEÞ þ xE (B.18)  

where the point ðxE; tEÞis given by: 

tE ¼

fþ

K2γ½aðJÞ �2bðIÞþsþ
tB � xB

fþ

K2γ½aðJÞ �2bðIÞþsþ
� fþ

K2γaðJÞþsþ

(B.19)  

xE ¼
f þ

K2γaðJÞ þ sþ
tE (B.20)  

References 
Algharaib, M., Alajmi, A., Gharbi, R., 2014. Improving polymer flood performance in 

high salinity reservoirs. J. Pet. Sci. Eng. 115, 17–23. https://doi.org/10.1016/j. 
petrol.2014.02.003. 

Ali, L., Barrufet, M.A., 1984. Profile modification due to polymer adsorption in reservoir 
rocks. Energy Fuels 8 (6), 1217–1222. https://doi.org/10.1021/ef00048a008. 

Alsofi, A.M., Blunt, M.J., 2010. Streamline-based simulation of non-Newtonian polymer 
flooding. SPE J. 15 (4), 901–911. https://doi.org/10.2118/123971-PA. 

Alsofi, A.M., Blunt, M.J., 2014. Polymer flooding design and optimization under 
economic uncertainty. J. Pet. Sci. Eng. 124, 46–59. https://doi.org/10.1016/j. 
petrol.2014.10.014. 

Bedrikovetsky, P.G., 1993. Mathematical Theory of Oil and Gas Recovery. Kluwer 
Academic Publishers, London.  

F. de O Apolin�ario et al.                                                                                                                                                                                                                       



Journal of Petroleum Science and Engineering 188 (2020) 106927

25

Boa, P.M.F., Pires, A.P., 2006. Salt effects on polymer adsorption in chemical flooding of 
oil reservoirs. In: 11th Brazilian Congress of Thermal Sciences and Engineering, 
Curitiba, Brazil. 

Boardman, R.S., Moore, L.J., Julian, M.H., Bilbrey, D.G., Moore, J.S., 1982. Design and 
implementation of four enhanced oil recovery in Bay fields of South Louisiana. In: 
SPE Enhanced Oil Recovery Symposium. Tulsa, Oklahoma, USA. 

Borazjani, S., Bedrikovetsky, P.G., Farajzadeh, R., 2014. Exact Solution for Non-self- 
similar Wave-Interaction Problem during Two-phase Four-Component Flow in 
Porous Media. Abstract and Applied Analysis. https://doi.org/10.1155/2014/ 
731567, 2014.  

Borazjani, S., Bedrikovetsky, P.G., Farajzadeh, R., 2016a. Analytical solutions of oil 
displacement by a polymer slug with varying salinity. J. Pet. Sci. Eng. 140, 28–40. 
https://doi.org/10.1016/j.petrol.2016.01.001. 

Borazjani, S., Roberts, A.J., Bedrikovetsky, P.G., 2016b. Splitting in systems of PDEs for 
two-phase multicomponent flow in porous media. Appl. Math. Lett. 53, 25–32. 
https://doi.org/10.1016/j.aml.2015.09.014. 

Buckley, S.E., Leverett, M.C., 1942. Mechanism of fluid displacement in sands. 
Transactions of the AIME 146 (1), 107–116. https://doi.org/10.2118/942107-G. 

Davison, P., Mentzer, E., 1982. Polymer flooding in north Sea reservoirs. SPE J. 22 (3), 
353–362. https://doi.org/10.2118/9300-PA. 

de Paula, A.S., Pires, A.P., 2015. Analytical solution for oil displacement by polymer 
slugs containing salt in porous media. J. Pet. Sci. Eng. 135, 323–335. https://doi. 
org/10.1016/j.petrol.2015.09.001. 

de Paula, A.S., Apolin�ario, F.O., Pires, A.P., 2019. Water slug injection containing n 
polymers in porous media. AIChE J. 65 (11) https://doi.org/10.1002/aic.16735. 

Johansen, T., Winther, R., 1988. The solution of the riemann problem for a hyperbolic 
system of conservation laws modeling polymer flooding. SIAM J. Math. Anal. 19 (3), 
541–566. https://doi.org/10.1137/0519039. 

Johansen, T., Winther, R., 1989. The riemann problem for multicomponent polymer 
flooding. SIAM J. Math. Anal. 20 (4), 908–929. https://doi.org/10.1137/0520061. 

Kargozarfard, Z., Ruai, M., Ayatollahi, S., 2018. Viscous fingering and its effect on areal 
Sweep efficiency during waterflooding: an experimental study. Pet. Sci. 16 (7), 
105–116. https://doi.org/10.1007/s12182-018-0258-6. 

Khorsandi, S., Changhe, Q., Johns, R.T., 2016. Displacement efficiency for low salinity 
polymer flooding including wettability alteration. In: SPE Improved Oil Recovery 
Conference, Tulsa, USA. 

Lee, Y., Lee, W., Jang, Y., Sung, W., 2019. Oil recovery by low-salinity polymer flooding 
in carbonate oil reservoirs. J. Pet. Sci. Eng. 181, 1–9. https://doi.org/10.1016/j. 
petrol.2019.106211. 

Maitin, B.K., Volz, H., 1981. Performance of deutsche texaco Ag’s oerrel and 
hankensbuettel polymer floods. In: SPE/DOE Enhanced Oil Recovery Symposium, 
Tulsa, USA. https://doi.org/10.2118/9794-MS. 

Morel, D., Vert, M., Jouenne, S., Gauchet, R., Bouger, Y., 2012. First polymer injection in 
deep offshore field Angola: recent advances in the dalia/carmelia field case. SPE Oil 
and Gas Facilities 1 (2), 43–52. https://doi.org/10.2118/135735-PA. 

Patton, J.T., Coats, K.H., Colegrove, G.T., 1971. Prediction of polymer flood 
performance. SPE J. 11 (1), 72–84. https://doi.org/10.2118/2546-PA. 

Pires, A.P., Bedrikovetsky, P.G., Shapiro, A.A., 2006. A splitting technique for analytical 
modeling of two-phase multicomponent flow in porous media. J. Pet. Sci. Eng. 51 
(1–2), 54–67. https://doi.org/10.1016/j.petrol.2005.11.009. 

Pope, G.A., 1980. The application of fractional flow theory to enhanced oil recovery. SPE 
J. 20 (3), 191–205. https://doi.org/10.2118/7660-PA. 

Rhee, H.-K., Aris, R., Amundson, N.R., 2001. First-Order Partial Differential Equations: 
Theory and Application of Hyperbolic Systems of Quasilinear Equations, vol. 2. 
Prentience-Hall, New Jersey, USA. Englewood Cliffs.  

Ribeiro, P.M., Pires, A.P., 2008. The displacement of oil by polymer slugs considering 
adsorption effects. In: SPE Annual Technical Conference and Exhibition, Denver, 
USA. 

Sheng, J.J., Leonhardt, B., Azri, N., 2015. Status of polymer-flooding technology. J. Can. 
Pet. Technol. 54 (2), 116–126. https://doi.org/10.2118/174541-PA. 

Silva, R.C.A., Cardoso, C.B., Pires, A.P., 2007. The role of adsorption isotherms on 
chemical flooding oil recovery. In: SPE Annual Technical Conference and Exhibition, 
Anaheim, USA. 

Sorbie, K.S., 1991. Polymer-Improved Oil Recovery. Springer Science and Business 
Media, New York, USA.  

Taber, J.J., Martin, F.D., Seright, R.S., 1997. EOR Screening criteria revisited – Part 1: 
introduction to Screening criteria and enhanced oil recovery field projects. SPE 
Reserv. Eng. 12 (3), 189–198. https://doi.org/10.2118/35385-PA. 

Torrealba, V.A., Hoteit, H., 2019. Improved polymer flooding injectivity and 
displacement by considering compositionally-tuned slugs. J. Pet. Sci. Eng. 178, 
14–26. https://doi.org/10.1016/j.petrol.2019.03.019. 

Vicente, B.J., Viatcheslav, I.P., Pires, A.P., 2014. Semi-analytical solution for a 
hyperbolic system modeling 1D polymer slug flow in porous media. J. Pet. Sci. Eng. 
115, 102–109. https://doi.org/10.1016/j.petrol.2014.02.005. 

Zhou, W., Zhang, J., Feng, G., Jiang, W., Sun, F., Zhou, S., Liu, Y., 2008. Key technologies 
of polymer flooding in offshore oilfield of Bohai Bay. In: SPE Asia Pacific Oil and Gas 
Conference and Exhibition. Perth, Australia. 

F. de O Apolin�ario et al.                                                                                                                                                                                                                       



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 – Oil Displacement by Multicomponent Slug Injection: An 
Analytical Solution for Langmuir Adsorption Isotherm 

































 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 – Mathematical Modeling of Low Salinity Waterflooding in 
Sandstone Reservoirs: Enhanced Oil Recovery by Multicomponent 

Cation Exchange 



 

1 

 

 

Mathematical Modeling of Low Salinity Waterflooding in Sandstone Reservoirs: 

Enhanced Oil Recovery by Multicomponent Cation Exchange 

 

Felipe de O. Apolinário (Corresponding Author)  

e-mail: felipe_apolinario03@hotmail.com 

Universidade Estadual do Norte Fluminense Darcy Ribeiro 

 

Adolfo P. Pires 

e-mail: adolfo.puime@gmail.com 

Universidade Estadual do Norte Fluminense Darcy Ribeiro 

 

  



 

2 

 

Abstract 

Low salinity waterflooding is the injection of water with smaller salt concentration than 

the connate water. The control of the pH of injection water, and the amount of dissolved 

monovalent and divalent cations in the water affect the cation exchange in the reservoir 

and the mobilization of residual oil. This process is modeled by an (𝑛 + 2) × (𝑛 + 2) 
system of hyperbolic partial differential equations representing the conservation law of 

each dissolved cation, pH, and water. In this work we present the solution for the problem 

of low salinity slug injection driven by seawater considering three dissolved cations and 

pH effects. It was considered that the cations and 𝐻+ adsorbed on the rock follow a 

Langmuir adsorption isotherm type. The adsorption parameters of the cations depend on 

the water pH. The introduction of a potential function replacing time as an independent 

variable splits the original problem into three decoupled problems: a pH equation, a one-

phase chromatographic system, and a scalar equation. First, the pH problem is solved, 

and its solution is used to calculate the one-phase chromatographic problem, and both 

results are applied in the scalar equation solution. Next, the solution is mapped onto 

space-time plane. The solution shows that due to the high adsorption rate, the pH effects 

take place close to the injection point and disappear. Moreover, the high contrast between 

the adsorption rates creates regions where salinity changes, but these regions disappear. 

Cations separation in the porous media, similar to a chromatographic cycle, lead to the 

generation of several small oil and water banks along the reservoir. The oil banks contain 

residual oil which was mobilized by the cation exchange. 

Keywords: Low Salinity Flooding; Multicomponent Cation Exchange; Enhanced Oil 

Recovery; Conservation Laws; Hyperbolic Systems of Partial Differential Equations. 
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1. Introduction 

Low Salinity waterflooding is a low-cost Enhanced Oil Recovery (EOR) method used 

to optimize reservoir’s production by injecting water with controlled ionic composition 

and salinity smaller than the connate water (Sheng, 2014). The injection of low salinity 

water can increase the displacement efficiency up to 38% when compared to injection of 

seawater (Jerauld et al., 2008). 

Several physical phenomena take place in the reservoir when the low salinity water 

interacts with the reservoir fluid and pore surface. In siliciclastic reservoirs the main 

phenomena are clay swelling and cation exchange (Morrow and Buckley, 2011). Clay 

swelling changes relative permeability and increases the displacement efficiency (Tang 

& Morrow, 1999). 

Cation exchange in low salinity waterflooding is the replacement of a divalent by a 

monovalent cation on the clay mineral surface (which has negative charge) according to 

the following chemical reaction: 

((𝐶𝑙𝑎𝑦 𝑀𝑖𝑛𝑒𝑟𝑎𝑙)− − 𝑋2+)+ + 𝑌+ ↔ (𝐶𝑙𝑎𝑦 𝑀𝑖𝑛𝑒𝑟𝑎𝑙)− − 𝑌+ + 𝑋2+  (1) 

This phenomenon is directly related to the mobilization of residual oil in low salinity 

waterflooding processes (Romero et al., 2013). The replacement of divalent by 

monovalent cations can also change wettability (Morrow & Buckley, 2011), expand 

double layer (Ligthelm et al., 2009; Lima et al., 2020), increase pH and decrease 

interfacial tension (McGuire et al., 2005). These effects change the relative permeability 

curves and increase the recovery factor of the reservoir (Lager et al., 2006). Data collected 

from 411 coreflooding experiments have shown that better recovery factors are obtained 

in reservoirs that were originally oil-wet and changed wettability to mixed-wet after the 

low salinity waterflooding (Aladasani, 2014). 
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In sandstone reservoirs the clay content, the adsorbed cations on the mineral surface 

and the dissolved cations in the connate water directly affect the cationic exchange 

capacity (CEC). CEC is greater where the clay content and the concentration of divalent 

cations are higher (Austad et al., 2010). The presence of calcium on the clay mineral 

surface enhances its reactivity. A similar behavior is observed for magnesium, but its 

reactivity is smaller (Aghaeifar et al., 2015). 

Injection water composition also plays an important role on low salinity flooding in 

sandstone reservoirs. Low concentration of divalent cations in injected water led to 

greater recovery factors (Austad et al., 2010; Nasralla & Nasr-el-din, 2011; Nasralla & 

Nasr-el-din, 2014; Xie et al., 2014; Al-Saedi et al., 2018). The pH of the injected water 

also affects the method. The cation 𝐻+ is a high reactivity monovalent cation (Austad et 

al., 2010), and changes the adsorption-desorption isotherm of divalent cations on the rock 

surface. Higher pH enhances the cationic exchange on the rock surface (Aksulu et al., 

2012; Xie et al., 2014; Brady et al., 2015). 

The cation exchange equilibrium is governed by a modified Langmuir’s Adsorption 

Isotherm (Langmuir, 1918; Akai et al., 2020; Lima et al., 2020). Moreover, the two-phase 

flow of oil and water containing dissolved cations in a porous media can be modeled by 

a system of hyperbolic partial differential equations that represents the conservation law 

of water and of each dissolved ion. It is possible to build water saturation, cation 

concentration profiles and recovery factor curves from the solution of this system of 

equations (Jerauld et al., 2008; Borazjani et al., 2016; Khorsandi et al., 2016). These 

solutions are found by the method of characteristics (Wachmann, 1964; Claridge & 

Bondor, 1974; Bedrikovestky, 1993). The adsorption of the chemical components on the 

rock surface results in a delay of the cation-front when compared to the water-front 

(Patton et al., 1971; Entov & Polischuk, 1975; Pope, 1980; Farajzadeh et al., 2016). 
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During low salinity waterflooding in sandstone reservoirs, the most active chemical 

species are the cations 𝐶𝑎2+, 𝑀𝑔2+ and 𝑁𝑎+, and the anion 𝐶𝑙− (Brady et al., 2015; 

Dang et al., 2016; Pouryousefy et al., 2016). Balance laws generate a 4×4 system of 

hyperbolic partial differential equations. For the case of constant concentration injection 

and neglecting adsorption effects, the solution of the system of equations is self-similar 

and can be found applying the theory presented in Helfferich (1981). This theory was also 

used to solve the problem of two-phase flow containing three surfactants dissolved in 

water (Hirasaki, 1981). 

If the adsorption effects are considered, the concentration front of each ion travels 

with a different velocity due to their different adsorption rates, and analogously to a 

chromatographic cycle, these components separate in the porous media (Rhee et al., 1970; 

Luftenegger & Clemens, 2017). In such cases, the solution can be developed generalizing 

the chromatography theory for two-phase flow (Johansen & Winther, 1989; Dahl et al., 

1991). 

Low salinity waterflooding usually takes place after a secondary recovery water 

injection period, or eventually a slug of low salinity water is injected and displaced by 

seawater (Lager et al., 2008; Seccombe et al., 2010; Mahani et al., 2011). This 

mathematical problem is modeled by a varying boundary condition. Therefore, the 

solution is no longer self-similar, and the procedure presented in Dahl et al. (1991) can’t 

be applied. The solution of the problem of water slug containing one dissolved chemical 

component injection displaced by pure water can be developed through the hodograph 

transformation and written in terms of Riemann Invariants (Bedrikovetsky, 1982; Logan, 

1994; Dafermos, 2000; Rhee et al., 2001). 
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For multicomponent slug injection displaced by water ((𝑛 + 1) × (𝑛 + 1) system of 

equations), it is necessary to use a different approach. A potential function replacing time 

as a new independent variable decouples the original system of equations into a system 

of 𝑛 × 𝑛 partial differential equations, where 𝑛 is the number of chemical species 

dissolved; and a partial differential equation that depends on the solution of the 𝑛 × 𝑛 

system and on the hydrodynamic properties of the flow in the reservoir. The 𝑛 × 𝑛 system 

is called auxiliary system and can be solved using the theory of one-phase 

chromatography (Rhee et al., 1970; Borazjani et al., 2016; Apolinário & Pires, 2021). 

The hyperbolic equation that depends on the flow properties is called lifting equation 

(Pires et al., 2006). 

The theory developed in Pires et al. (2006) is called splitting technique, and it was 

used to solve several mathematical problems related to enhanced oil recovery (Cardoso 

et al., 2007; Ribeiro & Pires, 2008; Dutra et al., 2009; Vicente et al., 2014; de Paula & 

Pires, 2015; Borazjani et al., 2016; Garcia, 2019; de Paula et al., 2019; Apolinário et al., 

2020; Apolinário & Pires, 2021), and several other EOR associated mathematical 

problems. 

In this work we present the analytical solution to the problem of the injection of a low 

salinity slug containing calcium, magnesium, and sodium in a sandstone oil reservoir. 

The low salinity slug is displaced by seawater and pH effects are considered. Cations’ 

adsorption follows a modified Langmuir’s adsorption isotherm, and the anions are not 

adsorbed by the rock. 
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2. Mathematical Model 

In this section we present the formulation of the one-dimensional two-phase flow 

problem of low salinity slug injection containing three dissolved cations driven by 

seawater considering pH effects in a sandstone reservoir. The chemical species in the 

system are the cations 𝐻+, 𝐶𝑎2+, 𝑀𝑔2+ and 𝑁𝑎+, and the anions 𝑂𝐻− and 𝐶𝑙−. Note 

that the ions 𝐻+ and 𝑂𝐻− are products of water dissociation. The adsorption sites (clay 

minerals) are negatively charged, thus only the cationic species adsorb on the pore 

surface. Further assumptions are: 

• Homogeneous porous media; 

• Incompressible system; 

• Gravitational, dispersive, and capillary effects are negligible; 

• Electrical charges in equilibrium. 

From the conservation law of water and of each ion, we find: 

{  
  
   
 𝜕𝑠𝜕𝑡𝐷 + 𝜕𝑓(𝑠,𝐶)𝜕𝑥𝐷 = 0𝜕(𝑐𝑖𝑠+𝑎𝑖(𝐶))𝜕𝑡𝐷 + 𝜕𝑐𝑖𝑓(𝑠,𝐶)𝜕𝑥𝐷 = 0, 𝑖 = 1,2,3𝜕(𝑐𝐶𝑙𝑠)𝜕𝑡𝐷 + 𝜕𝑐𝐶𝑙𝑓(𝑠,𝐶)𝜕𝑥𝐷 = 0𝜕(𝑐𝐻𝑠+𝑎𝐻(𝑐𝐻))𝜕𝑡𝐷 + 𝜕𝑐𝐻𝑓(𝑠,𝐶)𝜕𝑥𝐷 + 𝑅𝑖 = 0𝜕(𝑐𝑂𝐻𝑠)𝜕𝑡𝐷 + 𝜕𝑐𝑂𝐻𝑓(𝑠,𝐶)𝜕𝑥𝐷 + 𝑅𝑖 = 0

      (2) 

where 𝑥𝐷 and 𝑡𝐷 are dimensionless variables defined as 

𝑥𝐷 = 𝑥Ω𝑠𝐴           (3)  

𝑡𝐷 = ∫ 𝑢𝑇(𝜏)𝑑𝜏𝑡0 Ω𝑠𝐴          (4) 
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in which 𝑥 is the space coordinate, Ω𝑠 is the low salinity slug volume, 𝑡 is the time 

coordinate, and 𝐴 is the cross-sectional area of the reservoir. In equation (2) 𝑠 is the water 

saturation, 𝑓 is water fractional flow, 𝐶 is the concentration vector [𝑐1, 𝑐2, 𝑐3, 𝑐𝐻], 𝑐1, 𝑐2 
and 𝑐3 are the concentrations of calcium, magnesium and sodium, 𝑐𝐶𝑙 is chloride 

concentration, 𝑐𝐻 and 𝑐𝑂𝐻 are the concentrations of the ions 𝐻+ and 𝑂𝐻−, 𝑅𝑖 is the source 

term related to water ionization, and 𝑎𝑖 is the adsorbed concentration of the cation species 𝑖, given by a modified Langmuir’s adsorption isotherm type (Lima et al., 2020): 

𝑎𝑖(𝐶) = 𝛼𝑖(𝑐𝐻)𝑐𝑖1+∑ 𝛽𝑗(𝑐𝐻)𝑐𝑗3𝑗=1         (5) 

in which 𝛼𝑖 and 𝛽𝑖 are adsorption parameters that depend on the pH following the 

relations: 

𝛼𝑖(𝑐𝐻) = 𝑔𝑖 (𝑐𝐻 − 𝐾𝑤𝑐𝐻)𝑘1        (6) 

𝛽𝑖(𝑐𝐻) = ℎ𝑖 (𝑐𝐻 − 𝐾𝑤𝑐𝐻)𝑘2        (7) 

where 𝑔𝑖, 𝑘1, ℎ𝑖 and 𝑘2 are experimental constants, and 𝐾𝑤 is the water ionization 

constant: 

𝐾𝑤 = 𝑐𝐻𝑐𝑂𝐻          (8) 

In equation (2) 𝑎𝐻 is the adsorbed concentration of hydrogen, given by (Lima et al., 

2020): 

𝑎𝐻(𝑐𝐻) = 𝛼𝐻𝑐𝐻𝑛𝐻1+𝛽𝐻𝑐𝐻𝑚𝐻         (9) 

where 𝛼𝐻, 𝛽𝐻, 𝑛𝐻 and 𝑚𝐻 are constants related to the hydrogen adsorption rate. 
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The adsorption parameters are ordered according to the chemical reactivity of the 

cations on clay surfaces (Austad et al., 2010): 

𝐻+ >>> 𝐶𝑎2+ > 𝑀𝑔2+ > 𝐾+ > 𝑁𝑎+ > 𝐿𝑖+     (10) 

Thus, in equation (5) we have 

𝛼𝐻 >>> 𝛼1 > 𝛼2 > 𝛼3        (11) 

and 

𝛽𝐻 >>> 𝛽1 > 𝛽2 > 𝛽3        (12) 

In our model we assume that the cations 𝐶𝑎2+ , 𝑀𝑔2+  and 𝑁𝑎+ are associated with 

anions 𝐶𝑙−: 

𝑐1 + 𝑐2 + 𝑐3 = 5𝑐𝐶𝑙         (13) 

and the chloride concentration equation does not have to be solved. 

Subtracting the last conservation law (𝑂𝐻−) from the 𝐻+ balance in system (2), we 

obtain: 

𝜕((𝑐𝐻−𝑐𝑂𝐻)𝑠+𝑎𝐻(𝑐𝐻))𝜕𝑡𝐷 + 𝜕(𝑐𝐻−𝑐𝑂𝐻)𝑓(𝑠,𝐶)𝜕𝑥𝐷 = 0      (14) 

From the water ionization constant (Equation 8), we can write 𝑂𝐻− concentration as 

a function of 𝐻+ concentration: 

𝑐𝑂𝐻 = 𝐾𝑤𝑐𝐻           (8) 

Applying equation (15) in equation (14), we find 

𝜕((𝑐𝐻−𝐾𝑤𝑐𝐻 )𝑠+𝑎𝐻(𝑐𝐻))𝜕𝑡𝐷 + 𝜕(𝑐𝐻−𝐾𝑤𝑐𝐻 )𝑓(𝑠,𝐶)𝜕𝑥𝐷 = 0      (14) 
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Denoting the variable 𝜉 as: 

𝜉(𝑐𝐻) = 𝑐𝐻 − 𝐾𝑤𝑐𝐻          (15) 

equation (14) becomes: 

𝜕(𝜉𝑠+𝑎𝐻(𝑐𝐻))𝜕𝑡𝐷 + 𝜕𝜉𝑓(𝑠,𝐶)𝜕𝑥𝐷 = 0        (16) 

From the definition of 𝑐𝑂𝐻 we can write 𝑐𝐻 as a function of 𝜉: 

𝑐𝐻 = 𝜉+√𝜉2+4𝐾𝑤2          (17) 

therefore, it is straightforward to rewrite equations (2), (5)-(7) and (9) as a function of 𝜉. 

Using equations (13) and (16) in the system of equations (2) we obtain the following 

system of partial differential equations: 

{  
  𝜕𝑠𝜕𝑡𝐷 + 𝜕𝑓(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0𝜕(𝑐𝑖𝑠+𝑎𝑖(𝑐,𝜉))𝜕𝑡𝐷 + 𝜕𝑐𝑖𝑓(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0, 𝑖 = 1,2,3𝜕(𝜉𝑠+𝑎𝐻(𝜉))𝜕𝑡𝐷 + 𝜕𝜉𝑓(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0       (18) 

where 𝑐 = [𝑐1, 𝑐2, 𝑐3] is the vector containing the cations concentrations. 

At the beginning of the low salinity waterflooding (𝑡𝐷 = 0), the reservoir is saturated 

with high salinity water and oil (𝑠(𝐼), 𝑐(𝐼)). At the inlet point (𝑥𝐷 = 0) low salinity water 

(𝑓(𝐽) = 1, 𝑐(𝐽1)) with controlled pH (𝑐𝐻(𝐽1) which leads to 𝜉(𝐽1) using equation 15) is 

injected until time 𝑡𝐻𝑆. After 𝑡𝐻𝑆 seawater is injected into the reservoir ( 𝑐(𝐽2),𝜉(𝐽2)). 
Therefore, the initial and boundary conditions are: 

𝑡𝐷 = 0, {𝑠(𝑥𝐷, 𝑡𝐷 = 0) = 𝑠(𝐼)𝑐(𝑥𝐷, 𝑡𝐷 = 0) = 𝑐(𝐼)𝜉(𝑥𝐷 , 𝑡𝐷 = 0) = 𝜉(𝐼)       (19) 
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𝑥𝐷 = 0,{  
  𝑓(𝑥𝐷 = 0, 𝑡𝐷) = 𝑓(𝐽) = 1𝑐(𝑥𝐷 = 0, 𝑡𝐷) = {𝑐(𝐽1), 𝑡𝐷 < 𝑡𝐻𝑆𝑐(𝐽2), 𝑡𝐷 > 𝑡𝐻𝑆𝜉(𝑥𝐷 = 0, 𝑡𝐷) = {𝜉(𝐽1), 𝑡𝐷 < 𝑡𝐻𝑆𝜉(𝐽2), 𝑡𝐷 > 𝑡𝐻𝑆

      (20) 

where 𝑐(𝐽1) < 𝑐(𝐽2) < 𝑐(𝐼). Moreover, we consider that the reservoir is acidic (𝑝𝐻 < 7), 

the low salinity slug is alkaline, and the seawater drive pH will be slightly greater than 

the low salinity slug pH. Thus, we will have 𝑐𝐻(𝐼) > 10−7 [𝑚𝑜𝑙𝐿 ] > 𝑐𝐻(𝐽1) > 𝑐𝐻(𝐽2), resulting 

in 𝜉(𝐼) > 0 > 𝜉(𝐽1) > 𝜉(𝐽2). 
 

2.1. Splitting between thermodynamics and hydrodynamics 

Introducing the following potential function (Pires et al., 2006) 

𝑑𝜑 = 𝑓(𝑠, 𝑐, 𝜉)𝑑𝑡𝐷 − 𝑠𝑑𝑥𝐷        (21) 

in system of equations (18) we find: 

𝜕𝜕𝜑 ( 𝑠𝑓(𝑠,𝑐,𝜉)) − 𝜕𝜕𝑥𝐷 ( 1𝑓(𝑠,𝑐,𝜉)) = 0       (22) 

𝜕𝑎𝑖(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐𝑖𝜕𝑥𝐷 = 0, 𝑖 = 1,2,3        (23) 

𝜕𝑎𝐻(𝜉)𝜕𝜑 + 𝜕𝜉𝜕𝑥𝐷 = 0         (24) 

Equation (24) is decoupled and is a function of pH only. Equation (23) is a 3 × 3 

auxiliary system that depends on the cations concentrations and the solution of the pH 

problem (Equation 24). Equation (22) is a function of the hydrodynamics properties of 

the flow and depends on the solution of the auxiliary system and the solution of the pH 

problem (Pires et al., 2006). The potential function (Equation 21) replaces time as an 

independent variable, and the problem is placed on the auxiliary plane 𝑥𝐷 × 𝜑 
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(Apolinário & Pires, 2021). Equation (24) is analogous to a one-component 

chromatography problem, whereas equation (23) is similar to a three-component 

chromatography problem (Rhee et al., 2001). 

The initial and boundary conditions of the problem (22)-(24) can be obtained mapping 

the conditions given by equations (19)-(20) using equation (21), which leads to: 

𝜑 = −𝑠(𝐼)𝑥𝐷, {𝑠(𝑥𝐷 , −𝑠(𝐼)𝑥𝐷) = 𝑠(𝐼),𝑐 (𝑥𝐷 , −𝑠(𝐼)𝑥𝐷) = 𝑐(𝐼),𝜉(𝑥𝐷, −𝑠(𝐼)𝑥𝐷) = 𝜉(𝐼)     0 <  𝑥𝐷 < 𝐿Ω𝑠𝐴     (25) 

𝑥𝐷 = 0,{  
  𝑓(0, 𝜑) = 𝑓(𝐽) = 1, 𝜑 > 0𝑐(0, 𝜑) = {𝑐(𝐽1)  , 0 < 𝜑 < 𝜑𝐻𝑆𝑐(𝐽2),   𝜑 > 𝜑𝐻𝑆𝜉(0, 𝜑) = {𝜉(𝐽1)  , 0 < 𝜑 < 𝜑𝐻𝑆𝜉(𝐽2),   𝜑 > 𝜑𝐻𝑆

      (26) 

Note that in equation (25) the initial condition no longer lays on the 𝑥𝐷 axis, but on a 

straight line with slope given by −𝑠(𝐼). 
The algorithm to build the solution to the problem given by equations (22)-(26) is: 

• Solution of the pH problem (Equation (24) by the method of characteristics; 

• Compute the adsorption parameters 𝛼𝑖(𝜉), 𝛽𝑖(𝜉), 𝑖 = 1,2,3 using equations 

(6) and (7) throughout the auxiliary plane using the pH solution; 

• Solution of the auxiliary system (Equation 23) using the one-phase 

chromatography theory (Rhee et al., 1970); 

• Use the solution of the auxiliary system and pH problem to solve the lifting 

equation problem by the method of characteristics. 

After the development of the solution in the auxiliary plane 𝑥𝐷 × 𝜑, it can be mapped 

on the 𝑥𝐷 × 𝑡𝐷 plane using the expression: 
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𝑑𝑡𝐷 = 𝑑𝜑𝑓(𝑠(𝑥𝐷,𝜑),𝑐(𝑥𝐷,𝜑),𝜉(𝑥𝐷,𝜑))+ 𝑠𝑓(𝑠(𝑥𝐷,𝜑),𝑐(𝑥𝐷,𝜑),𝜉(𝑥𝐷,𝜑))𝑑𝑥𝐷   (27) 

where 𝑠(𝑥𝐷, 𝜑), 𝑐(𝑥𝐷, 𝜑) and 𝜉(𝑥𝐷, 𝜑) are the solutions of water saturation, cations 

concentrations and pH in the auxiliary plane, respectively. 

 

3. Solution of the pH problem 

The pH problem is composed by: 

𝜕𝑎𝐻(𝜉)𝜕𝜑 + 𝜕𝜉𝜕𝑥𝐷 = 0         (28) 

and the following initial and boundary conditions: 

𝜑 = −𝑠(𝐼)𝑥𝐷, 𝜉(𝑥𝐷, −𝑠(𝐼)𝑥𝐷) = 𝜉(𝐼)       (29) 

𝑥𝐷 = 0, 𝜉(0, 𝜑) = {𝜉(𝐽1)  , 0 < 𝜑 < 𝜑𝐻𝑆𝜉(𝐽2),   𝜑 > 𝜑𝐻𝑆       (30) 

The hydrogen adsorption constants (Equation 9) are presented in table (1). 

Table 1: Hydrogen adsorption constants (Lima et al., 2020) 

𝛼𝐻 14 𝛽𝐻 1 𝑛𝐻 0.2 𝑚𝐻 0.6 

Applying the chain rule in equation (28) we obtain: 

𝑑𝑎𝐻𝑑𝜉 𝜕𝜉𝜕𝜑 + 𝜕𝜉𝜕𝑥𝐷 = 0         (31) 

Therefore, the characteristics slope 𝜎𝑝𝐻 is given by: 
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𝜎𝑝𝐻 = 𝑑𝜑𝑑𝑥𝐷 = 𝑑𝑎𝐻𝑑𝜉          (32) 

From equation (9) and the definition of 𝑐𝐻(𝜉) given by equation (17), we can rewrite 

hydrogen adsorption isotherm as a function of 𝜉: 

𝑎𝐻(𝜉) = 𝛼𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑛𝐻
1+𝛽𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑚𝐻        (33) 

Thus, the exact expression for the characteristic slope is: 

𝜎𝑝𝐻 = 𝑑𝑎𝐻𝑑𝜉 = 𝛼𝐻2𝑛𝐻𝑛𝐻(𝜉+√𝜉2+4𝐾𝑤)𝑛𝐻−1(1+ 𝜉√𝜉2+4𝐾𝑤)
1+𝛽𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑚𝐻 −

𝛼𝐻𝛽𝐻𝑚𝐻2𝑛𝐻+𝑚𝐻 (𝜉+√𝜉2+4𝐾𝑤)𝑛𝐻+𝑚𝐻−1(1+ 𝜉√𝜉2+4𝐾𝑤)
[1+𝛽𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑚𝐻]2       (34) 

The shock waves are calculated using the Rankine-Hugoniot condition: 

𝑉𝑝𝐻 = [𝑎𝐻][𝜉] = 𝑎𝐻(𝜉(+))−𝑎𝐻(𝜉(−))𝜉(+)−𝜉(−)        (35) 

where the superscripts + and – represent a condition before and after the shock wave, 

respectively. 

The characteristic diagram of the solution of the pH problem (Equations 28-30) is 

presented in figure (1) and it is divided in two parts: the injection of the low salinity slug 

(Figure 1a), and the seawater drive after the low salinity slug (Figure 1b). 
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Figure 1: Characteristic diagram of the pH solution: a) during low salinity slug 

injection; b) during the injection of seawater 

In figure (1), the thick dashed lines represent shock paths, the thin dashed lines are 

the rarefaction wave, and the thick continuous line is a shock path with varying velocity. 

The shock slope 𝑉𝑝𝐻(1) is given by: 

𝑉𝑝𝐻(1) = 𝑎𝐻(𝜉(𝐽1))−𝑎𝐻(𝜉(−))𝜉(𝐽1)−𝜉(−)         (36) 

The shock wave 𝑉𝑝𝐻(1) is a semi-shock where 𝜉(𝑥𝐷, 𝜑) = 𝜉(−) along its path (Rhee & 

Amundson, 1970). The rarefactions slopes are calculated using equation (34) with 𝜉 

varying from 𝜉(−) to 𝜉(𝐼). 
After the injection of the low salinity slug (𝜑 > 𝜑𝐻𝑆, Figure 1b), the boundary 

condition changes and a shock wave with slope 𝑉𝑝𝐻(2) arises at 𝜑 = 𝜑𝐻𝑆. The shock slope 𝑉𝑝𝐻(2) is calculated applying the Rankine Hugoniot condition (Equation 35): 

𝑉𝑝𝐻(2) = 𝑎𝐻(𝜉(𝐽2))−𝑎𝐻(𝜉(𝐽1))𝜉(𝐽2)−𝜉(𝐽1)         (37) 

At point (𝑥𝑝𝐻, 𝜑𝑝𝐻) in figure (1b), the shock waves with slopes 𝑉𝑝𝐻(1) and 𝑉𝑝𝐻(2) interact 

generating a new shock wave with slope 
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𝑉𝑝𝐻(−) = 𝑎𝐻(𝜉(𝐽2))−𝑎𝐻(𝜉(−))𝜉(𝐽2)−𝜉(−)         (38) 

This shock interacts with the rarefaction wave changing the shock path (𝑥𝑝𝐻− (𝜑)). The 

derivative of the new shock path can be calculated by the relation: 

𝑉𝑝𝐻(−)(𝜉) = 𝑑𝑎𝐻𝑑𝜉 (𝜉) = 𝑎𝐻(𝜉(𝐽2))−𝑎𝐻(𝜉)𝜉(𝐽2)−𝜉 ,   𝜉(𝐽2) < 𝜉 < 𝜉(𝐼)    (39) 

The solution of the pH problem (Equations 28-30) is divided in three parts: 

𝜉(𝑥𝐷, 𝜑) = {𝜉𝐼, 𝑥𝐷 < 𝜑𝐻𝑆𝜉𝐼𝐼, , 𝜑𝐻𝑆 < 𝑥𝐷 < 𝜑𝑃𝐻𝜉𝐼𝐼𝐼, 𝑥𝐷 > 𝜑𝑃𝐻        (40) 

For 𝜑 < 𝜑𝐻𝑆 (solution 𝜉𝐼): 
𝜉𝐼(𝑥𝐷 , 𝜑) = {  

  𝜉(𝐽1), 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝜉(𝑥𝐷, 𝑡𝐷), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝜉(𝐼), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷      (41) 

If 𝜑𝐻𝑆 < 𝜑 < 𝜑𝑝𝐻 (solution 𝜉𝐼𝐼) the solution is: 

𝜉𝐼𝐼(𝑥𝐷, 𝜑) =
{  
  
  𝜉(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝜉(𝐽1),𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝜉(𝑥𝐷, 𝑡𝐷), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝜉(𝐼), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷

     (42) 

Finally, when solution 𝜉𝐼𝐼𝐼 is: 

𝜉𝐼𝐼𝐼(𝑥𝐷, 𝜑) = {  
  𝜉(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝜉(𝑥𝐷 , 𝑡𝐷), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝜉(𝐼), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷      (43) 
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The characteristics velocities for 𝜉(𝐽2) < 𝜉 < 𝜉(𝐼), and the solution path for 𝜑 < 𝜑𝐻𝑆 

and for 𝜑 > 𝜑𝐻𝑆 are presented in figure 2. 

 

Figure 2: Characteristics velocities for 𝜉(𝐽2) < 𝜉 < 𝜉(𝐼) and solution path for pH 

problem 

 

4. Solution of the auxiliary system 

The auxiliary system, given by: 

𝜕𝑎𝑖(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐𝑖𝜕𝑥𝐷 = 0, 𝑖 = 1,2,3        (44) 

with the following initial and boundary conditions: 

𝜑 = −𝑠(𝐼)𝑥𝐷, 𝑐 (𝑥𝐷, −𝑠(𝐼)𝑥𝐷) = 𝑐(𝐼),    0 <  𝑥𝐷 < 𝐿Ω𝑠𝐴     (45) 

𝑥𝐷 = 0, 𝑐(0, 𝜑) = {𝑐(𝐽1)  , 0 < 𝜑 < 𝜑𝐻𝑆𝑐(𝐽2),   𝜑 > 𝜑𝐻𝑆       (46) 

is solved after the pH problem. 

The first step is the calculation of the adsorption parameters 𝛼𝑖(𝜉) and 𝛽𝑖(𝜉) on the 𝑥𝐷 × 𝜑 plane according to the solution of the pH problem through the relations: 
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𝛼𝑖(𝑐𝐻) = 𝑔𝑖𝜉𝑘1         (47) 

𝛽𝑖(𝑐𝐻) = ℎ𝑖𝜉𝑘2         (48) 

Constants 𝑔𝑖, ℎ𝑖, 𝑘1 and 𝑘2 were obtained interpolating the data presented in Lima et 

al. (2010) and Lima et al. (2020) (Table 2). 

Table 2: Constants for parameters 𝛼𝑖 and 𝛽𝑖 
𝑔1 0.012 𝑔2 0.06 𝑔3 0.12 ℎ1 0.0325 ℎ2 0.039 ℎ3 0.065 𝑘1 −0.568 𝑘2 −0.549 

The problem defined by equations (44)-(46) is analogous to the system of partial 

differential equations that models one-phase multicomponent chromatography processes. 

The solution procedure for multicomponent Langmuir adsorption isotherm is presented 

in Rhee et al. (2001). In this work we followed these steps to extend the multicomponent 

chromatography theory to pH-dependent adsorption coefficients. 

The Riemann invariants 𝐽𝑖 are calculated by: 𝐽𝑖(𝑐, 𝜉) = 𝛽𝑖(𝜉)𝑎𝑖(𝑐,𝜉)𝛼𝑖(𝜉)−𝜔 , 𝑖 = 1,2,3       (49) 

where 𝜔 is a characteristic parameter of the problem. It is also known that (Rhee et al., 

2001): ∑ 𝐽𝑖3𝑖=1 = 1          (50) 

Thus, 
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∑ 𝛽𝑖(𝜉)𝑎𝑖(𝑐,𝜉)𝛼𝑖(𝜉)−𝜔3𝑖=1 = 1         (51) 

Equation (51) is an 𝑛-order polynomial in 𝜔, and 𝑛 is the number of the dissolved 

cations in the water (𝑛 = 3 in this example). This polynomial has 𝑛 distinct positive roots 

for any concentration and pH state. For a fixed pH condition and a concentration state 𝑐 = [𝑐1, 𝑐2, 𝑐3] there is only one vector 𝜔⃗⃗⃗ = [𝜔1, 𝜔2, 𝜔3], where its components are the 

roots of equation (51) (Rhee et al., 2001; Apolinário & Pires, 2021). Thus, equation (51) 

maps the concentration state on the 𝜔-space. In a constant pH region, all concentrations 

change along a 𝑐-wave but only one 𝜔 changes. In a region where the pH changes, the 

coefficients 𝛼𝑖 and 𝛽𝑖 also change, and therefore all components of 𝜔⃗⃗⃗ change. 

The initial and boundary conditions (Equations 45-46) are constant pH regions (𝑝𝐻(𝐼), 
and 𝑝𝐻(𝐽1) and 𝑝𝐻(𝐽2) respectively), therefore it can be mapped on the 𝜔-space solving 

equation (51) for each condition, which will result in states 𝜔⃗⃗⃗(𝐼), 𝜔⃗⃗⃗(𝐽1) and 𝜔⃗⃗⃗(𝐽2). 
The characteristic slopes of the 𝑘th rarefaction family 𝜎(𝑘) can also be written as a 

function of 𝜔 (Rhee et al., 2001; Apolinário & Pires, 2021): 𝜎(𝑘)(𝜔𝑘, 𝜉) = 𝜔𝑘(𝜉)∏ 𝜔𝑗(𝜉)𝛼𝑗(𝜉)3𝑗=1        (52) 

For a constant pH, if 𝜔𝑘(𝑘+1) < 𝜔𝑘(𝑘), we have 𝜎(𝑘)(𝜔𝑘(𝑘+1)) > 𝜎(𝑘)(𝜔𝑘(𝑘)), which 

leads to a rarefaction wave whose slope is defined by equation (52). In this case, 𝜔𝑘 

changes from 𝜔𝑘(𝑘+1) to 𝜔𝑘(𝑘), and all other 𝜔𝑗≠𝑘 remain constant. For the case of a 

constant pH and 𝜔𝑘(𝑘+1) > 𝜔𝑘(𝑘), a shock wave from 𝜔𝑘(𝑘+1) to 𝜔𝑘(𝑘) appears, and all other 𝜔𝑗≠𝑘 remain constant. In this case, the shock slope 𝑉(𝑘) is defined by: 

𝑉(𝑘)(𝜔𝑘, 𝜉) = 𝜔𝑘+(𝜉)∏ 𝜔𝑗−(𝜉)𝛼𝑗(𝜉)3𝑗=1 = 𝜔𝑘−(𝜉)∏ 𝜔𝑗+(𝜉)𝛼𝑗(𝜉)3𝑗=1     (53) 
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Note that the characteristic and shock speeds depend on the pH of the media. 

Therefore, when a 𝑘th family wave crosses a pH wave, the new pH will change the 

concentration (and 𝜔⃗⃗⃗), and the characteristic or the shock slope of the 𝑘th family. 

In regions where pH varies, the compatibility condition (Rhee et al., 2001) for non-

isothermal chromatography is valid, and therefore for any pH wave (either shock or 

rarefaction wave), here is a concentration wave with same velocity. So, for a pH 

rarefaction wave interacting with concentration characteristics, we must solve the 3 × 3 

system of equations: 𝜎(1)(𝜔1, 𝜉) = 𝜎𝑝𝐻(𝜉) = 𝜔1(𝜉)∏ 𝜔𝑗(𝜉)𝛼𝑗(𝜉)3𝑗=1       (54) 

𝜎(2)(𝜔1, 𝜉) = 𝜎𝑝𝐻(𝜉) = 𝜔2(𝜉)∏ 𝜔𝑗(𝜉)𝛼𝑗(𝜉)3𝑗=1       (55) 

𝜎(3)(𝜔1, 𝜉) = 𝜎𝑝𝐻(𝜉) = 𝜔3(𝜉)∏ 𝜔𝑗(𝜉)𝛼𝑗(𝜉)3𝑗=1       (56) 

where 𝜔1, 𝜔2 and 𝜔3 are the unknowns. In the case of a pH shock wave, we must solve 

the following system for 𝜔1 , 𝜔2  and 𝜔3: 

𝑉(1)(𝜔1, 𝜉) = 𝑉𝑝𝐻 = 𝜔1(𝜉+)∏ 𝜔𝑗(𝜉−)𝛼𝑗(𝜉−)3𝑗=1 = 𝜔1(𝜉−)∏ 𝜔𝑗(𝜉+)𝛼𝑗(𝜉+)3𝑗=1    (57) 

𝑉(2)(𝜔2, 𝜉) = 𝑉𝑝𝐻 = 𝜔2(𝜉+)∏ 𝜔𝑗(𝜉−)𝛼𝑗(𝜉−)3𝑗=1 = 𝜔2(𝜉−)∏ 𝜔𝑗(𝜉+)𝛼𝑗(𝜉+)3𝑗=1    (58) 

𝑉(3)(𝜔3, 𝜉) = 𝑉𝑝𝐻 = 𝜔3(𝜉+)∏ 𝜔𝑗(𝜉−)𝛼𝑗(𝜉−)3𝑗=1 = 𝜔3(𝜉−)∏ 𝜔𝑗(𝜉+)𝛼𝑗(𝜉+)3𝑗=1    (59) 

The initial condition 𝜔⃗⃗⃗(𝐼) is calculated using 𝜉(𝐼). For 𝜑 < 𝜑𝐻𝑆, the boundary 

condition 𝜔⃗⃗⃗(𝐽1) is determined using 𝜉(𝐽1). The boundary condition waves interact with 

the self-similar part of the pH solution, resulting in a new state 𝜔⃗⃗⃗(𝐽1−). The conditions 𝜔⃗⃗⃗(𝐼) and 𝜔⃗⃗⃗(𝐽1−) are used to compute the 𝜔-waves using chromatography theory (Rhee et 

al., 1970). Table 3 summarizes the 𝜔⃗⃗⃗ solution for 𝜑 < 𝜑𝐻𝑆. 

Table 3: Concentration solution for 𝜑 < 𝜑𝐻𝑆 



 

21 

 

Boundary condition 𝜔1(𝐽1) 𝜔2(𝐽1) 𝜔3(𝐽1) 
pH interaction 𝜔1(𝐽1−) 𝜔2(𝐽1−) 𝜔3(𝐽1−) 𝜔3-wave 𝜔1(𝐽1−) 𝜔2(𝐽1−) 𝜔3(𝐼) 𝜔2-wave 𝜔1(𝐽1−) 𝜔2(𝐼) 𝜔3(𝐼) 𝜔1-wave (initial condition) 𝜔1(𝐼) 𝜔2(𝐼) 𝜔3(𝐼) 

Seawater injection starts at 𝜑 = 𝜑𝐻𝑆 and the boundary condition changes to (𝐽2). The 

pH solution for 𝜑 > 𝜑𝐻𝑆 is composed by two shocks and a rarefaction wave (Section 3). 

The pH solution rear shock wave interacts with the boundary condition (𝐽2) 𝜔-waves. 

We will denote the 𝜔-state before the pH-shock as 𝜔⃗⃗⃗(𝐽2) and the 𝜔-state after the shock 

as 𝜔⃗⃗⃗(𝐽2−). The condition 𝜔⃗⃗⃗(𝐽2−) and state 𝜔⃗⃗⃗(𝐽1) are used to compute the concentration 

waves at the rear of the low salinity slug. Table 4 presents the 𝜔-waves solution for 𝜑 >𝜑𝐻𝑆. 
Table 4: Concentration solution for 𝜑 > 𝜑𝐻𝑆 

Boundary condition (𝐽2) 𝜔1(𝐽2) 𝜔2(𝐽2) 𝜔3(𝐽2) 
pH shock wave (rear) 𝜔1(𝐽2−) 𝜔2(𝐽2−) 𝜔3(𝐽2−) 𝜔3-wave (rear) 𝜔1(𝐽2−) 𝜔2(𝐽2−) 𝜔3(𝐽1) 𝜔2-wave (rear) 𝜔1(𝐽2−) 𝜔2(𝐽1) 𝜔3(𝐽1) 𝜔1-wave (boundary condition (𝐽1)) 𝜔1(𝐽1) 𝜔2(𝐽1) 𝜔3(𝐽1) 

pH-waves (front) 𝜔1(𝐽1−) 𝜔2(𝐽1−) 𝜔3(𝐽1−) 𝜔3-wave (front) 𝜔1(𝐽1−) 𝜔2(𝐽1−) 𝜔3(𝐼) 𝜔2-wave (front) 𝜔1(𝐽1−) 𝜔2(𝐼) 𝜔3(𝐼) 𝜔1-wave (initial condition) 𝜔1(𝐼) 𝜔2(𝐼) 𝜔3(𝐼) 
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When 𝜑 increases, the 𝜔-waves from the rear of the slug interact with the pH waves 

from the front of the low salinity slug. The new wave paths along and after the interaction 

can be computed using equations (54)-(59). The transmitted waves from the rear of the 

slug will interact with the waves from the front of the low salinity slug, leading to several 

types of interactions: transmission of a rarefaction wave through a shock wave of a 

different family, transmission of two rarefaction waves of different families, cancelation 

of a rarefaction wave by a shock wave of the same family (Rhee et al., 2001). 

The slope of the wave generated by the transmission of a rarefaction wave through a 

shock wave is given by: 𝜎(𝑘)− (𝜔𝑘) = 𝜔𝑘(𝑥𝐷, 𝜑)𝜔𝑠+𝛼𝑠 ∏ 𝜔𝑗(𝜉)𝛼𝑗(𝜉)3𝑗=1𝑗≠𝑠        (60) 

where 𝜎(𝑘)−  is the slope of the transmitted rarefaction wave of the 𝑘th family, 𝜔𝑠+ is the 

value of 𝜔 after the shock of the 𝑠th family. Moreover, the shock path of the 𝑠th family 

will be continuously changed by its interaction with the 𝑘th rarefaction. The shock path 

can be calculated integrating the following expression: 

( 𝑑𝜑𝑑𝑥𝐷)(𝑠) = 𝜔𝑠+ 𝜔𝑘(𝑥𝐷,𝜑)𝛼𝑘 ∏ 𝜔𝑗−𝛼𝑗3𝑗=1𝑗≠𝑘 = 𝜔𝑠− 𝜔𝑘(𝑥𝐷,𝜑)𝛼𝑘 ∏ 𝜔𝑗+𝛼𝑗3𝑗=1𝑗≠𝑘     (61) 

where 𝜔𝑘(𝑥𝐷, 𝜑) is the value of 𝜔 along the 𝑘th rarefaction wave, and 𝜔𝑠− is the value of 𝜔𝑠 before the shock. 

The characteristic path resulting from the interaction of two rarefaction waves of 

different families 𝑘1 and 𝑘2 is computed by the ordinary differential equation: ( 𝑑𝜑𝑑𝑥𝐷)(𝑘1) = 𝜔𝑘1(𝑥𝐷, 𝜑)𝜔𝑘2(𝑥𝐷,𝜑)𝛼𝑘2 ∏ 𝜔𝑗𝛼𝑗3𝑗=1𝑗≠𝑘2       (62) 

A rarefaction wave is cancelled when it reaches a shock wave of the same family, and 

the shock path changes continuously while it crosses the 𝑘th rarefaction. The new shock 

path can be found from the following equation: 
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( 𝑑𝜑𝑑𝑥𝐷)(𝑘) = 𝜔𝑘− 𝜔𝑘(𝑥𝐷,𝜑)𝛼𝑘 ∏ 𝜔𝑗+𝛼𝑗3𝑗=1𝑗≠𝑘        (63) 

A detailed description of the theory of the interaction between waves in 

multicomponent chromatography can be found in chapter 4 of Rhee et al. (2001). 

After the determination of the 𝜔 solution in the 𝑥𝐷 × 𝜑 plane, the concentration 

solution is calculated through the relation: 

𝑐𝑖 = 1𝛽𝑖(𝜉) (𝜔𝑖−𝛼𝑖(𝜉))𝜔𝑖 ∏ 𝛼𝑗(𝜉)[𝜔𝑗−𝛼𝑗(𝜉)]𝜔𝑗[𝛼𝑗(𝜉)−𝛼𝑖(𝜉)]𝑛𝑗=1𝑗≠𝑖       (64) 

Equation (64) generalizes the inverse mapping equation presented in Rhee et al. 

(1970) for the case of pH-dependent coefficients of the Langmuir adsorption isotherm. 

The characteristic diagram of the solution of the auxiliary system is presented in figure 

(3). Note that due to the difference between the adsorption rates of 𝐻+ and the other 

cations (Equations 10-12), the slope of the pH waves is much greater than the slope of 

the concentration waves (Zoom in the upper left corner of the figure). Moreover, due to 

the low adsorption rate of the cation 𝑁𝑎+, the slope of 𝜔(1) waves is close to zero. 

Consequently, the interaction between waves of the family 𝑘 = 1 will take place when 𝑥𝐷 tends to infinite. The solution of this problem presents slopes approaching zero and 

infinite leading to very small regions in the characteristic diagram. To observe these 

regions and clearly illustrate the solution, several zooms are displayed in figure (3). 

In figure (3), the thick lines represent shock waves, and the thin lines denote 

rarefaction waves. At the shock slopes 𝑉(𝑘)𝐻𝑆 and rarefaction characteristics slopes 𝜎(𝑘)𝐻𝑆  , 
the superscript “𝐻𝑆” indicate the rear of the low salinity slug, and the superscript “–“ 

denotes that the wave path was changed due to an interaction with another wave. The 

number of “-“ is equal to the number of interactions. The letters “A” to “N” refer to points (𝑥𝑋, 𝜑𝑋) used as reference for the construction of concentration profiles, and the numbers 

in parenthesis represent regions of constant state 𝜔⃗⃗⃗, which are described in detail in table 
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(5). The dashed lines represent the pH waves, the continuous lines denote the family 𝑘 =3, the dotted lines the family 𝑘 = 2, and the dashed-dotted lines the family 𝑘 = 1. 
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Figure 3: Characteristic diagram of the auxiliary system solution 
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Table 5: Solution of the auxiliary system 

Region 𝜔⃗⃗⃗ state 𝑐 state 

(I) [𝜔1(𝐼), 𝜔2(𝐼), 𝜔3(𝐼)] [𝑐1(𝐼), 𝑐2(𝐼), 𝑐3(𝐼)] 
(1) [𝜔1(𝐽1−), 𝜔2(𝐼), 𝜔3(𝐼)] [𝑐1(1), 𝑐2(1), 𝑐3(1)] 
(2) [𝜔1(𝐽1−), 𝜔2(𝐽1−), 𝜔3(𝐼)] [𝑐1(2), 𝑐2(2), 𝑐3(2)] 
(3) [𝜔1(𝐽1−), 𝜔2(𝐽1−), 𝜔3(𝐽1−)] [𝑐1(3), 𝑐2(3), 𝑐3(3)] 
(4) [𝜔1(𝐽1), 𝜔2(𝐽1), 𝜔3(𝐽1)] [𝑐1(𝐽1), 𝑐2(𝐽1), 𝑐3(𝐽1)] 
(5) [𝜔1(𝐽2−), 𝜔2(𝐽1), 𝜔3(𝐽1)] [𝑐1(5), 𝑐2(5), 𝑐3(5)] 
(6) [𝜔1(𝐽2−), 𝜔2(𝐽2−), 𝜔3(𝐽1)] [𝑐1(6), 𝑐2(6), 𝑐3(6)] 
(7) [𝜔1(𝐽2−), 𝜔2(𝐽2−), 𝜔3(𝐽2−)] [𝑐1(7), 𝑐2(7), 𝑐3(7)] 
(J2) [𝜔1(𝐽2), 𝜔2(𝐽2), 𝜔3(𝐽2)] [𝑐1(𝐽2), 𝑐2(𝐽2), 𝑐3(𝐽2)] 
(1-) [𝜔1(𝐽2−−), 𝜔2(𝐼), 𝜔3(𝐼)] [𝑐1(1−), 𝑐2(1−), 𝑐3(1−)] 
(2-) [𝜔1(𝐽2−−), 𝜔2(𝐽1−), 𝜔3(𝐼)] [𝑐1(2−), 𝑐2(2−), 𝑐3(2−)] 
(2--) [𝜔1(𝐽2−−), 𝜔2(𝐽2−−), 𝜔3(𝐼)] [𝑐1(2−−), 𝑐2(2−−), 𝑐3(2−−)] 
(3-) [𝜔1(𝐽2−−), 𝜔2(𝐽1−), 𝜔3(𝐽1−)] [𝑐1(3−), 𝑐2(3−), 𝑐3(3−)] 
(3--) [𝜔1(𝐽2−−), 𝜔2(𝐽2−−), 𝜔3(𝐽1−)] [𝑐1(3−−), 𝑐2(3−−), 𝑐3(3−−)] 
(3---) [𝜔1(𝐽2−−), 𝜔2(𝐽2−−), 𝜔3(𝐽2−)] [𝑐1(3−−−), 𝑐2(3−−−), 𝑐3(3−−−)] 

 

Note that only one 𝜔𝑘 changes along each 𝜔-wave, but all concentrations change 

when this wave is mapped on 𝑐-space. In pH waves (transition from region (J2) to region 

(7), and transition from region (4) to region (3)), both 𝜔⃗⃗⃗ and 𝑐 change. 
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The solution of the auxiliary system can be divided into 17 regions (Figure 3) 

separated by the points (𝑥𝐴, 𝜑𝐴)-(𝑥𝑁, 𝜑𝑁) and the point (𝑥𝑝𝐻 , 𝜑𝑝𝐻) that comes from the 

pH solution (Equation 64). 

𝑐(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
  𝑐𝐼 ⃗⃗ ⃗⃗ , 𝜑 < 𝜑𝐻𝑆𝑐𝐼𝐼 ⃗⃗⃗⃗⃗⃗ , 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴𝑐𝐼𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝜑𝐴 < 𝜑 < 𝜑𝐵𝑐𝐼𝑉 ⃗⃗⃗⃗⃗⃗⃗, 𝜑𝐵 < 𝜑 < 𝜑𝐶𝑐𝑉 ⃗⃗ ⃗⃗ ⃗, 𝜑𝐶 < 𝜑 < 𝜑𝐷𝑐𝑉𝐼 ⃗⃗⃗⃗⃗⃗⃗, 𝜑𝐷 < 𝜑 < 𝜑𝐸𝑐𝑉𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝜑𝐸 < 𝜑 < 𝜑𝐹𝑐𝑉𝐼𝐼𝐼 ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ , 𝜑𝐹 < 𝜑 < 𝜑𝐺𝑐𝐼𝑋 ⃗⃗⃗⃗ ⃗⃗⃗, 𝜑𝐺 < 𝜑 < 𝜑𝐻𝑐𝑋 ⃗⃗ ⃗⃗ ⃗, 𝜑𝐻 < 𝜑 < 𝜑𝐼𝑐𝑋𝐼 ⃗⃗⃗⃗⃗⃗⃗, 𝜑𝐼 < 𝜑 < 𝜑𝑝𝐻𝑐𝑋𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝜑𝑝𝐻 < 𝜑 < 𝜑𝐽𝑐𝑋𝐼𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ , 𝜑𝐽 < 𝜑 < 𝜑𝐾𝑐𝑋𝐼𝑉 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝜑𝐾 < 𝜑 < 𝜑𝐿𝑐𝑋𝑉 ⃗⃗⃗⃗ ⃗⃗⃗⃗ , 𝜑𝐿 < 𝜑 < 𝜑𝑀𝑐𝑋𝑉𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝜑𝑀 < 𝜑 < 𝜑𝑁𝑐𝑋𝑉𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, 𝜑𝑁 < 𝜑

      (65) 

The solution parts 𝑐𝐼 ⃗⃗ ⃗⃗  (self-similar), 𝑐𝐼𝐼 ⃗⃗⃗⃗⃗⃗  (beginning of seawater drive), 𝑐𝐼𝑉 ⃗⃗⃗⃗⃗⃗⃗ (interaction 

between pH waves and rarefaction waves from the rear of the low salinity slug) and 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ 
(interaction between concentration rarefaction waves) are detailed in this section. The 

remaining part of the complete solution can be found in the supplementary material. 

The self-similar part of the solution takes place when 𝜑 < 𝜑𝐻𝑆 (𝑐𝐼⃗⃗⃗ ⃗ in equation 65). 

The concentration profile is detailed in equation (66): 
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𝑐𝐼 ⃗⃗ ⃗⃗ =

{  
   
  
   
   
 𝑐(𝐽1), 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑐(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (66) 

In equation (66) we denote 𝑐(𝑋) as a constant concentration state in region 𝑋 (see table 

5 for 𝜔⃗⃗⃗ and 𝑐), and 𝑐(𝑋)−(𝑌)(𝑥𝐷, 𝜑) as the rarefaction wave from a region (𝑋) to a region (𝑌), where 𝜔⃗⃗⃗ is known and the concentration is calculated using equation (64). A 

concentration profile of 𝑐𝐼 ⃗⃗ ⃗⃗  is presented in figure (4) emphasizing the effect of pH waves 

on the solution. 

 

Figure 4: Solution of the auxiliary system (𝑐𝐼⃗⃗⃗ ⃗) 
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Along 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴, after the beginning of seawater drive, a new set of waves 

appear. The solution of the auxiliary system for this region is defined as 𝑐𝐼𝐼⃗⃗⃗⃗⃗ (Equation 

(65), and it is given by: 

𝑐𝐼𝐼⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑐(6), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑐(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1))𝑐(5), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(1)𝑐(𝐽1), 𝜑−𝜑𝐻𝑆𝑉(1) < 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑐(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (67) 

Figure (5) presents the concentration profile of the solution 𝑐𝐼𝐼⃗⃗⃗⃗⃗. 
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Figure 5: Solution of the auxiliary system for 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴 (𝑐𝐼𝐼⃗⃗⃗⃗⃗) 
For 𝜑𝐵 < 𝜑 < 𝜑𝐶 (solution 𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗ ), the rarefaction wave 𝑐(6)−(5) interacts with the pH 

waves. In this region part of that rarefaction is located at the left of the pH shock (constant 

pH) and the other part at the right, a pH-concentration rarefaction wave. The characteristic 

path of the rarefaction 𝑐(6)−(5) changes along the interaction. The shock path of the family 
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𝑋 after its first interaction is denoted as 𝑥(𝑋)− (𝜑), and the rarefaction wave (𝑋) − (𝑌) after 

its first interaction as 𝑥(𝑋)−(𝑌)−(±) (𝜑), in which 𝑥(𝑋)−(𝑌)−(+) (𝜑) is the first characteristic curve 

and 𝑥(𝑋)−(𝑌)−(−) (𝜑) is the last characteristic curve of the rarefaction wave. From now on the 

number of “−“ in the wave superscript indicates its number of interactions. Equation (68) 

details 𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗  and the concentration profile is shown in figure (6). 

𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑐(6), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑐(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑐(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (68) 
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Figure 6: Concentration profile for the solution 𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗  

In the solution 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ the interaction between rarefaction waves of the families 𝑘 = 2 

and 𝑘 = 3 begins. This interaction region is bounded by the curves (𝐽 − 𝐿) =
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𝑥(3)−(2)−−(+) (𝜑), (𝐾 −𝑀) = 𝑥(3)−(2)−−(−) (𝜑), (𝐽 − 𝐾) = 𝑥(6)−(5)−−(−) (𝜑) and (𝐿 − 𝑀) =
𝑥(6)−(5)−−(+) (𝜑). In this part of the solution the region (3-) disappears. In equation (69) we 

detail 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, and its concentration profile is shown in figure (7). 

𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ =

{  
   
   
  
   
   
   
 𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑐(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑐(2−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (69) 
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Figure 7: Concentration profile of the solution 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ 
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5. Solution of the lifting equation 

The lifting equation (Equation 22) is solved after the auxiliary system, considering 

the hydrodynamic and transport properties of the flow (relative permeability curves and 

viscosities of the flowing phases). The solution of the lifting equation extends the solution 

of the auxiliary system (analogous to a one-phase chromatography problem) to a two-

phase environment. 

First, we introduce the following variables in equation (22): 

𝑈(𝑠, 𝑐, 𝜉) = 1𝑓(𝑠,𝑐,𝜉)         (70) 

𝐹(𝑈, 𝑠, 𝑐, 𝜉) = −𝑠𝑓(𝑠,𝑐,𝜉) = −𝑠𝑈(𝑠, 𝑐, 𝜉)      (71) 

to obtain the hyperbolic equation: 

𝜕𝐹(𝑈,𝑠,𝑐,𝜉)𝜕𝜑 + 𝜕𝑈(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0        (72) 

to find 𝑈. 

The initial and boundary conditions for the lifting equation problem (Equations 25-

26) are: 

𝜑 = −𝑠(𝐼)𝑥𝐷, {𝑈 → +∞𝐹 → −∞        (73) 

𝑥𝐷 = 0, {𝑈 = 1𝐹 = −𝑠(𝐼)         (74) 

The water fractional flow is defined as: 

𝑓(𝑠, 𝑐, 𝜉) = 𝑘𝑟𝑤(𝑠,𝑐⃗⃗,𝜉)𝜇𝑤(𝑐⃗⃗)𝑘𝑟𝑤(𝑠,𝑐⃗⃗,𝜉)𝜇𝑤(𝑐⃗⃗,𝜉) +𝑘𝑟𝑜(𝑠,𝑐⃗⃗,𝜉)𝜇𝑜          (75) 
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in which the oil viscosity 𝜇𝑜 is considered constant for this problem. The water viscosity 𝜇𝑤 was calculated using a correlation for brine fluids in reservoir conditions (McCain Jr., 

1991): 

𝜇𝐵(𝑇) = 𝐴𝑇−𝐵         (76) 

𝐴 = 109.574 − 8.40564 𝑆𝑎𝑙 + 0.313314 𝑆𝑎𝑙2 + 8.72213.10−3 𝑆𝑎𝑙3   (77) 

𝐵 = 1.12166 − 2.63951.10−2 𝑆𝑎𝑙 + 6.79461.10−3𝑆𝑎𝑙2 + 5.47119.10−5𝑆𝑎𝑙3 −1.55586.10−6𝑆𝑎𝑙4           (78) 

𝜇𝑤(𝑇, 𝑃) = 𝜇𝐵(𝑇)(0.9994 + 4.0295.10−5𝑝 + 3.1062.10−9𝑝2)   (79) 

where 𝑇 is the temperature (°𝐹), 𝑆𝑎𝑙 is the salinity (total dissolved solids), and 𝑝 is the 

pressure (𝑝𝑠𝑖𝑎). 

Corey’s model (Corey, 1954) was used to calculate the relative permeabilities, and 

the residual oil saturation (𝑠𝑜𝑟), Corey’s exponents (𝑛𝑤 and 𝑛𝑜) and the permeability end 

points (𝑘𝑟𝑤∗  and 𝑘𝑟𝑜∗ ) are functions of the salinity and water pH. Thus, the permeability 

curves are given by: 

𝑘𝑟𝑤(𝑠, 𝑐, 𝜉) = 𝑘𝑟𝑤∗ (𝑐, 𝜉) ( 𝑠−𝑠(𝐼)1−𝑠𝑜𝑟(𝑐,𝜉)−𝑠(𝐼))𝑛𝑤(𝑐,𝜉)     (80) 

𝑘𝑟𝑜(𝑠, 𝑐, 𝜉) = 𝑘𝑟𝑜∗ (𝑐, 𝜉) ( 1−𝑠𝑜𝑟(𝑐,𝜉)−𝑠1−𝑠𝑜𝑟(𝑐,𝜉)−𝑠(𝐼))𝑛𝑜(𝑐,𝜉)     (81) 

Expressions for the parameters 𝑠𝑜𝑟, 𝑛𝑤, 𝑛𝑜, 𝑘𝑟𝑤∗  and 𝑘𝑟𝑜∗  were obtained adjusting 

experimental data from 47 coreflooding experiments (Table 6) and are given by: 

𝑠𝑜𝑟(𝑐, 𝜉) = 10−6𝑆𝑎𝑙 + 0.225 − 0.0978. 𝑝𝐻      (82) 

𝑛𝑤(𝑐, 𝜉) = −10−5𝑆𝑎𝑙 + 2.8554 + 0.05214. 𝑝𝐻     (83) 
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𝑛𝑜(𝑐, 𝜉) = 10−5𝑆𝑎𝑙 + 2.4258 − 0.4873. 𝑝𝐻     (84) 

𝑘𝑟𝑤∗ (𝑐, 𝜉) = 2.10−6𝑆𝑎𝑙 + 0.3311 − 0.00517. 𝑝𝐻     (85) 

𝑘𝑟𝑜∗ (𝑐, 𝜉) = −2.10−6𝑆𝑎𝑙 + 05913 + 0.0181. 𝑝𝐻     (86) 

 Salinity range pH range 

Aladasani et al. (2014) 249-38522 ppm 6.5-7.2 

Al-Shalabi et al. (2016) 600-60000 ppm 6.3-7.5 

Etemadi et al. (2016) 1000-45000 ppm 7-7.6 

Holter (2012) 0-45000 ppm 7.2-75 

Lima et al. (2020) 6500-32000 ppm 4-7 

Omekeh & Evje (2013) 450-45000 ppm 7 

Rivet et al. (2010) 200-32000 ppm 6.2-7.1 

Shojaei et al. (2015) 3500-714000 ppm 7-7.2 

Tang & Morrow (1999) 151.5-35960 ppm 6.3-7.3 

From equation (72), we find: 

𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝑈 𝜕𝑈(𝑠,𝑐,𝜉)𝜕𝜑 + 𝜕𝑈(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = − 𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝑐 𝜕𝑐𝜕𝜑 − 𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝜉 𝜕𝜉𝜕𝜑    (87) 

and the characteristic velocity of 𝑈-characteristics is given by: 𝜎𝑈 = 𝑑𝜑𝑑𝑥𝐷 = 𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝑈          (88) 

In regions where both concentration and pH are constant, equation (87) becomes: 

𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝑈 𝜕𝑈(𝑠,𝑐,𝜉)𝜕𝜑 + 𝜕𝑈(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0       (89) 

and 𝑈 is constant along the characteristic curves. However, in regions where the pH 

and/or concentration change, we have: 

𝑑𝑈𝑑𝑥𝐷 = − 𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝑐 𝜕𝑐𝜕𝜑− 𝜕𝐹(𝑈,𝑐,𝜉)𝜕𝜉 𝜕𝜉𝜕𝜑       (90) 
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The shock condition for the lifting equation (Equation 72) is: 

𝑉𝑈 = 𝑑𝜑𝑑𝑥𝐷 = [𝐹][𝑈]         (91) 

Note that the lifting equation solution depends on concentration and pH, however, the 

auxiliary system solution does not depend on 𝑈, and therefore it is not affected by the 

lifting equation solution. Thus, wave interactions between 𝑈-waves and 𝑐-waves changes 

the paths of the 𝑈-waves. The characteristic diagram of the solution of the lifting equation 

can be seen in figure (8). The thick dotted lines are the waves where only 𝑈 changes (𝑈 

waves). 
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Figure 8: Characteristic diagram of the solution of the lifting equation 
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The solution of the lifting equation is divided into the same 17 regions of the auxiliary 

solution: 

𝑈(𝑥𝐷, 𝜑) =

{  
   
   
   
   
  𝑈𝐼 , 𝜑 < 𝜑𝐻𝑆𝑈𝐼𝐼 , 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴𝑈𝐼𝐼𝐼, 𝜑𝐴 < 𝜑 < 𝜑𝐵𝑈𝐼𝑉 , 𝜑𝐵 < 𝜑 < 𝜑𝐶𝑈𝑉 , 𝜑𝐶 < 𝜑 < 𝜑𝐷𝑈𝑉𝐼 , 𝜑𝐷 < 𝜑 < 𝜑𝐸𝑈𝑉𝐼𝐼, 𝜑𝐸 < 𝜑 < 𝜑𝐹𝑈𝑉𝐼𝐼𝐼, 𝜑𝐹 < 𝜑 < 𝜑𝐺𝑈𝐼𝑋, 𝜑𝐺 < 𝜑 < 𝜑𝐻𝑈𝑋, 𝜑𝐻 < 𝜑 < 𝜑𝐼𝑈𝑋𝐼, 𝜑𝐼 < 𝜑 < 𝜑𝑝𝐻𝑈𝑋𝐼𝐼, 𝜑𝑝𝐻 < 𝜑 < 𝜑𝐽𝑈𝑋𝐼𝐼𝐼, 𝜑𝐽 < 𝜑 < 𝜑𝐾𝑈𝑋𝐼𝑉, 𝜑𝐾 < 𝜑 < 𝜑𝐿𝑈𝑋𝑉, 𝜑𝐿 < 𝜑 < 𝜑𝑀𝑈𝑋𝑉𝐼, 𝜑𝑀 < 𝜑 < 𝜑𝑁𝑈𝑋𝑉𝐼𝐼, 𝜑𝑁 < 𝜑

      (92) 

For the lifting equation solution, we denote 𝑈𝑋(𝑥𝐷, 𝜑) the 𝑈-rarefaction in region 𝑋. 

Along these waves only 𝑈 changes, both concentration and pH are constant. For the 𝑈-

waves where concentration and/or pH change, the notation created for the auxiliary 

system solution is followed: 𝑈(𝑋)−(𝑌) is a rarefaction wave from the region 𝑋 to the region 𝑌, and 𝑈(𝑋) is a constant state in region 𝑋. 

Similar to the auxiliary system solution, we present regions 𝑈𝐼, 𝑈𝐼𝐼, 𝑈𝐼𝑉 and 𝑈𝑋𝐼𝐼𝐼 of 

the lifting equation solution (Equation 91), the other parts are shown in the supplementary 

material. 

Each flow function 𝐹(𝑈, 𝑐(𝑋), 𝜉(𝑋)) presented in figures (9)-(12) is built using the 

constant concentration and pH of the region (𝑋) of the characteristic diagram (Figure 8). 

The continuous lines connecting two points of different curves 𝐹(𝑈, 𝑐(𝑋), 𝜉(𝑋)) 
represent a rarefaction wave where 𝑈, concentration and/or pH change. The continuous 

lines connecting two points on the same 𝐹(𝑈, 𝑐(𝑋), 𝜉(𝑋)) curve represent a rarefaction 
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wave where only 𝑈 changes. The dashed lines denote shock waves, and 𝑋 is the constant 

state 𝑈(𝑋). When 𝑈 → +∞, 𝑈 = 𝑈(𝐼), thus the shock wave from 𝑈(𝐼+) to 𝑈(𝐼) is shown 

as a dashed line that starting at 𝐼+. 

𝑈𝐼 =

{  
   
   
   
   
  𝑈4(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑈(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼))𝑈3(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (93) 

 

Figure 9: Solution path of 𝑈𝐼 in the 𝐹 × 𝑈 plane 
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𝑈𝐼𝐼 =

{  
   
   
   
  
   
   
   
   
 𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑈6(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑈(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1))𝑈5(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(1)𝑈4(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(1) < 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑈(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼))𝑈3(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (94) 
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Figure 10: Solution path of 𝑈𝐼𝐼 in the 𝐹 × 𝑈 plane 

For 𝜑𝐵 < 𝜑 < 𝜑𝐶 (solution 𝑈𝐼𝑉) we have: 
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𝑈𝐼𝑉 =

{  
   
   
   
  
   
   
   
   
 𝑈𝐽2(𝑥𝐷 , 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑈6(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑈(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(6)−(5)− (𝜑)𝑈(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑈3(𝑥𝐷, 𝜑), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (95) 
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Figure 11: Solution path of 𝑈𝐼𝑉 in the 𝐹 × 𝑈 plane 



 

46 

 

𝑈𝑋𝐼𝐼𝐼 =

{  
   
   
   
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷 , 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑈(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑈(2−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼) 𝑥𝐷 → +∞

   (96) 

 

Figure 12: Solution path of 𝑈𝑋𝐼𝐼𝐼 in 𝐹 × 𝑈 plane 
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6. Inverse mapping to 𝒙𝑫 × 𝒕𝑫 plane 

In this section the solution in the auxiliary plane is mapped onto the 𝑥𝐷 × 𝑡𝐷 plane. 

First the saturation and fractional flow solutions are calculated from the expressions (70) 

and (71) and the waves are mapped using the potential function: 

𝑑𝑡𝐷 = 𝑑𝜑𝑓(𝑠(𝑥𝐷,𝜑),𝑐(𝑥𝐷,𝜑),𝜉(𝑥𝐷,𝜑))+ 𝑠𝑓(𝑠(𝑥𝐷,𝜑),𝑐(𝑥𝐷,𝜑),𝜉(𝑥𝐷,𝜑))𝑑𝑥𝐷   (97) 

The path of each rarefaction wave can be determined on the 𝑥𝐷 × 𝑡𝐷 plane by: 

𝜆(𝑋) = (𝑑𝑡𝐷𝑑𝑥𝐷)(𝑋) = 𝑈(𝑥𝐷, 𝜑)𝜎(𝑋) − 𝐹(𝑈, 𝑐, 𝜉)     (98) 

and the shock paths are mapped through the relation (Pires et al., 2006): 𝐷(𝑋) = (𝑑𝑡𝐷𝑑𝑥𝐷)(𝑘) = 1𝑈±(𝑥𝐷,𝜑)𝑉(𝑘)−𝐹(𝑈±,𝑐±,𝜉±)      (99) 

In equations (98)-(99) 𝑋 corresponds to the wave family (𝑈, 𝑝𝐻, 𝑘 = 1,2,3). The 𝑈-

waves on the auxiliary plane will be named as 𝑠-waves on 𝑥𝐷 × 𝑡𝐷 plane. 

Note that all wave families interact with each other in 𝑥𝐷 × 𝑡𝐷 plane, including 𝑠-
waves with concentration and pH waves. Thus, the waves from the rear of the low salinity 

slug are not straight lines. 

The Buckley-Leverett shock velocity (water saturation shock at initial concentration 

and pH) is given by: 

𝐷(𝑠) = [𝑓][𝑠] = 𝑓−−𝑓(𝐼)𝑠−−𝑠(𝐼) = 𝑓−𝑠−−𝑠(𝐼)       (100) 

The characteristic diagram in 𝑥𝐷 × 𝑡𝐷 plane is presented in figure 13. We denote as 𝑥𝑋𝑌𝑆 (𝑡𝐷) and 𝑥𝑋𝑌𝑅 (𝑡𝐷) the shock wave and the rarefaction wave between points (𝑥𝑋, 𝑡𝑋)-(𝑥𝑌, 𝑡𝑌), respectively. The paths 𝑥𝑋𝑌𝑅 (𝑡𝐷) and 𝑥𝑋𝑌𝑆 (𝑡𝐷) are calculated integrating equations 

(98) and (99) in the region between points (𝑥𝑋, 𝑡𝑋)-(𝑥𝑌, 𝑡𝑌). 
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Figure 13: Characteristic diagram of the solution in 𝑥𝐷 × 𝑡𝐷 plane 
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The solution in 𝑥𝐷 × 𝑡𝐷 plane is also divided in 17 regions: 

𝑠(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
   
  𝑠𝐼, 𝑡𝐷 < 𝑡𝐻𝑆𝑠𝐼𝐼, 𝑡𝐻𝑆 < 𝑡𝐷 < 𝑡𝐴𝑠𝐼𝐼𝐼, 𝑡𝐴 < 𝑡𝐷 < 𝑡𝐵𝑠𝐼𝑉, 𝑡𝐵 < 𝑡𝐷 < 𝑡𝐶𝑠𝑉, 𝑡𝐶 < 𝑡𝐷 < 𝑡𝑑𝑠𝑉𝐼, 𝑡𝑑 < 𝑡𝐷 < 𝑡𝐸𝑠𝑉𝐼𝐼, 𝑡𝐸 < 𝑡𝐷 < 𝑡𝐹𝑠𝑉𝐼𝐼𝐼, 𝑡𝐹 < 𝑡𝐷 < 𝑡𝐺𝑠𝐼𝑋, 𝑡𝐺 < 𝑡𝐷 < 𝑡𝐻𝑠𝑋, 𝑡𝐻 < 𝑡𝐷 < 𝑡𝐼𝑠𝑋𝐼, 𝑡𝐼 < 𝑡𝐷 < 𝑡𝑝𝐻𝑠𝑋𝐼𝐼, 𝑡𝑝𝐻 < 𝑡𝐷 < 𝑡𝐽𝑠𝑋𝐼𝐼𝐼, 𝑡𝐽 < 𝑡𝐷 < 𝑡𝐾𝑠𝑋𝐼𝑉, 𝑡𝐾 < 𝑡𝐷 < 𝑡𝐿𝑠𝑋𝑉, 𝑡𝐿 < 𝑡𝐷 < 𝑡𝑀𝑠𝑋𝑉𝐼, 𝑡𝑀 < 𝑡𝐷 < 𝑡𝑁𝑠𝑋𝑉𝐼𝐼, 𝑡𝑁 < 𝑡𝐷

       (101) 

The solutions 𝑠𝐼,, 𝑠𝐼𝐼,, 𝑠𝐼𝑉, and 𝑠𝑋𝐼𝐼𝐼 are described in equations (102)-(105). Water 

saturation profile and salinity profile are presented in figures (14)-(21). The complete 

solution is detailed in the supplementary material. 

The self-similar part of the solution takes place when 𝑡𝐷 < 𝑡𝐻𝑆, solution 𝑠𝐼 (Equation 

102). 

𝑠𝐼 =

{  
   
  
   
  𝑠4(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝐷(𝑝𝐻)(1) 𝑡𝐷𝑠(4)−(3)(𝑥𝐷, 𝑡𝐷), 𝐷(𝑝𝐻)(1) 𝑡𝐷 < 𝑥𝐷 < 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷𝑠3(𝑥𝐷, 𝑡𝐷), 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (102) 
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In figures (14)-(15) it is shown the saturation and salinity profiles. It is possible to 

note that the pH change plays an important role in water saturation solution (saturation 

jump between 𝑠4 and 𝑠(4)−(3)). The solution path of 𝑠𝐼 is depicted in figure (16). 

 

Figure 14: Water saturation profile for 𝑠𝐼 

 

Figure 15: Salinity profile for 𝑡𝐷 < 𝑡𝐻𝑆 
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Solution 𝑠𝐼𝐼 (Equation 103) starts at the injection of the seawater drive, while 𝑡𝐻𝑆 <𝑡𝐷 < 𝑡𝐴. The water saturation profile is shown in figure (16) and the salinity profile in 

figure (17). The pH and salinity waves centered in 𝑡𝐻𝑆 change the saturation behavior 

(Figure 16). Note that the decreasing salinity followed by its increase in regions (7), (6) 

and (6)-(5) (Figure 17) result in the creation of a small oil bank in saturation solution 

(saturation 𝑠6 in Figure 16). 

𝑠𝐼𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷)𝑠6(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷)𝑠(6)−(5)(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐵𝑅 (𝑡𝐷)𝑠5(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐵𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐴𝑆 (𝑡𝐷)𝑠4(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐴𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝐷(𝑝𝐻)(1) 𝑡𝐷𝑠(4)−(3)(𝑥𝐷, 𝑡𝐷), 𝐷(𝑝𝐻)(1) 𝑡𝐷 < 𝑥𝐷 < 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷𝑠3(𝑥𝐷, 𝑡𝐷), 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (103) 



 

52 

 

 

Figure 16: Water saturation profile for 𝑠𝐼𝐼 
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Figure 17: Salinity profile for 𝑡𝐻𝑆 < 𝑡𝐷 < 𝑡𝐴 

Solution 𝑠𝐼𝑉 (𝑡𝐵 < 𝑡𝐷 < 𝑡𝐶) is characterized by the interaction between the rarefaction 

wave of family 𝑘 = 2 and the pH waves from the front of the slug. The pH shock to a 

more acidic media changes the adsorption parameters of the cations, and the salinity that 

increased along 𝑥𝐷 for family 𝑘 = 2 starts to decrease (Figure 19). This behavior impacts 

water saturation solution: it increases along 𝑥𝐷 before the pH shock (saturation wave 𝑠(6)−(5) in figure 18) and decreases after the pH shock (saturation wave 𝑠(6)−(5)− in figure 

21). 
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𝑠𝐼𝑉 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷)𝑠6(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷)𝑠(6)−(5)(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐶𝑆 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐶𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠(5)−(3−)(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥0 𝐸𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥0 𝐸𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐹𝑆 (𝑡𝐷)𝑠3(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐹𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (104) 

 

Figure 18: Water saturation profile for 𝑠𝐼𝑉 
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Figure 19: Salinity profile for 𝑡𝐵 < 𝑡𝐷 < 𝑡𝐶 

In solution 𝑠𝑋𝐼𝐼𝐼 (Equation 105) the rarefaction wave 𝑘 = 2 from the rear and 𝑘 = 3 

from the front of the low salinity slug interact, which leads to the disappearance of region 

(3-) (Figure 21) and rarefaction 𝑠3− (Figure 20), and the appearance of the region where 

these two waves interact: region (3)-(2)-- in salinity solution and rarefaction 𝑠(3)−(2)−− 

in saturation solution. In the region where the two waves interact there is a slight salinity 

increase, and a slight increase of water saturation. 
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𝑠𝑋𝐼𝐼𝐼 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐽 𝐿𝑅 (𝑡𝐷)𝑠(3)−(2)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐽 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐽 𝐾𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐽 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐾𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐺 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷 , 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (105) 

 

Figure 20: Water saturation profile for 𝑠𝑋𝐼𝐼𝐼 
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Figure 21: Salinity profile for 𝑡𝐽 < 𝑡𝐷 < 𝑡𝐾 

Note that due to the low adsorption rate of sodium, the waves of the family 𝑘 = 1 

from the rear and from the front of the slug will never interact with each other. Moreover, 

the rarefaction waves of the family 𝑘 = 2 don´t interact either, given that the last 

characteristic from the rear wave and the first characteristic from the front wave have the 

same slope. Another useful insight is that the waves of different families are completely 

separated from each other for 𝑡𝐷 > 𝑡𝑀. 

7. Summary and conclusions 

We presented the complete analytical solution for the injection of a low salinity slug 

driven by seawater in oil reservoirs. It was considered three dissolved cations in the 

injection water and pH effects, which resulted in a system of (𝑛 + 2) × (𝑛 + 2) partial 

differential equations, where 𝑛 is the number of dissolved cations. 



 

58 

 

The solution of this problem was built applying the splitting technique, which 

decoupled the original system of partial differential equations into a pH equation, an 

auxiliary system, and a lifting equation. Each problem was solved by the method of 

characteristics, and the solution extended the multicomponent chromatography theory for 

a two-phase flow in porous media considering non-constant adsorption coefficients and 

a different adsorption isotherm for the ion 𝐻+. 

The high difference between the adsorption rate of 𝐻+ and the other cations leads to 

the appearance of small constant state regions in the space-time plane, which quickly 

disappear over time. 

The pH of the initial water in porous media has an important effect on cations 

adsorption and water saturation solution, however, due to the high adsorption rates of 𝐻+ 

the pH effects take place close to injection point for most of the time. The pH effects will 

be important only for a large number of pore volumes injected, which agrees with 

experimental data (Austad et al., 2010; Aksulu et al., 2012). 

Different wave interaction types occur in the solution of this problem, which lead to 

several patterns in water saturation profiles. Moreover, the different salinity states 

resulting from interactions result in the appearance of oil and water banks along the 

porous media. This feature generates a large water bank when the 𝑘-waves from the rear 

of the low salinity slug begin to interact with the waves from the front. The low salinity 

effect (mobilization of residual oil) leads to the generation of an oil bank behind the large 

water bank. This behavior of water saturation profile can give useful insights to better 

understand and analyze recovery factor curves in reservoirs produced under low salinity 

waterflooding. 
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The solution procedure applied in this problem can be used in several other enhanced 

oil recovery techniques, including non-isothermal chemical flooding, low-salinity-

polymer flooding, and others. 
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Appendix A – Supplementary Material of the Paper “Oil Displacement by 
Multicomponent Slug Injection: An Analytical Solution for Langmuir 

Adsorption Isotherm 



 

In this supplementary material we present the detailed solution of the concentration and 

saturation in the auxiliary plane and saturation in physical plane. 

The auxiliary problem for the injection of 3 polymers is given by: 

{  
  𝜕𝑎1(𝑐)𝜕𝜑 + 𝜕𝑐1𝜕𝑥𝐷 = 0𝜕𝑎2(𝑐)𝜕𝜑 + 𝜕𝑐2𝜕𝑥𝐷 = 0𝜕𝑎3(𝑐)𝜕𝜑 + 𝜕𝑐3𝜕𝑥𝐷 = 0          (1) 

with the following initial and boundary conditions: 𝜑 = 0,   𝑐 (𝑥𝐷 , 0) = 𝑐(𝐼) = 0, 0 <  𝑥𝐷 < 𝐿Ω𝑠𝐴        (2) 

𝑥𝐷 = 0,   𝑐(0, 𝜑) = {𝑐(𝐽), 0 < 𝑡𝐷 < 10,       𝑡𝐷 > 1        (3) 

The 𝑖th Riemann invariant 𝐽𝑖 can be calculated from the relation (Rhee et al., 1970): 𝐽𝑖 = 𝐾𝑖𝑎𝑖(𝑐)𝐾𝑖−𝜔 , 𝑖 = 1,2,3          (4) 

where 𝜔 is a parameter of the problem. Moreover, we know that (Rhee et al., 1970): ∑ 𝐽𝑖3𝑖=1 = 1           (5) 

Thus, ∑ 𝐾𝑖𝑎𝑖(𝑐)𝐾𝑖−𝜔3𝑖=1 = 1          (6) 

The parameter 𝜔 can be calculated for any given concentration state solving equation (6), which 

has three distinct and positive roots (Rhee et al., 2001). Thus, for each concentration state 𝑐 =[𝑐1, 𝑐2, 𝑐3], there is an equivalent 𝜔⃗⃗⃗ = [𝜔1, 𝜔2, 𝜔3] state, where the components of the 𝜔⃗⃗⃗ vector 

are the roots of the polynomial (Equation 6) for the respective concentration state (Rhee et al., 



1970). Along a 𝑐 wave, one or more concentrations can change. However, when this wave is 

mapped on the 𝜔-space, only one coordinate of 𝜔⃗⃗⃗ varies and the other remain constant. 

We calculate the initial and boundary 𝜔⃗⃗⃗ from equation (6) for any initial and boundary 

conditions (Equations 2 and 3), which will be denoted as 𝜔⃗⃗⃗(𝐼) and 𝜔⃗⃗⃗(𝐽), respectively. In each 

wave only one 𝜔𝑖 (𝑖 = 1,2,3) changes. So, to connect the injection condition (𝐽) to the initial 

condition (𝐼), we must have three 𝜔 waves for 𝜑 < 1. For 𝜑 > 1, interaction between waves 

appear, thus there are at least six 𝜔 waves to connect the boundary condition to the initial 

condition of the problem (Rhee et al., 2001). 

After computing all 𝜔 waves, we can calculate the respective concentration waves from the 

relation (Rhee et al., 1970): 

𝐾𝑖𝑐𝑖 = (𝐾𝑖𝜔𝑖 − 1)∏ 𝐾𝑖𝜔𝑗−1𝐾𝑖𝐾𝑗−13𝑗=1,𝑗≠𝑖            (7) 

We can also determine the characteristic slope 𝜎(𝑘) of the 𝑘th family as a function of 𝜔 using the 

expression (Rhee et al., 1970): 

𝜎(𝑘) = 𝑑𝜑𝑑𝑥𝐷 = 𝜔𝑘(𝑘)∏ 𝜔𝑖(𝑘)𝐾𝑖3𝑖=1          (8) 

Note that for 𝜔𝑘(𝑘+1) < 𝜔𝑘(𝑘), we have 𝜎(𝑘+1) > 𝜎(𝑘), and therefore there is a 𝜔𝑘 rarefaction wave 

defined by equation (8), where all terms in the product remain constant, and 𝜔𝑘 varies 

continuously from 𝜔𝑘(𝑘) to 𝜔𝑘(𝑘+1). If 𝜔𝑘(𝑘+1) > 𝜔𝑘(𝑘), there is a 𝜔𝑘 jump from 𝜔𝑘(𝑘) to 𝜔𝑘(𝑘+1) 
where all 𝜔𝑖≠𝑘 remaining constant. The 𝑘th shock path is defined by the relation: 

𝑉(𝑘) = ( 𝑑𝜑𝑑𝑥𝐷)𝑠(𝑘) = 𝜔𝑘+∏ 𝜔𝑖(𝐽)𝐾𝑖𝑘−1𝑖=1         (9) 

Equation (9) is derived from Rankine-Hugoniot conditions (Rhee et al., 1970). Note that 

equations (8)-(9) can be applied for any number of components. 



When 𝜑 = 0, there is no polymer in the reservoir (Equation 2), therefore 𝜔𝑖(𝐽) < 𝜔𝑖(𝐼) for all 𝜔⃗⃗⃗ 

vector components, and the solution path in 𝜔-space for 𝜑 < 1 is composed by three shock 

waves (Table 1). 

Table 1: 𝜔-waves for 𝜑 < 1 

Injection state 𝜔1(𝐽) 𝜔2(𝐽) 𝜔3(𝐽) 
Intermediate state A 𝜔1(𝐽) 𝜔2(𝐽) 𝜔3(𝐼) 
Intermediate state B 𝜔1(𝐽) 𝜔2(𝐼) 𝜔3(𝐼) 
Initial state 𝜔1(𝐼) 𝜔2(𝐼) 𝜔3(𝐼) 
The solution path in 𝜔-space for 𝜑 < 1 is given by (𝐽) → (𝐴) → (𝐵) → (𝐼), where “→“ denotes 

a shock wave (Figure 1). From equation (7) we can calculate the constant concentration states 

associated to the 𝜔-waves described in table (1). In figure (1) the shock waves are presented as 

continuous lines between two states. 

 

Figure 1: Solution path for 𝜑 < 1 in 𝜔-space and in concentration space 

The water drive composition is similar to the connate water, so, for 𝜑 > 1 the 𝜔 injection state is 

equal to the initial state, and 𝜔𝑖(𝐼) < 𝜔𝑖(𝐽). Thus, after the beginning of the water drive, rarefaction 



waves appear at the rear of the slug. The structure of the 𝜔-waves for 𝜑 > 1 at the beginning of 

water drive are presented in table (2). 

Table 2: 𝜔-waves for 𝜑 > 1 

Injection state 𝜔1(𝐼) 𝜔2(𝐼) 𝜔3(𝐼) 
Intermediate state C 𝜔1(𝐼) 𝜔2(𝐼) 𝜔3(𝐽) 
Intermediate state D 𝜔1(𝐼) 𝜔2(𝐽) 𝜔3(𝐽) 
Intermediate state J 𝜔1(𝐽) 𝜔2(𝐽) 𝜔3(𝐽) 
Intermediate state A 𝜔1(𝐽) 𝜔2(𝐽) 𝜔3(𝐼) 
Intermediate state B 𝜔1(𝐽) 𝜔2(𝐼) 𝜔3(𝐼) 
Initial state 𝜔1(𝐼) 𝜔2(𝐼) 𝜔3(𝐼) 
The solution path in 𝜔-space for 𝜑 > 1 is presented in figure (2), and its structural formula is 

given by (𝐼) − (𝐶) − (𝐷) − (𝐽) → (𝐴) → (𝐵) → (𝐼), where “−” denotes a rarefaction wave. 

Analogously to the self-similar part of the solution, we can calculate the constant states of the 

solution when 𝜑 > 1 applying equation (34). In figure (2), the shock waves are presented as 

continuous lines between two points, and the rarefaction waves by dashed lines. 

 

Figure 2: Solution path for 𝜑 > 1 in 𝜔-space and in concentration space 



Note that in figures (1) and (2), the 𝜔-waves are straight lines parallel to one of the three axes, 

showing that only one 𝜔𝑖 changes. 

As the slug propagates along the 𝑥𝐷 × 𝜑 plane, interaction between waves may appear. Thus, the 

paths of the waves will be changed and the structure of 𝜔 waves solution also change. The 

theory of waves interactions is discussed in chapter 4 of Rhee et al. (2001). 

The solution of the auxiliary problem presents two types of wave interactions: interactions 

between rarefaction and shock waves from different families and between rarefaction and shock 

waves from the same family. 

Along the interaction between a rarefaction and a shock wave of different families, the waves are 

transmitted through each other and their paths change. The 𝑘th family rarefaction slope after the 

interaction with a 𝜔𝑗 shock wave is given by: 

𝜎(𝑘)− = ( 𝑑𝜑𝑑𝑥𝐷)(𝑘)− = 𝜔𝑘(𝑘) 𝜔𝑗−𝐾𝑗 ∏ 𝜔𝑖(𝑘)𝐾𝑖𝑘−1𝑖=1,𝑖≠𝑗        (10) 

where the superscript – denotes the value of 𝜔𝑗 and 𝜎(𝑘) after the shock. A rarefaction wave can 

cross more than one shock wave. In such cases, we denote the new rarefaction slope as 𝜎(𝑘)−−. 

Note that for a multicomponent system there will be up to 𝑘 − 1 rarefaction-shock interactions 

for the 𝑘th family. 

The 𝑘th family shock path along the interaction with a 𝜔𝑗 rarefaction is: 

𝑉(𝑘) = ( 𝑑𝜑𝑑𝑥𝐷)𝑠(𝑘) = 𝜔𝑘+ 𝜔𝑗𝐾𝑗∏ 𝜔𝑖(𝐽)𝐾𝑖𝑘−1𝑖=1,𝑖≠𝑗        (11) 

where 𝜔𝑗 varies continuously along the interaction. Therefore, the shock path is no longer a 

straight line. 

When waves of the same family interact, the rarefaction is adsorbed by the shock wave, i.e. it is 

not transmitted, and the new shock path can be obtained from the relation: 



𝑉(𝑘) = ( 𝑑𝜑𝑑𝑥𝐷)𝑠(𝑘) = 𝜔𝑘+ 𝜔𝑘−𝐾𝑘 ∏ 𝜔𝑖(𝐽)𝐾𝑖𝑘−1𝑖=1         (12) 

where the superscripts + and – denote the value of 𝜔 at the right and at the left state of the shock 

wave respectively, and 𝜔𝑘+ changes continuously along the interaction. We denote the shock path 

along an interaction region as 𝑥𝑠,𝑟(𝜑), where the subscript 𝑠 denotes the shock family, and the 

subscript 𝑟 denotes the rarefaction family. The shock path 𝑥𝑠,𝑟(𝜑) can be calculated integrating 

equation (12) along the interaction region. 

We now present the complete description of the solution of the auxiliary system, which is 

composed by 11 parts separated by the end of the chemical injection (𝜑 = 1) and by the crossing 

points between the waves: 

𝑐(𝑥𝐷, 𝜑) =
{  
   
    
 𝑐𝐼, 𝜑 < 1𝑐𝐼𝐼, 1 < 𝜑 < 𝜑𝐴𝑐𝐼𝐼𝐼, 𝜑𝐴 < 𝜑 < 𝜑𝐵𝑐𝐼𝑉, 𝜑𝐵 < 𝜑 < 𝜑𝐶𝑐𝑉, 𝜑𝐶 < 𝜑 < 𝜑𝐷𝑐𝑉𝐼, 𝜑𝐷 < 𝜑 < 𝜑𝐸𝑐𝑉𝐼𝐼, 𝜑𝐸 < 𝜑 < 𝜑𝐹𝑐𝑉𝐼𝐼𝐼, 𝜑𝐹 < 𝜑 < 𝜑𝐺𝑐𝐼𝑋, 𝜑𝐺 < 𝜑 < 𝜑𝐻𝑐𝑋, 𝜑𝐻 < 𝜑 < 𝜑𝐼𝑐𝑋𝐼, 𝜑𝐼 < 𝜑

        (13) 

The self-similar part of the solution 𝑐𝐼(𝑥𝐷, 𝜑) is composed by four constant states: 

𝑐𝐼(𝑥𝐷, 𝜑) =
{   
   𝑐1 = 𝑐1(𝐽), 𝑐2 = 𝑐2(𝐽), 𝑐3 = 𝑐3(𝐽), 𝑥𝐷 < 𝜑𝑉(3)𝑐1 = 𝑐1(𝐴), 𝑐2 = 𝑐2(𝐴), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(3) < 𝑥𝐷 < 𝜑𝑉(2)𝑐1 = 𝑐1(𝐵), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(2) < 𝑥𝐷 < 𝜑𝑉(1)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(1) < 𝑥𝐷

    (14) 

For 1 < 𝜑 < 𝜑𝐴 there is no wave interaction. Thus, 𝑐𝐼𝐼(𝑥𝐷, 𝜑) is composed by three rarefaction 

waves and three shock waves, and is given by: 



𝑐𝐼𝐼(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
  𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 0, 𝑐2 = 𝑐2(𝐷), 𝑐3 = 𝑐3(𝐷), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 𝑐1(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐽))𝑐1 = 𝑐1(𝐽), 𝑐2 = 𝑐2(𝐽), 𝑐3 = 𝑐3(𝐽), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐽)) < 𝑥𝐷 < 𝜑𝑉(3)𝑐1 = 𝑐1(𝐴), 𝑐2 = 𝑐2(𝐴), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(3) < 𝑥𝐷 < 𝜑𝑉(2)𝑐1 = 𝑐1(𝐵), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(2) < 𝑥𝐷 < 𝜑𝑉(1)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(1) < 𝑥𝐷

 (15) 

At 𝜑 = 𝜑𝐴 the rarefaction wave with slope 𝜎(1)(𝜔⃗⃗⃗(𝐽)) crosses the shock wave with slope 𝑉(3) 
and the first wave interaction appears. So, from now on, the constant state 𝑐(𝐽) is no longer 

present in the solution. Thus, the solution part 𝑐𝐼𝐼𝐼(𝑥𝐷 , 𝜑) is: 



𝑐𝐼𝐼𝐼(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
  𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 0, 𝑐2 = 𝑐2(𝐷), 𝑐3 = 𝑐3(𝐷), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 𝑐1+(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2+(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3+(𝑥𝐷, 𝜑), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝑥(3,1)(𝜑)𝑐1 = 𝑐1−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝑥(3,1)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐴𝜎(1)− (𝜔⃗⃗⃗⃗(𝐴))+ 𝑥𝐴𝑐1 = 𝑐1(𝐴), 𝑐2 = 𝑐2(𝐴), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐴𝜎(1)− (𝜔⃗⃗⃗⃗(𝐴))+ 𝑥𝐴 < 𝑥𝐷 < 𝜑𝑉(2)𝑐1 = 𝑐1(𝐵), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(2) < 𝑥𝐷 < 𝜑𝑉(1)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(1) < 𝑥𝐷

 (16) 

For 𝑐𝐼𝑉(𝑥𝐷, 𝜑), the rarefaction wave 𝜎(1)−  crosses the shock wave 𝑉(2) and the constant state (A) 

no longer exists. Thus, we have: 𝑐𝐼𝑉(𝑥𝐷, 𝜑) =

{  
   
   
   
   
  𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 0, 𝑐2 = 𝑐2(𝐷), 𝑐3 = 𝑐3(𝐷), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 𝑐1+(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2+(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3+(𝑥𝐷, 𝜑), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝑥(3,1)(𝜑)𝑐1 = 𝑐1−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝑥(3,1)(𝜑) < 𝑥𝐷 < 𝑥(2,1)(𝜑)𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,1)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵𝑐1 = 𝑐1(𝐵), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵 < 𝑥𝐷 < 𝜑𝑉(1)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(1) < 𝑥𝐷

 (17) 



At 𝜑 = 𝜑𝐶 the interaction between the rarefaction wave 𝜎(1) and the shock wave 𝑉(3) ends, and 

from now on the components 𝑐1 and 𝑐3 no longer coexist in any region. Thus, 𝑐𝑉 is given by: 𝑐𝑉(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
  𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 0, 𝑐2 = 𝑐2+(𝐷), 𝑐3 = 𝑐3+(𝐷), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−𝜑𝐶𝑉(3)(𝜔⃗⃗⃗⃗(𝐷))+ 𝑥𝐶𝑐1 = 0, 𝑐2 = 𝑐2(𝐸), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐶𝑉(3)(𝜔⃗⃗⃗⃗(𝐷))+ 𝑥𝐶 < 𝑥𝐷 < 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶𝑐1 = 𝑐1−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶 < 𝑥𝐷 < 𝑥(2,1)(𝜑)𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,1)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵𝑐1 = 𝑐1(𝐵), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵 < 𝑥𝐷 < 𝜑𝑉(1)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑𝑉(1) < 𝑥𝐷

 (18) 

When 𝜑 = 𝜑𝐷, the rarefaction 𝜎(1) meets the shock wave 𝑉(1), which is the first interaction 

between waves of the same family, and the constant state 𝑐(𝐵) no longer exists. Thus, the 

solution 𝑐𝑉𝐼(𝑥𝐷, 𝜑) is: 



𝑐𝑉𝐼(𝑥𝐷, 𝜑) =

{  
   
  
   
   
 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑐1 = 0, 𝑐2 = 𝑐2+(𝐷), 𝑐3 = 𝑐3+(𝐷), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−𝜑𝐶𝑉(3)(𝜔⃗⃗⃗⃗(𝐷))+ 𝑥𝐶𝑐1 = 0, 𝑐2 = 𝑐2(𝐸), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐶𝑉(3)(𝜔⃗⃗⃗⃗(𝐷))+ 𝑥𝐶 < 𝑥𝐷 < 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶𝑐1 = 𝑐1−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶 < 𝑥𝐷 < 𝑥(2,1)(𝜑)𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,1)(𝜑) < 𝑥𝐷 < 𝑥(1,1)(𝜑)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(1,1)(𝜑) < 𝑥𝐷

 (19) 

At 𝜑 = 𝜑𝐸, the rarefaction 𝜎(2) crosses the shock wave 𝑉(3), the constant state 𝑐(𝐷) disappears 

and a new rarefaction wave appears (𝜎(2)− ). Thus, the solution 𝑐𝑉𝐼𝐼(𝑥𝐷, 𝜑) is given by: 𝑐𝑉𝐼𝐼(𝑥𝐷, 𝜑) =

{  
   
  
   
   
 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2+(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3+(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝑥(3,2)(𝜑) 𝑐1 = 0, 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝑥(3,2)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐸𝑐1 = 0, 𝑐2 = 𝑐2(𝐸), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐸 < 𝑥𝐷 < 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶𝑐1 = 𝑐1−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶 < 𝑥𝐷 < 𝑥(2,1)(𝜑)𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,1)(𝜑) < 𝑥𝐷 < 𝑥(1,1)(𝜑)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(1,1)(𝜑) < 𝑥𝐷

 (20) 

After 𝜑 = 𝜑𝐹, component 1 is completely separated from the other chemicals and a region 

without any chemicals appears. So, the solution 𝑐𝑉𝐼𝐼𝐼(𝑥𝐷, 𝜑) is: 



𝑐𝑉𝐼𝐼𝐼(𝑥𝐷, 𝜑) =

{  
   
   
   
   
  𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2+(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3+(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝑥(3,2)(𝜑) 𝑐1 = 0, 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝑥(3,2)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐸𝑐1 = 0, 𝑐2 = 𝑐2+(𝐸), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐸 < 𝑥𝐷 < 𝜑−𝜑𝐹𝑉(𝐹)(𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐹𝑐1 = 0, 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐹𝑉(𝐹)(𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐹 < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹 < 𝑥𝐷 < 𝑥(1,1)(𝜑)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(1,1)(𝜑) < 𝑥𝐷

  (21) 

For 𝜑 = 𝜑𝐺 the rarefaction 𝜎(2)−  meets the shock 𝑉(2) and it is absorbed. Therefore, the constant 

state 𝑐(𝐸) is no longer present in the solution. So, 𝑐𝐼𝑋(𝑥𝐷, 𝜑) is: 

𝑐𝐼𝑋(𝑥𝐷, 𝜑) =

{  
   
  
   
  𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 𝑐2+(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3+(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝑥(3,2)(𝜑) 𝑐1 = 0, 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝑥(3,2)(𝜑) < 𝑥𝐷 < 𝑥(2,2)(𝜑)𝑐1 = 0, 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,2)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹 < 𝑥𝐷 < 𝑥(1,1)(𝜑)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(1,1)(𝜑) < 𝑥𝐷

 (22) 

After 𝜑 = 𝜑𝐻, all the components are completely separated (chromatographic cycle) by two 

regions where all concentrations are zero. Therefore, 𝑐𝑋(𝑥𝐷, 𝜑) is: 



𝑐𝑋(𝑥𝐷, 𝜑) =

{  
   
  
   
   
 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3+(𝐶), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑉(3)(𝜔⃗⃗⃗⃗(𝐶))+ 𝑥𝐻𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐻𝑉(3)(𝜔⃗⃗⃗⃗(𝐶))+ 𝑥𝐻 < 𝑥𝐷 < 𝜑−𝜑𝐻𝜎(2)− (𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻 𝑐1 = 0, 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐻𝜎(2)− (𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻 < 𝑥𝐷 < 𝑥(2,2)(𝜑)𝑐1 = 0, 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,2)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹 < 𝑥𝐷 < 𝑥(1,1)(𝜑)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(1,1)(𝜑) < 𝑥𝐷

 (23) 

For 𝜑 > 𝜑𝐼, the rarefaction wave 𝜎(3) is absorbed by the shock of same family 𝑉(3). As a 

consequence, the constant state 𝑐(𝐶) disappears. We can write 𝑐𝑋𝐼(𝑥𝐷, 𝜑) as: 

𝑐𝑋𝐼(𝑥𝐷, 𝜑) =
{  
   
  
    
 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3+(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝑥(3,3)(𝜑)𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 𝑐3(𝐼), 𝑥(3,3)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐻𝜎(2)− (𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻 𝑐1 = 0, 𝑐2 = 𝑐2−(𝑥𝐷, 𝜑), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐻𝜎(2)− (𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻 < 𝑥𝐷 < 𝑥(2,2)(𝜑)𝑐1 = 0, 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(2,2)(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹𝑐1 = 𝑐1−−(𝑥𝐷, 𝜑), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐹 < 𝑥𝐷 < 𝑥(1,1)(𝜑)𝑐1 = 𝑐1(𝐼), 𝑐2 = 𝑐2(𝐼), 𝑐3 = 𝑐3(𝐼), 𝑥(1,1)(𝜑) < 𝑥𝐷

 (24) 

From this point we present the solution of the lifting equation, given by: 

𝜕 𝐹(𝑈,𝑐)𝜕𝜑 + 𝜕𝑈(𝑠,𝑐)𝜕𝑥𝐷 = 0           (25) 

Applying the chain rule, we have: 

𝜕𝐹𝜕𝑈 𝜕𝑈𝜕𝜑 + 𝜕𝑈𝜕𝑥𝐷 = − 𝜕𝐹𝜕𝑐1 𝜕𝑐1𝜕𝜑 − 𝜕𝐹𝜕𝑐2 𝜕𝑐2𝜕𝜑 − 𝜕𝐹𝜕𝑐3 𝜕𝑐3𝜕𝜑         (26) 

In regions where the concentrations are constant we find 



𝜕𝑐1𝜕𝜑 = 0           (27) 

𝜕𝑐2𝜕𝜑 = 0           (28) 

𝜕𝑐3𝜕𝜑 = 0           (29) 

In such regions, the lifting equation is a homogeneous hyperbolic PDE given by: 

𝜕𝐹𝜕𝑈 𝜕𝑈𝜕𝜑 + 𝜕𝑈𝜕𝑥𝐷 = 0           (30) 

where each characteristic carries a constant value of 𝑈, and its velocity is defined by: 

𝑑𝜑𝑑𝑥𝐷 = 𝜎𝑈 = 𝜕𝐹(𝑈,𝑐)𝜕𝑈           (31) 

In rarefaction regions, where concentration changes continuously, along each characteristic 

(Equation 26) we have: 

𝑑𝑈𝑑𝑥𝐷 = − 𝜕𝐹𝜕𝑐1 𝜕𝑐1𝜕𝜑 − 𝜕𝐹𝜕𝑐2 𝜕𝑐2𝜕𝜑 − 𝜕𝐹𝜕𝑐3 𝜕𝑐3𝜕𝜑          (32) 

The solution of the lifting equation is divided in 11 parts: 

𝑈(𝑥𝐷, 𝜑) =
{  
   
   
  𝑈𝐼 , 𝜑 < 1𝑈𝐼𝐼 , 1 < 𝜑 < 𝜑𝐴𝑈𝐼𝐼𝐼, 𝜑𝐴 < 𝜑 < 𝜑𝐵𝑈𝐼𝑉 , 𝜑𝐵 < 𝜑 < 𝜑𝐶𝑈𝑉 , 𝜑𝐶 < 𝜑 < 𝜑𝐷𝑈𝑉𝐼 , 𝜑𝐷 < 𝜑 < 𝜑𝐸𝑈𝑉𝐼𝐼, 𝜑𝐸 < 𝜑 < 𝜑𝐹𝑈𝑉𝐼𝐼𝐼, 𝜑𝐹 < 𝜑 < 𝜑𝐺𝑈𝐼𝑋, 𝜑𝐺 < 𝜑 < 𝜑𝐻𝑈𝑋, 𝜑𝐻 < 𝜑 < 𝜑𝐼𝑈𝑋𝐼, 𝜑𝐼 < 𝜑

        (33) 

The solution 𝑈𝐼(𝑥𝐷, 𝜑) is presented for 𝜑𝐼, where 𝜑𝐼 < 1: 



𝑈𝐼(𝑥𝐷, 𝜑) =
{  
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐽),𝑐(𝐽))𝑈4(𝑥𝐷 , 𝜑), 𝜑𝜎𝑈(𝑈(𝐽),𝑐(𝐽)) < 𝑥𝐷 < 𝜑𝑉(3)𝑈(3), 𝜑𝑉(3) < 𝑥𝐷 < 𝜑𝑉(2)𝑈(2), 𝜑𝑉(2) < 𝑥𝐷 < 𝜑𝑉(1)𝑈(1), 𝜑𝑉(1) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷 , 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (34) 

The structural formula of 𝑈𝐼(𝑥𝐷, 𝜑) is (𝐼) → 𝐼+′′ − (1) → (2) → (3) → (4) − (𝐽), where “→” 

denotes a shock wave, and “−“ a rarefaction wave (Figure 3). Note that the subscript “𝑖” in the 

solution of 𝑈 represents a 𝑈-rarefaction wave in a region 𝑖 of figure (3), the superscript “(𝑖)” 

represents a constant state of 𝑈 in a region 𝑖 of figure (3), and the superscript “′′” in the structural 

formula denotes the first point of a rarefaction wave in the region. 

 

Figure 3: Solution 𝑈𝐼 in 𝐹 × 𝑈 plane 

For 𝑈𝐼𝐼(𝑥𝐷, 𝜑) we have: 



𝑈𝐼𝐼(𝑥𝐷, 𝜑) =

{  
   
   
   
   
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑈6(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷))𝑈5(𝑥𝐷, 𝜑), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐽))𝑈4(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈4(𝑥𝐷,𝜑),𝑐(𝐽)) < 𝑥𝐷 < 𝜑𝑉(3)𝑈(3), 𝜑𝑉(3) < 𝑥𝐷 < 𝜑𝑉(2)𝑈(2), 𝜑𝑉(2) < 𝑥𝐷 < 𝜑𝑉(1)𝑈(1), 𝜑𝑉(1) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (35) 

The structural formula for 𝑈𝐼𝐼(𝑥𝐷 , 𝜑) is (𝐼) → 𝐼+′′ − (1) → (2) → (3) → (4) − 5′′ − 6′′ − 7′′ −8′′ − 9′′ − 10′′ − (𝐽) (Figure 4). 



 

Figure 4: Solution 𝑈𝐼𝐼 in 𝐹 × 𝑈 plane 

State (4) disappears in solution 𝑈𝐼𝐼𝐼. We must also calculate new curves 𝐹(𝑈5+, 𝑐5+) and 𝐹(𝑈5−, 𝑐5−) to compute the solution. 𝑈𝐼𝐼𝐼(𝑥𝐷, 𝜑): 



𝑈𝐼𝐼𝐼(𝑥𝐷 , 𝜑) =

{  
   
   
   
   
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑈6(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷))𝑈5+(𝑥𝐷, 𝜑), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝜑)𝑈5−(𝑥𝐷, 𝜑), 𝑥3,1(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐴𝜎(1)− (𝜔⃗⃗⃗⃗(𝐴))+ 𝑥𝐴𝑈(3), 𝜑−𝜑𝐴𝜎(1)− (𝜔⃗⃗⃗⃗(𝐴))+ 𝑥𝐴 < 𝑥𝐷 < 𝜑𝑉(2)𝑈(2), 𝜑𝑉(2) < 𝑥𝐷 < 𝜑𝑉(1)𝑈(1), 𝜑𝑉(1) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (36) 

The structural formula for 𝑈𝐼𝐼𝐼 is: (𝐼) → 𝐼+′′ − (1) → (2) → (3) − 5−′′ → 5+′ − 5′′ − 6′′ −7′′ − 8′′ − 9′′ − 10′′ − (𝐽). The superscript “′” in the structural formula denotes the last point of 

a rarefaction wave in the region. The segments 𝑈5+(𝑥𝐷, 𝜑) and 𝑈5−(𝑥𝐷, 𝜑) indicate the 𝑈 states at 

the right and left of the shock path 𝑥𝐴𝐶 , which is the region where shock 𝑉(3) interacts with 

rarefaction 𝜎(1). The 𝑈𝐼𝐼𝐼(𝑥𝐷, 𝜑) solution in 𝐹 × 𝑈 plane is presented in figure 5. 



  

Figure 5: Solution 𝑈𝐼𝐼𝐼 in 𝐹 × 𝑈 plane 𝑈𝐼𝑉(𝑥𝐷, 𝜑) is defined by: 



𝑈𝐼𝑉(𝑥𝐷, 𝜑) =

{  
   
   
   
   
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑈6(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷))𝑈5+(𝑥𝐷, 𝜑), 𝜑−1𝜎(1)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝜑)𝑈5−(𝑥𝐷, 𝜑), 𝑥3,1(𝜑) < 𝑥𝐷 < 𝑥2,1(𝜑)𝑈5−−(𝑥𝐷, 𝜑), 𝑥2,1(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵𝑈(2), 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵 < 𝑥𝐷 < 𝜑𝑉(1)𝑈(1), 𝜑𝑉(1) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (37) 

The solution path for 𝑈𝐼𝑉 in 𝐹 × 𝑈 plane is presented in figure 6. For the sake of simplicity, from 

now on the constant state curves of 𝐹(𝑈, 𝑐) that are not part of the solution will not be shown in 

the figures. The structural formula for 𝑈𝐼𝑉 is: (𝐼) → 𝐼+′′ − (1) → (2) − 5−−′′ → 5−′′ − 5−′ →5′′ − 6′′ − 7′′ − 8′′ − 9′′ − 10′′ − (𝐽). 



 

Figure 6: Solution 𝑈𝐼𝑉 in 𝐹 × 𝑈 plane 

The rarefaction region (5) no longer exists in the solution path 𝑈𝑉. This solution is given by: 



𝑈𝑉(𝑥𝐷, 𝜑) =

{  
   
   
   
   
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷 , 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑈6(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝜑)𝑈(6−), 𝑥3,1(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶𝑈5−(𝑥𝐷, 𝜑), 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶 < 𝑥𝐷 < 𝑥2,1(𝜑)𝑈5−−(𝑥𝐷, 𝜑), 𝑥2,1(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵𝑈(2), 𝜑−𝜑𝐵𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐵))+ 𝑥𝐵 < 𝑥𝐷 < 𝜑𝑉(1)𝑈(1), 𝜑𝑉(1) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷 , 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (38) 

In figure 7, we present the solution path for 𝑈𝑉 in 𝐹 × 𝑈 plane. The structural formula is 

composed by (𝐼) → 𝐼+′′ − (1) → (2) − 5−−′′ → 5−′′ − 5−′ → 6′′ − 7′′ − 8′′ − 9′′ − 10′′ − (𝐽). 



 

Figure 7: Solution 𝑈𝑉 in 𝐹 × 𝑈 plane 

Solution 𝑈𝑉𝐼(𝑥𝐷, 𝜑) is given by: 



𝑈𝑉𝐼(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
   
 𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷 , 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷))𝑈6(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝜑)𝑈(6−), 𝑥3,1(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶𝑈5−(𝑥𝐷, 𝜑), 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶 < 𝑥𝐷 < 𝑥2,1(𝜑)𝑈5−−(𝑥𝐷, 𝜑), 𝑥2,1(𝜑) < 𝑥𝐷 < 𝑥1,1(𝜑)𝑈(1), 𝑥1,1(𝜑) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (39) 

In figure 8 we present the solution path for 𝑈𝑉𝐼 in 𝐹 × 𝑈 plane. The structural formula of the 

solution is: (𝐼) → 𝐼+′′ − (1) → 5−−′′ − 5−−′ → 5−′′ − 5−′ → 6′′ − 7′′ − 8′′ − 9′′ − 10′′ − (𝐽). 



 

Figure 8: Solution 𝑈𝑉𝐼 in 𝐹 × 𝑈 plane 

 

For 𝑈𝑉𝐼𝐼(𝑥𝐷, 𝜑) we have: 



𝑈𝑉𝐼𝐼(𝑥𝐷 , 𝜑) =

{  
   
   
  
   
   
   
 𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7+(𝑥𝐷 , 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝑥3,2(𝜑)𝑈7−(𝑥𝐷 , 𝜑), 𝑥3,2(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝑥𝐷,𝜑))𝑈(6−), 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝑥𝐷,𝜑)) < 𝑥𝐷 < 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶𝑈5−(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐶𝜎(1)− (𝜔⃗⃗⃗⃗(𝐸))+ 𝑥𝐶 < 𝑥𝐷 < 𝑥2,1(𝜑)𝑈5−−(𝑥𝐷, 𝜑), 𝑥2,1(𝜑) < 𝑥𝐷 < 𝑥1,1(𝜑)𝑈(1), 𝑥1,1(𝜑) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (40) 

The solution path for 𝑈𝑉𝐼𝐼 in 𝐹 × 𝑈 plane is presented in figure 9. The structural formula of the 

solution is: (𝐼) → 𝐼+′′ − (1) → 5−−′′ − 5−−′ → 5−′′ − (6−) − 7−′ → 7′′ − 8′′ − 9′′ − 10′′ −(𝐽). 



 

Figure 9: Solution 𝑈𝑉𝐼𝐼 in 𝐹 × 𝑈 plane 

Solution 𝑈𝑉𝐼𝐼𝐼(𝑥𝐷 , 𝜑) is given by: 

𝑈𝑉𝐼𝐼𝐼(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
   
 𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷 , 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7+(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝑥3,2(𝜑)𝑈7−(𝑥𝐷, 𝜑), 𝑥3,2(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝑥𝐷,𝜑))𝑈(6−), 𝜑−𝜑𝐸𝜎(2)− (𝜔⃗⃗⃗⃗(𝑥𝐷,𝜑)) < 𝑥𝐷 < 𝑥2,1(𝜑)𝑈(6−−) 𝑥2,1(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))𝑈5−−(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝑥1,1(𝜑)𝑈(1), 𝑥1,1(𝜑) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷 , 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (41) 



For this solution profile, the smallest adsorption chemical separates from the other two 

components (region 6−−) at the jump from 𝑈(6−) to 𝑈(6−−) (Figure 10). The structural formula 

for this part of the solution is: (𝐼) → 𝐼+′′ − (1) → 5−−′′ − (6−−) → (6−) − 7−′ → 7′′ − 8′′ −9′′ − 10′′ − (𝐽). 

 

Figure 10: Solution 𝑈𝑉𝐼𝐼𝐼 in the 𝐹 × 𝑈 plane 

The solution 𝑈𝐼𝑋(𝑥𝐷, 𝜑) is: 



𝑈𝐼𝑋(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷 , 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈8(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶))𝑈7+(𝑥𝐷, 𝜑), 𝜑−1𝜎(2)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝑥3,2(𝜑)𝑈7−(𝑥𝐷, 𝜑), 𝑥3,2(𝜑) < 𝑥𝐷 < 𝑥2,2(𝜑)𝑈(6−−) 𝑥2,2(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))𝑈5−−(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝑥1,1(𝜑)𝑈(1), 𝑥1,1(𝜑) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (42) 

The structural formula for 𝑈𝐼𝑋 is: (𝐼) → 𝐼+′′ − (1) → 5−−′′ − (6−−) → 7−′′ − 7−′ → 7′′ − 8′′ −9′′ − 10′′ − (𝐽). The solution path for 𝑈𝐼𝑋 in 𝐹 × 𝑈 plane is presented in figure 11. 



 

Figure 11: Solution 𝑈𝐼𝑋 in 𝐹 × 𝑈 plane 

The three components are completely separated in solution 𝑈𝑋(𝑥𝐷, 𝜑). Thus, there is no longer a 

region (7) in the solution profile and 𝑈𝑋(𝑥𝐷 , 𝜑) is given by: 



𝑈𝑋(𝑥𝐷 , 𝜑) =

{  
   
   
  
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶))𝑈 8+(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐶)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑉(3)(𝜔⃗⃗⃗⃗(𝐶))+ 𝑥𝐻𝑈(8−), 𝜑−𝜑𝐻𝑉(3)(𝜔⃗⃗⃗⃗(𝐶))+ 𝑥𝐻 < 𝑥𝐷 < 𝜑−𝜑𝐻𝜎(2)(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻𝑈7−(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝜎(2)(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻 < 𝑥𝐷 < 𝑥2,2(𝜑)𝑈(6−−) 𝑥2,2(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))𝑈5−−(𝑥𝐷, 𝜑), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝑥1,1(𝜑)𝑈(1), 𝑥1,1(𝜑) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

   (43) 

The structural formula for 𝑈𝑋 is: (𝐼) → 𝐼+′′ − (1) → 5−−" − (6−−) → 7−′′ − (8−) → 8′′ − 9′′ −10′′ − (𝐽). The solution in 𝐹 × 𝑈 plane is presented in figure 12. 



 

Figure 12: Solution 𝑈𝑋 in 𝐹 × 𝑈 plane 

Finally, for 𝑈𝑋𝐼(𝑥𝐷, 𝜑) we have: 



𝑈𝑋𝐼(𝑥𝐷 , 𝜑) =

{  
   
   
   
   
  𝑈(𝐽), 𝑥𝐷 < 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0)𝑈10(𝑥𝐷, 𝜑), 𝜑−1𝜎𝑈(𝑈(𝐽),𝑐=0) < 𝑥𝐷 < 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼))𝑈9+(𝑥𝐷, 𝜑), 𝜑−1𝜎(3)(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝑥3,3(𝜑)𝑈(8−), 𝑥3,3(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐻𝜎(2)(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻𝑈7−(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝜎(2)(𝜔⃗⃗⃗⃗(𝐼))+ 𝑥𝐻 < 𝑥𝐷 < 𝑥2,2(𝜑)𝑈(6−−) 𝑥2,2(𝜑) < 𝑥𝐷 < 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼))𝑈5−−(𝑥𝐷, 𝜑), 𝜑−𝜑𝐹𝜎(1)−−(𝜔⃗⃗⃗⃗(𝐼)) < 𝑥𝐷 < 𝑥1,1(𝜑)𝑈(1), 𝑥1,1(𝜑) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼))𝑈𝐼+(𝑥𝐷, 𝜑), 𝜑𝜎𝑈(𝑈(1),𝑐(𝐼)) < 𝑥𝐷 < 𝜑𝜎𝑈(𝑈(𝐼+),𝑐(𝐼))𝑈(𝐼), 𝑥𝐷 → +∞

    (44) 

The structural formula is given by: (𝐼) → 𝐼+′′ − (1) → 5−−′′ − (6−−) → 7−′′ − (8−) → 9′′ −10′′ − (𝐽). Figure 13 presents the solution path of 𝑈𝑋𝐼 in 𝐹 × 𝑈 plane. 



 

Figure 13: Solution 𝑈𝑋𝐼 in 𝐹 × 𝑈 plane 

We now present the exact expressions for each part of water saturation solution obtained from 

the inverse mapping of the lifting equation solution. We also show water saturation profiles, the 

solution path in the 𝑓 × 𝑠 plane and some comments regarding each part of the solution. 

The saturation solution is divided in 11 parts and is given by: 



𝑠(𝑥𝐷, 𝑡𝐷) =
{  
   
   
  𝑠𝐼, 𝑡𝐷 < 1𝑠𝐼𝐼, 1 < 𝑡𝐷 < 𝑡(𝐴)𝑠𝐼𝐼𝐼, 𝑡(𝐴) < 𝑡𝐷 < 𝑡(𝐵)𝑠𝐼𝑉, 𝑡(𝐵) < 𝑡𝐷 < 𝑡(𝐶)𝑠𝑉, 𝑡(𝐶) < 𝑡𝐷 < 𝑡(𝐼𝑉)𝑠𝑉𝐼, 𝑡(𝐼𝑉) < 𝑡𝐷 < 𝑡(𝐸)𝑠𝑉𝐼𝐼, 𝑡(𝐸) < 𝑡𝐷 < 𝑡(𝐹)𝑠𝑉𝐼𝐼𝐼, 𝑡(𝐹) < 𝑡𝐷 < 𝑡(𝐺)𝑠𝐼𝑋, 𝑡(𝐺) < 𝑡𝐷 < 𝑡(𝐻)𝑠𝑋, 𝑡(𝐻) < 𝑡𝐷 < 𝑡(𝐼)𝑠𝑋𝐼, 𝑡(𝐼) < 𝑡𝐷

       (45) 

During polymer slug injection (𝑡𝐷 < 1), the solution is self-similar and is equal to the solution of 

the continuous polymer injection problem (Dahl et al., 1992) for Langmuir adsorption isotherm. 

Thus, 𝑠𝐼(𝑥𝐷, 𝑡𝐷) is given by: 

𝑠𝐼(𝑥𝐷, 𝑡𝐷) =
{  
   
  
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐(𝐽))𝑠4(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐(𝐽)) < 𝑥𝐷 < 𝑡𝐷𝐷(3)𝑠(3), 𝑡𝐷𝐷(3) < 𝑥𝐷 < 𝑡𝐷𝐷(2)𝑠(2), 𝑡𝐷𝐷(2) < 𝑥𝐷 < 𝑡𝐷𝐷(1)𝑠(1), 𝑡𝐷𝐷(1) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

    (46) 

The saturation profile for three different 𝑡𝐷, where 𝑡𝐷1 < 𝑡𝐷2 < 𝑡𝐷3 < 1, is presented in figure 

(14). The solution path of 𝑠𝐼 in 𝑓 × 𝑠 plane is shown in figure (15), and the structural formula is: (𝐽) − (4) → (3) → (2) → (1) − 𝐼+′′ → (𝐼). 



 

Figure 14: Saturation profiles of the solution 𝑠𝐼(𝑥𝐷, 𝑡𝐷) 

 

Figure 15: Solution path of 𝑠𝐼 in 𝑓 × 𝑠 plane 

For 𝑡𝐷 > 1, the water drive begins and interactions between waves appear. Solution 𝑠𝐼𝐼(𝑥𝐷, 𝑡𝐷) 
is given by: 



𝑠𝐼𝐼(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
  
   
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷))𝑠6(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(1)(𝑠6(𝑥𝐷,𝜑),𝑐(𝐷))𝑠5(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(1)(𝑠6(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(1)(𝑠5(𝑥𝐷,𝜑),𝑐(𝐽))𝑠4(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(1)(𝑠5(𝑥𝐷,𝜑),𝑐(𝐽)) < 𝑥𝐷 < 𝑡𝐷𝐷(3)𝑠(3), 𝑡𝐷𝐷(3) < 𝑥𝐷 < 𝑡𝐷𝐷(2)𝑠(2), 𝑡𝐷𝐷(2) < 𝑥𝐷 < 𝑡𝐷𝐷(1)𝑠(1), 𝑡𝐷𝐷(1) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (47) 

We present the saturation profile of 𝑠𝐼𝐼(𝑥𝐷, 𝑡𝐷) in figure (16). The solution path for 𝑠𝐼𝐼(𝑥𝐷, 𝑡𝐷) in 𝑓 × 𝑠 plane is shown in figure (17), and its structural formula is: (𝐽) − 10′′ − 9′′ − 8′′ − 7′′ −5′′ − (4) → (3) → (2) → (1) − 𝐼+′′ → (𝐼). 

 

Figure 16: Saturation profile of the solution 𝑠𝐼𝐼(𝑥𝐷, 𝑡𝐷) 



 

Figure 17: Solution path of 𝑠𝐼𝐼 in 𝑓 × 𝑠 plane 

In 𝑠𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) the rarefaction 𝜆(1) interacts with the shock wave 𝐷(3), which is the first 

interaction between two concentration waves in the solution, and region (4) disappears. Thus, we 

have: 

𝑠𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
  
   
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷))𝑠6(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(1)(𝑠6(𝑥𝐷,𝜑),𝑐(𝐷))𝑠5+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(1)(𝑠6(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝑡𝐷)𝑠5−(𝑥𝐷, 𝑡𝐷), 𝑥3,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐴𝜆(1)− (𝑠(3),𝑐(𝐴))− 𝑥𝐴𝑠(3), 𝑡𝐷−𝑡𝐴𝜆(1)− (𝑠(3),𝑐(𝐴))− 𝑥𝐴 < 𝑥𝐷 < 𝑡𝐷𝐷(2)𝑠(2), 𝑡𝐷𝐷(2) < 𝑥𝐷 < 𝑡𝐷𝐷(1)𝑠(1), 𝑡𝐷𝐷(1) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (48) 



The saturation profile of 𝑠𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) is presented in figure (18), and the solution path in the 𝑓 × 𝑠 
plane is shown in figure (19). The structural formula of 𝑠𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) is: (𝐽) − 10′′ − 9′′ − 8′′ −7′′ − 6′′ − 5+′′ → 5−′ − 5−′′ − (3) → (2) → (1) − 𝐼+′′ → (𝐼). Observe that a water bank 

created by two surrounding higher viscosity waves appears in the solution in region (5−). This 

phenomena will also take place in other parts of the solution where there is a lower viscosity 

fluid surrounded by two higher viscosity fluids. 

 

Figure 18: Saturation profile of the solution 𝑠𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) 

 

Figure 19: Solution path of 𝑠𝐼𝐼𝐼 in 𝑓 × 𝑠 plane 



The rarefaction 𝜆(1)−  crosses the shock 𝐷(2) and the region (3) disappears in solution 𝑠𝐼𝑉(𝑥𝐷, 𝑡𝐷). 
Therefore, 

𝑠𝐼𝑉(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
   
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷))𝑠6(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(1)(𝑠6(𝑥𝐷,𝜑),𝑐(𝐷))𝑠5+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(1)(𝑠6(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝑡𝐷)𝑠5−(𝑥𝐷, 𝑡𝐷), 𝑥3,1(𝑡𝐷) < 𝑥𝐷 < 𝑥2,1(𝑡𝐷)𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑥2,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐵𝜆(1)−−(𝑠(3),𝑐(𝐴))− 𝑥𝐵𝑠(2), 𝑡𝐷−𝑡𝐵𝜆(1)−−(𝑠(3),𝑐(𝐴))− 𝑥𝐵 < 𝑥𝐷 < 𝑡𝐷𝐷(1)𝑠(1), 𝑡𝐷𝐷(1) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (49) 

In figure (20) we present the saturation profile of solution 𝑠𝐼𝑉(𝑥𝐷, 𝑡𝐷), and in figure (21) the 

solution path of 𝑠𝐼𝑉(𝑥𝐷, 𝑡𝐷) in 𝑓 × 𝑠 plane is shown, which structural formula is given by: (𝐽) −10′′ − 9′′ − 8′′ − 7′′ − 6′′ − 5+′′ → 5−′ − 5−′′ → 5−−′ − (2) → (1) − 𝐼+′′ → (𝐼). 



 

Figure 20: Saturation profile of solution 𝑠𝐼𝑉(𝑥𝐷, 𝑡𝐷) 

 

Figure 21: Solution path of 𝑠𝐼𝑉 in 𝑓 × 𝑠 plane 

In 𝑠𝑉(𝑥𝐷, 𝑡𝐷) the constant state 𝑐 = 𝑐(𝐷) (region 6−) appears in the solution and the region (5) no 

longer exists. Thus, 



𝑠𝑉(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
  
   
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷))𝑠6(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝑡𝐷)𝑠(6−), 𝑥3,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐶𝜆(1)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐶𝑠5−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐶𝜆(1)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐶 < 𝑥𝐷 < 𝑥2,1(𝑡𝐷)𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑥2,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐵𝜆(1)−−(𝑠(3),𝑐(𝐴))− 𝑥𝐵𝑠(2), 𝑡𝐷−𝑡𝐵𝜆(1)−−(𝑠(3),𝑐(𝐴))− 𝑥𝐵 < 𝑥𝐷 < 𝑡𝐷𝐷(1)𝑠(1), 𝑡𝐷𝐷(1) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (50) 

The saturation profile of 𝑠𝑉(𝑥𝐷, 𝑡𝐷) is shown in figure (22) and the solution path in 𝑓 × 𝑠 plane is 

presented in figure (23). The structural formula of 𝑠𝑉(𝑥𝐷, 𝑡𝐷) is: (𝐽) − 10′′ − 9′′ − 8′′ − 7′′ −6′′ → (6−) − 5−′′ → 5−−′ − (2) → (1) − 𝐼+′′ → (𝐼). 



 

Figure 22: Saturation profile of the solution 𝑠𝑉(𝑥𝐷, 𝑡𝐷) 

 

Figure 23: Solution path of 𝑠𝑉 in 𝑓 × 𝑠 plane 

In solution 𝑠𝑉𝐼(𝑥𝐷, 𝑡𝐷) the rarefaction 𝜆(1) is absorbed by shock 𝐷(1). Thus, the solution is: 



𝑠𝑉𝐼(𝑥𝐷, 𝑡𝐷) =

{  
   
   
  
   
   
   
 𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷))𝑠6(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠7(𝑥𝐷,𝜑),𝑐(𝐷)) < 𝑥𝐷 < 𝑥3,1(𝑡𝐷)𝑠(6−), 𝑥3,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐶𝜆(1)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐶𝑠5−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐶𝜆(1)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐶 < 𝑥𝐷 < 𝑥2,1(𝑡𝐷)𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑥2,1(𝑡𝐷) < 𝑥𝐷 < 𝑥1,1(𝑡𝐷)𝑠(1), 𝑥1,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (51) 

Next, we present the saturation profile (Figure 24) and the solution path in 𝑓 × 𝑠 plane (Figure 

25) of the solution 𝑠𝑉𝐼(𝑥𝐷, 𝜑), which has the structural formula: (𝐽) − 10′′ − 9′′ − 8′′ − 7′′ −6′′ → (6−) − 5−′′ → 5−−′ − 5−−′′ → (1) − 𝐼+′′ → (𝐼). 

 

Figure 24: Saturation profile of the solution 𝑠𝑉𝐼(𝑥𝐷, 𝑡𝐷) 



 

Figure 25: Solution path of 𝑠𝑉𝐼 in 𝑓 × 𝑠 plane 

In the next part of the solution (𝑠𝑉𝐼𝐼(𝑥𝐷, 𝑡𝐷)), the rarefaction 𝜆(2) crosses the shock wave 𝐷(3) at 

point 𝐸, and region (6) disappears. Therefore, 



𝑠𝑉𝐼𝐼(𝑥𝐷, 𝑡𝐷) =

{  
   
   
  
   
   
   
 𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7+(𝑥𝐷 , 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑥3,2(𝑡𝐷)𝑠7−(𝑥𝐷 , 𝑡𝐷), 𝑥3,2(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐸𝜆(2)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐸𝑠(6−), 𝑡𝐷−𝑡𝐸𝜆(2)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐸 < 𝑥𝐷 < 𝑡𝐷−𝑡𝐶𝜆(1)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐶𝑠5−(𝑥𝐷 , 𝑡𝐷), 𝑡𝐷−𝑡𝐶𝜆(1)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐶 < 𝑥𝐷 < 𝑥2,1(𝑡𝐷)𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑥2,1(𝑡𝐷) < 𝑥𝐷 < 𝑥1,1(𝑡𝐷)𝑠(1), 𝑥1,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷 , 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

  (52) 

The saturation profile of solution 𝑠𝑉𝐼𝐼(𝑥𝐷, 𝑡𝐷) is shown in figure (26), and the solution path in 𝑓 × 𝑠 plane is presented in figure (27). The structural formula is given by: (𝐽) − 10′′ − 9′′ −8′′ − 7′′ → 7−′ − (6−) − 5−′′ → −5−−′ − 5−−′′ → (1) − 𝐼+′′ → (𝐼). 

 

Figure 26: Saturation profile of the solution 𝑠𝑉𝐼𝐼(𝑥𝐷, 𝑡𝐷) 



 

Figure 27: Solution path of 𝑠𝑉𝐼𝐼 in 𝑓 × 𝑠 plane 

In 𝑠𝑉𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷), the interaction between rarefaction 𝜆(1) and the shock wave 𝐷(2) ends, and a 

pure water bank appears in the solution (region 6−−). Thus, 

𝑠𝑉𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
   
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑥3,2(𝑡𝐷)𝑠7−(𝑥𝐷, 𝑡𝐷), 𝑥3,2(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐸𝜆(2)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐸𝑠(6−), 𝑡𝐷−𝑡𝐸𝜆(2)− (𝑠(6−),𝑐(𝐷))− 𝑥𝐸 < 𝑥𝐷 < 𝑡𝐷−𝑡𝐹𝐷(2)(𝑠(6−),𝑐(𝐷))− 𝑥𝐹𝑠(6−−), 𝑡𝐷−𝑡𝐹𝐷(2)(𝑠(6−),𝑐(𝐷))− 𝑥𝐹 < 𝑥𝐷 < 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹 < 𝑥𝐷 < 𝑥1,1(𝑡𝐷)𝑠(1), 𝑥1,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

  (53) 



We present the saturation profile of equation (53) in figure (28), and the solution path in 𝑓 × 𝑠 
plane in figure (29). The structural formula is given by: (𝐽) − 10′′ − 9′′ − 8′′ − 7′′ → 7−′ −(6−) → (6−−) − 5−−′′ → (1) − 𝐼+′′ → (𝐼). 

 

Figure 28: Saturation profile of the solution 𝑠𝑉𝐼𝐼𝐼(𝑥𝐷, 𝑡𝐷) 

 

Figure 29: Solution path of 𝑠𝑉𝐼𝐼𝐼 in the 𝑓 × 𝑠 plane 

For 𝑡𝐷 > 𝑡𝐺 (solution 𝑠𝐼𝑋(𝑥𝐷, 𝑡𝐷)), the rarefaction 𝜆(2) is absorbed by the shock 𝐷(2). Therefore, 

the solution for this region is given by: 



𝑠𝐼𝑋(𝑥𝐷, 𝑡𝐷) =

{  
   
   
  
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))𝑠7+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(2)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑥3,2(𝑡𝐷)𝑠7−(𝑥𝐷, 𝑡𝐷), 𝑥3,2(𝑡𝐷) < 𝑥𝐷 < 𝑥2,2(𝑡𝐷)𝑠(6−−), 𝑥2,2(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹 < 𝑥𝐷 < 𝑥1,1(𝑡𝐷)𝑠(1), 𝑥1,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (54) 

In figure (30) the saturation profile of solution 𝑠𝐼𝑋(𝑥𝐷, 𝑡𝐷) is presented. In figure (31) we show 

the solution path in 𝑓 × 𝑠 plane, which has structural formula (𝐽) − 10′′ − 9′′ − 8′′ − 7′′ →7−′ − 7−′′ → (6−−) − 5−−′′ → (1) − 𝐼+′′ → (𝐼). 

 

Figure 30: Saturation profile of the solution 𝑠𝐼𝑋(𝑥𝐷, 𝑡𝐷) 



 

Figure 31: Solution path of 𝑠𝐼𝑋 in 𝑓 × 𝑠 plane 

For 𝑡𝐷 > 𝑡𝐻 (solution 𝑠𝑋(𝑥𝐷, 𝑡𝐷)), the interaction between rarefaction 𝜆(2) and the shock 𝐷(3) 
ends, and region 7 is no longer present in the solution. Moreover, at this point the separation of 

the chemical components is completed. Note that due to the separation of the chemicals, a new 

pure water bank region appears (region 8−). Thus, 𝑠𝑋(𝑥𝐷, 𝑡𝐷) is given by: 



𝑠𝑋(𝑥𝐷, 𝑡𝐷) =

{  
   
   
  
   
   
   
 𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶))𝑠8+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠9(𝑥𝐷,𝜑),𝑐(𝐶)) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐻𝐷(3)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))+ 𝑥𝐻𝑠(8−), 𝑡𝐷−𝑡𝐻𝐷(3)(𝑠8(𝑥𝐷,𝜑),𝑐(𝐶))+ 𝑥𝐻 < 𝑥𝐷 < 𝑡𝐷−𝑡𝐻𝜆(2)− (𝑠8(𝑥𝐷,𝜑),𝑐=0)+ 𝑥𝐻𝑠7−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐻𝜆(2)− (𝑠8(𝑥𝐷,𝜑),𝑐=0)+ 𝑥𝐻 < 𝑥𝐷 < 𝑥2,2(𝑡𝐷)𝑠(6−−), 𝑥2,2(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹 < 𝑥𝐷 < 𝑥1,1(𝑡𝐷)𝑠(1), 𝑥1,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷 , 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

 (55) 

Next, we present the saturation profile of 𝑠𝑋(𝑥𝐷, 𝑡𝐷) (Figure 32) and the solution path in 𝑓 × 𝑠 
plane (Figure 33). The structural formula of the solution is: (𝐽) − 10′′ − 9′′ − 8′′ → (8−) −7−′′ → (6−−) − 5−−′′ → (1) − 𝐼+′′ → (𝐼). 

 

Figure 32: Saturation profile of the solution 𝑠𝑋(𝑥𝐷, 𝑡𝐷) 



 

Figure 33: Solution path of 𝑠𝑋 in 𝑓 × 𝑠 plane 

For 𝑡𝐷 = 𝑡𝐼, the rarefaction wave 𝜆(3) meets the shock wave 𝐷(3) (solution 𝑠𝑋𝐼(𝑥𝐷, 𝑡𝐷)). At this 

part of the solution, the region (8) no longer exists and the constant concentration state is 𝑐 =𝑐(𝐼) = 0; 𝑠𝑋𝐼(𝑥𝐷, 𝑡𝐷) is given by: 

𝑠𝑋𝐼(𝑥𝐷, 𝑡𝐷) =

{  
   
   
  
   
   
  𝑠(𝐽), 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0)𝑠10(𝑥𝐷, 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(𝐽),𝑐=0) < 𝑥𝐷 < 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0)𝑠9+(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−1𝜆(3)(𝑠10(𝑥𝐷,𝜑),𝑐=0) < 𝑥𝐷 < 𝑥3,3(𝑡𝐷)𝑠(8−), 𝑥3,3(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐻𝜆(2)− (𝑠8(𝑥𝐷,𝜑),𝑐=0)+ 𝑥𝐻𝑠7−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐻𝜆(2)− (𝑠8(𝑥𝐷,𝜑),𝑐=0)+ 𝑥𝐻 < 𝑥𝐷 < 𝑥2,2(𝑡𝐷)𝑠(6−−), 𝑥2,2(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹𝑠5−−(𝑥𝐷, 𝑡𝐷), 𝑡𝐷−𝑡𝐹𝜆(1)−−(𝑠(6−−),𝑐=0)− 𝑥𝐹 < 𝑥𝐷 < 𝑥1,1(𝑡𝐷)𝑠(1), 𝑥1,1(𝑡𝐷) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼))𝑠𝐼+(𝑥𝐷 , 𝑡𝐷), 𝑡𝐷𝜆(𝑠)(𝑠(1),𝑐(𝐼)) < 𝑥𝐷 < 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))𝑠(𝐼), 𝑥𝐷 > 𝑡𝐷𝜆(𝑠)(𝑠(𝐼+),𝑐(𝐼))

   (56) 



When 𝑡𝐷 → +∞, the rarefaction waves are completely absorbed by the shock waves of the same 

family (Rhee et al., 2001). Therefore, the chemicals concentration and water saturation along all 

the reservoir are 𝑐 = 0 and 𝑠 = 𝑠(𝐽), respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B – Supplementary material of the paper “Mathematical 
Modeling of Low Salinity Waterflooding in Sandstone Reservoirs: 

Enhanced Oil Recovery by Multicomponent Cation Exchange” 



B.1 

 

B.  

This supplementary material presents the complete solution description of the 

auxiliary system (section A), lifting equation (section B) and 𝑥𝐷 × 𝑡𝐷 plane solution 

(section C) for the paper “Mathematical Modeling of Low Salinity Waterflooding in 

Sandstone Reservoirs: Enhanced Oil Recovery by Multicomponent Cation Exchange”. 

 

A. Auxiliary system solution 

The solution of the auxiliary system can be divided into 17 regions (see figure 3 in 

the original paper) separated by the points (𝑥𝐴, 𝜑𝐴)-(𝑥𝑁, 𝜑𝑁) and the point (𝑥𝑝𝐻 , 𝜑𝑝𝐻) 
that comes from the pH solution (Equation B.1). 

𝑐(𝑥𝐷, 𝜑) =

{  
   
   
  
   
   
  𝑐𝐼 ⃗⃗ ⃗⃗ , 𝜑 < 𝜑𝐻𝑆𝑐𝐼𝐼 ⃗⃗⃗⃗⃗⃗ , 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴𝑐𝐼𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝜑𝐴 < 𝜑 < 𝜑𝐵𝑐𝐼𝑉 ⃗⃗⃗⃗⃗⃗⃗, 𝜑𝐵 < 𝜑 < 𝜑𝐶𝑐𝑉 ⃗⃗ ⃗⃗ ⃗, 𝜑𝐶 < 𝜑 < 𝜑𝐷𝑐𝑉𝐼 ⃗⃗⃗⃗⃗⃗⃗, 𝜑𝐷 < 𝜑 < 𝜑𝐸𝑐𝑉𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝜑𝐸 < 𝜑 < 𝜑𝐹𝑐𝑉𝐼𝐼𝐼 ⃗⃗ ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ , 𝜑𝐹 < 𝜑 < 𝜑𝐺𝑐𝐼𝑋 ⃗⃗⃗⃗ ⃗⃗⃗, 𝜑𝐺 < 𝜑 < 𝜑𝐻𝑐𝑋 ⃗⃗ ⃗⃗ ⃗, 𝜑𝐻 < 𝜑 < 𝜑𝐼𝑐𝑋𝐼 ⃗⃗⃗⃗⃗⃗⃗, 𝜑𝐼 < 𝜑 < 𝜑𝑝𝐻𝑐𝑋𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝜑𝑝𝐻 < 𝜑 < 𝜑𝐽𝑐𝑋𝐼𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗⃗ , 𝜑𝐽 < 𝜑 < 𝜑𝐾𝑐𝑋𝐼𝑉 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝜑𝐾 < 𝜑 < 𝜑𝐿𝑐𝑋𝑉 ⃗⃗⃗⃗ ⃗⃗⃗⃗ , 𝜑𝐿 < 𝜑 < 𝜑𝑀𝑐𝑋𝑉𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝜑𝑀 < 𝜑 < 𝜑𝑁𝑐𝑋𝑉𝐼𝐼 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, 𝜑𝑁 < 𝜑

      (B.1) 

The self-similar part of the solution takes place when 𝜑 < 𝜑𝐻𝑆 (𝑐𝐼⃗⃗⃗ ⃗ in equation B.1). 

The concentration profile is detailed in equation (B.2): 



B.2 

 

𝑐𝐼 ⃗⃗ ⃗⃗ =

{  
   
  
   
   
 𝑐(𝐽1), 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑐(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.2) 

A concentration profile of 𝑐𝐼 ⃗⃗ ⃗⃗  is presented in figure (B.1) emphasizing the effect of 

pH waves on the solution. 

 

Figure B.1: Solution of the auxiliary system (𝑐𝐼⃗⃗⃗ ⃗) 
The solution of the auxiliary system for this region is defined as 𝑐𝐼𝐼⃗⃗⃗⃗⃗ (Equation (B.3), 

and it is given by: 



B.3 

 

𝑐𝐼𝐼⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑐(6), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑐(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1))𝑐(5), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(1)𝑐(𝐽1), 𝜑−𝜑𝐻𝑆𝑉(1) < 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑐(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.3) 

Figure (B.2) presents the concentration profile of the solution 𝑐𝐼𝐼⃗⃗⃗⃗⃗. 



B.4 

 

 

Figure B.2: Solution of the auxiliary system for 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴 (𝑐𝐼𝐼⃗⃗⃗⃗⃗) 
Region (4) disappears in 𝑐𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ , and a new rarefaction wave (𝑐(5)−(3−)) and the 

constant state 𝑐(3−) appear. The family 𝑘 = 1 is separated from the pH wave. 

Equation (B.4) presents the exact expression for the region 𝑐𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗  and the 

concentration profile of each component is shown in figure (B.3). 



B.5 

 

𝑐𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑐(6), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑐(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1))𝑐(5), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(5)−(3−)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑐(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.4) 
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Figure B.3: Solution 𝑐𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗  of the auxiliary system 

For 𝜑𝐵 < 𝜑 < 𝜑𝐶 (𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗ ), the rarefaction wave 𝑐(6)−(5) interacts with the pH waves. 

In this region part of that rarefaction is located at the left of the pH shock (constant pH) 

and the other part at the right, a pH-concentration rarefaction wave. The characteristic 

path of the rarefaction 𝑐(6)−(5) changes along the interaction, and the new paths are 

denoted as 𝑥(6)−(5)− (𝜑). Equation (B.5) details 𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗  and the concentration profile is 

shown in figure (B.4). 



B.7 

 

𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑐(6), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑐(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(6)−(5)− (𝜑)𝑐(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑐(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.5) 



B.8 

 

 

Figure B.4: Concentration profile for the solution 𝑐𝐼𝑉⃗⃗⃗⃗⃗⃗  

If 𝜑𝐶 < 𝜑 < 𝜑𝐷, there is an interaction between the pH rarefaction wave and the 𝑘 = 2 family rarefaction wave, and a new rarefaction region appears (𝑐(6)−(3−−)), 
solution part 𝑐𝑉⃗⃗⃗⃗⃗ (Equation B.6 and figure B.5). 

In equation (B.6) we call 𝑥(6)−(5)−(+)
 the path of the first characteristic curve of the 

wave (6) − (5) after it crosses the pH shock of the front of the low salinity slug. The 

last rarefaction characteristic path will be denoted as 𝑥(6)−(5)−(−)
. 



B.9 

 

𝑐𝑉⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑐(6), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(6)−(3−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑐(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.6) 
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Figure B.5: Concentration profile for 𝑐𝑉⃗⃗⃗⃗⃗ 
The solution 𝑐𝑉𝐼⃗⃗⃗⃗⃗⃗  occurs when 𝜑𝐷 < 𝜑 < 𝜑𝐸, where the shock wave of the family 𝑘 = 3 from the rear of the low salinity slug reaches the pH waves of the front and 

interacts with them. As a result, the shock path is modified, and it is no longer a straight 

line. The region 𝑐(6) disappears of the solution. The new shock path will be denoted as 𝑥(3)− . In equation (B.7) we present the mathematical description of this part of the 

solution of the auxiliary system. In figure (B.6) the concentration profile for the solution 

part 𝑐𝑉𝐼⃗⃗⃗⃗⃗⃗  is presented. 
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𝑐𝑉𝐼⃗⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(3)−𝑐(6)−(3−−)(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑐(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.7) 
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Figure B.6: Solution 𝑐𝑉𝐼⃗⃗⃗⃗⃗⃗  of the auxiliary system 

For 𝜑𝐸 < 𝜑 < 𝜑𝐹 (solution 𝑐𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗), the 𝑘-waves are separated from the pH waves, 

and the region (6) and the rarefaction waves 𝑐(6)−(3−−) and 𝑐(5)−(3−) no longer appear 

in the solution. In equation (B.8) we present the mathematical details of this part of the 

solution and the concentration profile can be seen in figure (B.7). 
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𝑐𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(3−), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑐(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.8) 

 

Figure B.7: Solution 𝑐𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗ of the auxiliary system 

In solution 𝑐𝑉𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ (𝜑𝐹 < 𝜑 < 𝜑𝐺), the shock wave of the family 𝑘 = 1 interacts with 

the rarefaction wave of the family 𝑘 = 3, and region (3) disappears. The mathematical 

description of 𝑐𝑉𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ is shown in equation (B.9). The concentration profile is presented in 

figure (B.8). 
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𝑐𝑉𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(3−), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(1)−−(𝜑)𝑐(3)−(2)(𝑥𝐷, 𝜑), 𝑥(1)−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.9) 

 

Figure B.8: Solution 𝑐𝑉𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ of the auxiliary system 

For 𝜑𝐺 < 𝜑 < 𝜑𝐻, which corresponds to solution 𝑐𝐼𝑋⃗⃗ ⃗⃗ ⃗⃗ , the wave family 𝑘 = 1 is 

completely separated from the wave 𝑘 = 3, and region (2-) appears. The exact solution 𝑐𝐼𝑋⃗⃗ ⃗⃗ ⃗⃗  is presented in equation (B.10) and its concentration profile is shown in figure (B.9). 
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𝑐𝐼𝑋⃗⃗ ⃗⃗ ⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(3−), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑐(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−(𝜑)𝑐(2), 𝑥(1)−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.10) 

 

Figure B.9: Concentration profile of solution 𝑐𝐼𝑋⃗⃗ ⃗⃗ ⃗⃗  

Solution 𝑐𝑋⃗⃗⃗⃗⃗ occurs when 𝜑𝐻 < 𝜑 < 𝜑𝐼, where the rarefaction wave 𝑐(2)−(1)− 

appears, which is a result of an interaction between the waves 𝑘 = 2 from the front of 

the low salinity slug and 𝑘 = 1 from the rear of the low salinity slug. In this part of the 
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solution region (2) disappears. Equation (B.11) details 𝑐𝑋⃗⃗⃗⃗⃗, and figure (B.10) shows the 

concentration profile when 𝜑𝐻 < 𝜑 < 𝜑𝐼. 

𝑐𝑋⃗⃗⃗⃗⃗ =

{  
   
   
   
  
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(3−), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑐(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(2)−(1)(𝑥𝐷, 𝜑), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.11) 

 

Figure B.10: Solution 𝑐𝑋⃗⃗⃗⃗⃗ 
The concentration solution when 𝜑𝐼 < 𝜑 < 𝜑𝑝𝐻 is defined as 𝑐𝑋𝐼⃗⃗⃗⃗ ⃗⃗ . The wave family 𝑘 = 1 is completely separated from the wave family 𝑘 = 2. Thus, constant state region 
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(1-) appears. Equation (B.12) describes 𝑐𝑋𝐼⃗⃗⃗⃗ ⃗⃗ , and figure (B.11) presents the concentration 

profile. 

𝑐𝑋𝐼⃗⃗⃗⃗ ⃗⃗ =

{  
   
   
   
   
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑐(7), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(3−), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑐(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.12) 

 

Figure B.11: Concentration profile of the solution part 𝑐𝑋𝐼⃗⃗⃗⃗ ⃗⃗  

Solution 𝑐𝑋𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗ takes place when 𝜑𝑝𝐻 < 𝜑 < 𝜑𝐽. Here the pH wave from the rear of 

the low salinity slug reaches the pH wave from the front, which leads to a wave 

interaction of the same family (Rhee et al., 2001). The result is a shock wave that 
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continuously absorb the pH rarefaction wave, and region (7) is no longer present in the 

solution of the auxiliary system. In equation (B.13) we present this part of the solution 

and the concentration profile is shown in figure (B.12). 

𝑐𝑋𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗ =

{  
   
   
  
   
   
   
 𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑐(3−), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑐(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.13) 

 

Figure B.12: Solution part 𝑐𝑋𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗ of the auxiliary system 

In the solution 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ the interaction between rarefaction waves of the families 𝑘 = 2 

and 𝑘 = 3 begins. This interaction region is bounded by the curves (𝐽 − 𝐿) =𝑥(3)−(2)−−(+) (𝜑), (𝐾 −𝑀) = 𝑥(3)−(2)−−(−) (𝜑), (𝐽 − 𝐾) = 𝑥(6)−(5)−−(−) (𝜑) and (𝐿 − 𝑀) =
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𝑥(6)−(5)−−(+) (𝜑). In this part of the solution the region (3-) disappears. In equation (B.14) we 

detail 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗, and its concentration profile is shown in figure (B.13). 

𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ =

{  
   
   
  
   
   
   
 𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑐(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑) 𝑐(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑐(2−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.14) 

 

Figure B.13: Concentration profile of the solution 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ 
In the next part of the solution of the auxiliary system (solution 𝑐𝑋𝐼𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), part of the 

rarefaction wave 𝑘 = 2 from the rear of the low salinity slug is separated from the 

rarefaction wave 𝑘 = 3 from the front. Thus, we have: 
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𝑐𝑋𝐼𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

{  
   
   
  
   
   
   
 𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑐(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑐(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑) 𝑐(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑐(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.15) 

The concentration profile for the solution 𝑐𝑋𝐼𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is shown in figure (B.14). Note that 

the difference from the solution 𝑐𝑋𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ lies on the region where the rarefaction waves 

interact. 

 

Figure B.14: Concentration profile of the solution 𝑐𝑋𝐼𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

The solution 𝑐𝑋𝑉⃗⃗ ⃗⃗ ⃗⃗⃗, which occurs when 𝜑𝐿 < 𝜑 < 𝜑𝑀, is the last part of the solution 

of the auxiliary system where there is interaction between rarefaction waves. In this 
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solution, part of the rarefaction wave 𝑘 = 3 from the front of the low salinity slug is 

separated from the rarefaction wave 𝑘 = 2 from the rear of the slug. Equation (B.16) 

presents the mathematical details for this part of the solution, and its concentration 

profile is shown in figure (B.15). 

𝑐𝑋𝑉⃗⃗ ⃗⃗ ⃗⃗⃗ =

{  
   
   
  
   
   
   
 𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑐(3)−(2)−−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(+) (𝜑)𝑐(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑) 𝑐(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑐(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.16) 

 

Figure B.15: Concentration profile of the solution 𝑐𝑋𝑉⃗⃗ ⃗⃗ ⃗⃗⃗ 
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For 𝜑𝑀 < 𝜑 < 𝜑𝑁, 𝑐 = 𝑐𝑋𝑉𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . In this part, the wave families 𝑘 = 2 and 𝑘 = 3 are 

fully separated, and the new region (2--) appears. In equation (B.17) it is possible to 

find the mathematical details regarding this part of the solution, and in figure (B.16) we 

present its concentration profile. As the concentration waves after 𝑐(2)−(1)− appear for 

large 𝑥𝐷 they are not shown in figure (B.16). 

𝑐𝑋𝑉𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

{  
   
   
  
   
   
   
 𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑐(3−−), 𝑥(3)− < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑐(3)−(2)−−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑐(2−−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(+) (𝜑)𝑐(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑐(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.17) 

 

Figure B.16: Concentration profile of the solution 𝑐𝑋𝑉𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  



B.23 

 

In solution 𝑐𝑋𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (for 𝜑 > 𝜑𝑁), the waves from the family 𝑘 = 3 of the rear of the 

slug catch up the waves of the same family of the front of the slug, an interaction 

between waves of the same family. The shock path of this interaction is denoted as 𝑥(3)−−. 

Furthermore, the region (3--) disappears. In equation (B.18) we present the 

mathematical expression for 𝑐𝑋𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and in figure (B.17) we present its concentration 

profile. 

𝑐𝑋𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

{  
   
   
  
   
   
  𝑐(𝐽2), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑐(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑐(3−−−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−−𝑐(3)−(2)−−−(𝑥𝐷, 𝜑), 𝑥(3)−− < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑐(2−−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(+) (𝜑)𝑐(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑐(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑐(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑐(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑐(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑐(1)−(𝐼)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑐(𝐼), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < 𝜑−𝑠(𝐼)

   (B.18) 



B.24 

 

 

Figure B.17: Concentration profile of the solution 𝑐𝑋𝑉𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

B. Lifting equation solution 

The solution of the lifting equation is divided into the same 17 regions of the 

auxiliary solution: 

𝑈(𝑥𝐷, 𝜑) =

{  
   
   
   
   
  𝑈𝐼 , 𝜑 < 𝜑𝐻𝑆𝑈𝐼𝐼 , 𝜑𝐻𝑆 < 𝜑 < 𝜑𝐴𝑈𝐼𝐼𝐼, 𝜑𝐴 < 𝜑 < 𝜑𝐵𝑈𝐼𝑉 , 𝜑𝐵 < 𝜑 < 𝜑𝐶𝑈𝑉 , 𝜑𝐶 < 𝜑 < 𝜑𝐷𝑈𝑉𝐼 , 𝜑𝐷 < 𝜑 < 𝜑𝐸𝑈𝑉𝐼𝐼, 𝜑𝐸 < 𝜑 < 𝜑𝐹𝑈𝑉𝐼𝐼𝐼, 𝜑𝐹 < 𝜑 < 𝜑𝐺𝑈𝐼𝑋, 𝜑𝐺 < 𝜑 < 𝜑𝐻𝑈𝑋, 𝜑𝐻 < 𝜑 < 𝜑𝐼𝑈𝑋𝐼, 𝜑𝐼 < 𝜑 < 𝜑𝑝𝐻𝑈𝑋𝐼𝐼, 𝜑𝑝𝐻 < 𝜑 < 𝜑𝐽𝑈𝑋𝐼𝐼𝐼, 𝜑𝐽 < 𝜑 < 𝜑𝐾𝑈𝑋𝐼𝑉, 𝜑𝐾 < 𝜑 < 𝜑𝐿𝑈𝑋𝑉, 𝜑𝐿 < 𝜑 < 𝜑𝑀𝑈𝑋𝑉𝐼, 𝜑𝑀 < 𝜑 < 𝜑𝑁𝑈𝑋𝑉𝐼𝐼, 𝜑𝑁 < 𝜑

      (B.1) 

Each solution part of equation (B.1) is presented in equations (B.2)-(B.18) and each 

solution path in 𝐹 × 𝑈 plane is shown in figures (B.1)-(B.17). 
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𝑈𝐼 =

{  
   
   
   
   
  𝑈4(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑈(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼))𝑈3(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.2) 

 

Figure B.1: Solution path of 𝑈𝐼 in the 𝐹 × 𝑈 plane 
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𝑈𝐼𝐼 =

{  
   
   
   
  
   
   
   
   
 𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑈6(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑈(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1))𝑈5(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(1)𝑈4(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(1) < 𝑥𝐷 < 𝜑𝑉𝑝𝐻(1)𝑈(4)−(3)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼))𝑈3(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(1)(𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.3) 
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Figure B2: Solution path of 𝑈𝐼𝐼 in the 𝐹 × 𝑈 plane 



B.28 

 

𝑈𝐼𝐼𝐼 =

{  
   
   
   
  
   
   
   
   
 𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑈6(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑈(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1))𝑈5(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(5),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(5)−(3−)(𝑥𝐷, 𝜑), 𝜑𝑉𝑝𝐻(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈(3−), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑈(3), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.4) 
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Figure B3: Solution path of 𝑈𝐼𝐼𝐼 in the 𝐹 × 𝑈 plane 



B.30 

 

𝑈𝐼𝑉 =

{  
   
   
   
  
   
   
   
   
 𝑈𝐽2(𝑥𝐷 , 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑈6(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1))𝑈(6)−(5)(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝜎(2)(𝜔⃗⃗⃗⃗(6),𝜉(𝐽1)) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(6)−(5)− (𝜑)𝑈(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑈3(𝑥𝐷, 𝜑), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.5) 
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Figure B.4: Solution path of 𝑈𝐼𝑉 in the 𝐹 × 𝑈 plane 
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𝑈𝑉 =

{  
   
   
   
  
   
   
   
   
 𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉(3)𝑈6(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉(3) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(6)−(3−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈(5)−(3−)(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑈3(𝑥𝐷, 𝜑), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.6) 



B.33 

 

 

Figure B.5: Solution path of 𝑈𝑉 in 𝐹 × 𝑈 plane 



B.34 

 

𝑈𝑉𝐼 =

{  
   
   
   
  
   
   
   
  𝑈𝐽2(𝑥𝐷 , 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝑥(3)−𝑈(6)−(3−−)(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑈3(𝑥𝐷, 𝜑), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.7) 

 

Figure B.6: Solution path of 𝑈𝑉𝐼 in 𝐹 × 𝑈 plane 



B.35 

 

𝑈𝑉𝐼𝐼 =

{  
   
   
   
  
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷 , 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)− (𝜑) 𝑈3(𝑥𝐷 , 𝜑), 𝑥(1)− (𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼))𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(3),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.8) 



B.36 

 

 

Figure B.7: Solution path of 𝑈𝑉𝐼𝐼 in 𝐹 × 𝑈 plane 



B.37 

 

𝑈𝑉𝐼𝐼𝐼 =

{  
   
   
   
  
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(1)−−(𝜑)𝑈(3)−(2)(𝑥𝐷, 𝜑), 𝑥(1)−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2), 𝜑𝜎(3)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.9) 
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Figure B.8: Solution path of 𝑈𝑉𝐼𝐼𝐼 in 𝐹 × 𝑈 plane 



B.39 

 

𝑈𝐼𝑋 =

{  
   
   
   
  
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑈(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−(𝜑)𝑈(2), 𝑥(1)−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼))𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(2),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.10) 



B.40 

 

 

Figure B.9: Solution path of 𝑈𝐼𝑋 in 𝐹 × 𝑈 plane 



B.41 

 

𝑈𝑋 =

{  
   
   
   
  
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷, 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑈(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(2)−(1)(𝑥𝐷, 𝜑), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1), 𝜑𝜎(2)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷 , 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞

   (B.11) 



B.42 

 

 

Figure B.10: Solution path of 𝑈𝑋 in 𝐹 × 𝑈 plane 



B.43 

 

𝑈𝑋𝐼 =

{  
   
   
   
  
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2)𝑈7(𝑥𝐷 , 𝜑), 𝜑−𝜑𝐻𝑆𝑉𝑝𝐻(2) < 𝑥𝐷 < 𝜑𝑉(𝑝𝐻)(1)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝜑𝑉(𝑝𝐻)(1) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑈(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼) 𝑥𝐷 → +∞

   (B.12) 
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Figure B.11: Solution path of 𝑈𝑋𝐼 in 𝐹 × 𝑈 plane 
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𝑈𝑋𝐼𝐼 =

{  
   
   
   
   
   
   
  𝑈𝐽2(𝑥𝐷 , 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑)𝑈3−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(+) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−(−) (𝜑)𝑈(2−), 𝑥(3)−(2)−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.13) 
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Figure B.12: Solution path of 𝑈𝑋𝐼𝐼 in 𝐹 × 𝑈 plane 
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𝑈𝑋𝐼𝐼𝐼 =

{  
   
   
   
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷 , 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑈(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−(−) (𝜑) 𝑈(3)−(2)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(−) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑈(2−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼) 𝑥𝐷 → +∞

   (B.14) 
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Figure B.13: Solution path of 𝑈𝑋𝐼𝐼𝐼 in 𝐹 × 𝑈 plane 
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𝑈𝑋𝐼𝑉 =

{  
   
   
   
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(6)−(5)−(+) (𝜑)𝑈(6)−(5)−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑈(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑) 𝑈(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑈(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈⃗⃗⃗(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.15) 
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Figure B.14: Solution path of 𝑈𝑋𝐼𝑉 in 𝐹 × 𝑈 plane 
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𝑈𝑋𝑉 =

{  
   
   
   
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑈(3)−(2)−−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(+) (𝜑)𝑈(3)−(2)−−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑) 𝑈(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑈(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 < +∞

   (B.16) 
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Figure B.15: Solution path of 𝑈𝑋𝑉 in 𝐹 × 𝑈 plane 
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𝑈𝑋𝑉𝐼 =

{  
   
   
   
   
   
   
  𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷, 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−𝑈3−−(𝑥𝐷, 𝜑), 𝑥(3)− < 𝑥𝐷 < 𝑥(3)−(2)−−(+) (𝜑)𝑈(3)−(2)−−−(𝑥𝐷, 𝜑), 𝑥(3)−(2)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑈(2−−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(+) (𝜑)𝑈(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑈(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.17) 
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Figure B.16: Solution path of 𝑈𝑋𝑉𝐼 in 𝐹 × 𝑈 plane 
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𝑈𝑋𝑉𝐼𝐼 =

{  
   
   
  
   
   
   
 𝑈𝐽2(𝑥𝐷, 𝜑), 𝑥𝐷 < 𝑥𝑝𝐻− (𝜑)𝑈(7)−(3−−−)(𝑥𝐷, 𝜑), 𝑥𝑝𝐻− (𝜑) < 𝑥𝐷 < 𝜑𝜎𝑝𝐻(𝜉(𝐼))𝑈3−−−(𝑥𝐷 , 𝜑), 𝜑𝜎𝑝𝐻(𝜉(𝐼)) < 𝑥𝐷 < 𝑥(3)−−𝑈(3)−(2)−−−(𝑥𝐷, 𝜑), 𝑥(3)−− < 𝑥𝐷 < 𝑥(3)−(2)−−(−) (𝜑)𝑈(2−−), 𝑥(3)−(2)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(+) (𝜑)𝑈(6)−(5)−−(𝑥𝐷, 𝜑), 𝑥(6)−(5)−−(+) (𝜑) < 𝑥𝐷 < 𝑥(6)−(5)−−(−) (𝜑)𝑈(2−), 𝑥(6)−(5)−−(−) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(+) (𝜑)𝑈(2)−(1)−, 𝑥(2)−(1)−(+) (𝜑) < 𝑥𝐷 < 𝑥(2)−(1)−(−) (𝜑)𝑈(1−), 𝑥(2)−(1)−(−) (𝜑) < 𝑥𝐷 < 𝑥(1)−−−(𝜑)𝑈(1), 𝑥(1)−−−(𝜑) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼))𝑈(1)−(𝐼+)(𝑥𝐷, 𝜑), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(1),𝜉(𝐼)) < 𝑥𝐷 < 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼))𝑈(𝐼+), 𝜑𝜎(1)(𝜔⃗⃗⃗⃗(𝐼),𝜉(𝐼)) < 𝑥𝐷 < +∞𝑈(𝐼), 𝑥𝐷 → +∞

   (B.18) 



B.56 

 

 

Figure B.17: Solution path of 𝑈𝑋𝑉𝐼𝐼 in 𝐹 × 𝑈 plane 

C. Solution in 𝒙𝑫 × 𝒕𝑫 plane 

The solution in 𝑥𝐷 × 𝑡𝐷 plane is also divided in 17 regions: 
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𝑠(𝑥𝐷, 𝑡𝐷) =

{  
   
   
   
   
  𝑠𝐼, 𝑡𝐷 < 𝑡𝐻𝑆𝑠𝐼𝐼, 𝑡𝐻𝑆 < 𝑡𝐷 < 𝑡𝐴𝑠𝐼𝐼𝐼, 𝑡𝐴 < 𝑡𝐷 < 𝑡𝐵𝑠𝐼𝑉, 𝑡𝐵 < 𝑡𝐷 < 𝑡𝐶𝑠𝑉, 𝑡𝐶 < 𝑡𝐷 < 𝑡𝑑𝑠𝑉𝐼, 𝑡𝑑 < 𝑡𝐷 < 𝑡𝐸𝑠𝑉𝐼𝐼, 𝑡𝐸 < 𝑡𝐷 < 𝑡𝐹𝑠𝑉𝐼𝐼𝐼, 𝑡𝐹 < 𝑡𝐷 < 𝑡𝐺𝑠𝐼𝑋, 𝑡𝐺 < 𝑡𝐷 < 𝑡𝐻𝑠𝑋, 𝑡𝐻 < 𝑡𝐷 < 𝑡𝐼𝑠𝑋𝐼, 𝑡𝐼 < 𝑡𝐷 < 𝑡𝑝𝐻𝑠𝑋𝐼𝐼, 𝑡𝑝𝐻 < 𝑡𝐷 < 𝑡𝐽𝑠𝑋𝐼𝐼𝐼, 𝑡𝐽 < 𝑡𝐷 < 𝑡𝐾𝑠𝑋𝐼𝑉, 𝑡𝐾 < 𝑡𝐷 < 𝑡𝐿𝑠𝑋𝑉, 𝑡𝐿 < 𝑡𝐷 < 𝑡𝑀𝑠𝑋𝑉𝐼, 𝑡𝑀 < 𝑡𝐷 < 𝑡𝑁𝑠𝑋𝑉𝐼𝐼, 𝑡𝑁 < 𝑡𝐷

       (C.1) 

The exact expression for each part of the solution is shown in equations (C.2)-

(C.18). Water saturation profile, salinity profile, and solution path in 𝑓 × 𝑠 plane are 

presented in figures (C.1)-(C.51). 

The self-similar part of the solution takes place when 𝑡𝐷 < 𝑡𝐻𝑆, solution 𝑠𝐼 
(Equation C.2). 

𝑠𝐼 =

{  
   
  
   
  𝑠4(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝐷(𝑝𝐻)(1) 𝑡𝐷𝑠(4)−(3)(𝑥𝐷, 𝑡𝐷), 𝐷(𝑝𝐻)(1) 𝑡𝐷 < 𝑥𝐷 < 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷𝑠3(𝑥𝐷, 𝑡𝐷), 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (C.2) 

In figures (C.1)-(C.2) it is shown the saturation and salinity profiles. It is possible to 

note that the pH change plays an important role in water saturation solution. The 

solution path of 𝑠𝐼 is depicted in figure (C.3). 
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Figure C.1: Water saturation profile for 𝑠𝐼 

 

Figure C.2: Salinity profile for 𝑡𝐷 < 𝑡𝐻𝑆 
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Figure C.3: Solution path of 𝑠𝐼 in 𝑓 × 𝑠 plane 

Solution 𝑠𝐼𝐼 (Equation C.3) starts at the injection of the seawater drive, when 𝑡𝐻𝑆 <𝑡𝐷 < 𝑡𝐴. The water saturation profile is shown in figure (C.4) and the salinity profile is 

in figure (C.5). The pH and salinity waves centered in 𝑡𝐻𝑆 change the saturation (Figure 

C.4). Note that the decreasing salinity followed by its increase in regions (7), (6) and 

(6)-(5) (Figure C.5) result in the creation of a small oil bank in saturation solution 

(saturation 𝑠6 in Figure C.4). The solution path of 𝑠𝐼𝐼 is presented in Figure (C.6). 
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𝑠𝐼𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷)𝑠6(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷)𝑠(6)−(5)(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐵𝑅 (𝑡𝐷)𝑠5(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐵𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐴𝑆 (𝑡𝐷)𝑠4(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐴𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝐷(𝑝𝐻)(1) 𝑡𝐷𝑠(4)−(3)(𝑥𝐷, 𝑡𝐷), 𝐷(𝑝𝐻)(1) 𝑡𝐷 < 𝑥𝐷 < 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷𝑠3(𝑥𝐷, 𝑡𝐷), 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (C.3) 

 

Figure C.4: Water saturation profile for 𝑠𝐼𝐼 
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Figure C.5: Salinity profile for 𝑡𝐻𝑆 < 𝑡𝐷 < 𝑡𝐴 
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Figure C.6: Solution path of 𝑠𝐼𝐼 in 𝑓 × 𝑠 plane 

In solution 𝑠𝐼𝐼𝐼 (Equation C.4), when 𝑡𝐴 < 𝑡𝐷 < 𝑡𝐵, the wave 𝑘 = 1 crosses the pH 

shock from the front of the low salinity slug, and the region of salinity (4) disappears 

(Figure C.8). Moreover, a new salinity region appears: region (5)-(3-), located between 

the shock wave 𝑘 = 1 and the last rarefaction wave 𝑘 = 2. The water saturation peak 

from rarefaction 𝑠4 (see Figure C.4) is no longer present in the solution and a new wave 

(𝑠(5)−(3)−) appears (Figure C.7). 
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𝑠𝐼𝐼𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷)𝑠6(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷)𝑠(6)−(5)(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐵𝑅 (𝑡𝐷)𝑠5(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐵𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐵𝑆 (𝑡𝐷)𝑠(5)−(3−)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐵𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐹𝑆 (𝑡𝐷)𝑠(4)−(3)(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐹𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷𝑠3(𝑥𝐷, 𝑡𝐷), 𝜆(𝑝𝐻)(𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷 , 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.4) 

 

Figure C.7: Water saturation profile for 𝑠𝐼𝐼𝐼 
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Figure C.8: Water saturation profile for 𝑠𝐼𝐼𝐼 
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Figure C.9: Solution path of 𝑠𝐼𝐼𝐼 in 𝑓 × 𝑠 plane 

Solution 𝑠𝐼𝑉 (𝑡𝐵 < 𝑡𝐷 < 𝑡𝐶) is characterized by the interaction between the family 𝑘 = 2 rarefaction wave and the pH waves from the front of the slug. The pH shock to a 

more acidic media changes the adsorption parameters of the cations, and the salinity that 

increased along 𝑥𝐷 for family 𝑘 = 2 starts to decrease (Figure C.11). This behavior 

impacts water saturation solution: it increases along 𝑥𝐷 before the pH shock (saturation 

wave 𝑠(6)−(5) in figure C.10), and decreases after the pH shock (saturation wave 𝑠(6)−(5)− in figure C.10). The solution path is presented in figure (C.12). 
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𝑠𝐼𝑉 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷)𝑠6(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷)𝑠(6)−(5)(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝐶𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐶𝑆 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐶𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠(5)−(3−)(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥0 𝐸𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥0 𝐸𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐹𝑆 (𝑡𝐷)𝑠3(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐹𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (C.5) 

 

Figure C.10: Water saturation profile for 𝑠𝐼𝑉 
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Figure C.11: Salinity profile for 𝑡𝐵 < 𝑡𝐷 < 𝑡𝐶 
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Figure C.12: Solution path of 𝑠𝐼𝑉 in 𝑓 × 𝑠 plane 

In solution 𝑠𝑉 (𝑡𝐶 < 𝑡𝐷 < 𝑡𝑑) family wave 𝑘 = 2 from the rear of the slug interacted 

with the pH shock from the front and the rarefaction 𝑠(6)−(5)− no longer exists in the 

solution. Besides that, a new salinity rarefaction appears (region (6)-(3--) in figure 

C.14). In this region the water saturation rarefaction decreases along 𝑥𝐷 (𝑠(6)−(3−−)in 

figure C.13). The solution path in 𝑓 × 𝑠 plane is presented in figure (C.15). 
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𝑠𝑉 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷)𝑠6(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑑𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐷𝑆 (𝑡𝐷)𝑠(6)−(3−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐷𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠(5)−(3−)(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥0 𝐸𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥0 𝐸𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐹𝑆 (𝑡𝐷)𝑠3(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐹𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (C.6) 

 

Figure C.13: Water saturation profile for 𝑠𝑉 
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Figure C.14: Salinity profile for 𝑡𝐶 < 𝑡𝐷 < 𝑡𝑑 
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Figure C.15: Solution path of 𝑠𝑉 in 𝑓 × 𝑠 plane 

Two new features appear in solution 𝑠𝑉𝐼 (𝑡𝑑 < 𝑡𝐷 < 𝑡𝐸). The first one is that the 

family 𝑘 = 3 shock wave crosses the pH shock wave from the front of the slug. As a 

consequence there is a new pH rarefaction region (7)-(3---) and another rarefaction 

wave (𝑠(7)−(3−−−)). Moreover, family 𝑘 = 2  rarefaction the located at the rear of the 

low salinity slug fully interacted with the pH waves from the front and it is located in a 

region of constant 𝑝𝐻 = 𝑝𝐻(𝐼). The solution path of 𝑠𝑉𝐼 in 𝑓 × 𝑠 plane is shown in 

figure (C.18). 
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𝑠𝑉𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐷 𝐸𝑆 (𝑡𝐷)𝑠(6)−(3−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 𝐸𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐹𝑆 (𝑡𝐷)𝑠3(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐹𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.7) 

 

Figure C.16: Water saturation profile for 𝑠𝑉𝐼 
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Figure C.17: Salinity profile for 𝑡𝑑 < 𝑡𝐷 < 𝑡𝐸 
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Figure C.18: Solution path of 𝑠𝑉𝐼 in 𝑓 × 𝑠 plane 

Solution 𝑠𝑉𝐼𝐼 (Equation C.8) occurs when 𝑡𝐸 < 𝑡𝐷 < 𝑡𝐹. In this part of the solution 

the shock wave 𝑘 = 3 from the rear of the low salinity slug has completed its 

interaction with the pH waves of the front. As a result, two new constant salinity regions 

(3---) and (3--) appear. Thus, the subsequent saturation rarefactions 𝑠3−−− and 𝑠3−−− 

take place at constant salinity (see figures C.19 and C.20). Note that the concentration 

shock from (3---) to (3--) generates a new water bank in saturation solution. In this part 

of the solution the pH and saturation rarefaction 𝑠(6)−(3−−)(𝑥𝐷, 𝑡𝐷) no longer exist. The 

solution path of 𝑠𝑉𝐼𝐼 is presented in figure (C.21). 
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𝑠𝑉𝐼𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐴 𝐹𝑆 (𝑡𝐷)𝑠3(𝑥𝐷, 𝑡𝐷), 𝑥𝐴 𝐹𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝜆(3)(𝑐(3), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.8) 

 

Figure C.19: Water saturation profile for 𝑠𝑉𝐼𝐼 
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Figure C.20: Salinity profile for 𝑡𝐸 < 𝑡𝐷 < 𝑡𝐹 
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Figure C.21: Solution path of 𝑠𝑉𝐼𝐼 in 𝑓 × 𝑠 plane 

Equation (C.9) describes solution 𝑠𝑉𝐼𝐼𝐼 (𝑡𝐹 < 𝑡𝐷 < 𝑡𝐺), where the first interaction 

between 𝑘-waves starts. The shock 𝑘 = 1 from the rear of the slug is interacting with 

the rarefaction wave 𝑘 = 3 from the front of the slug. As a result, the constant salinity 

region (3) no longer appears in the solution, and there is a new salinity region (region 

(3)-(2)- in figure C.23). Moreover, an oil bank followed by a water bank are created in 

the central part of the saturation solution (Figure C.22). This feature is a result of the 

approximation of the waves from the rear and from the front of the low salinity slug. 

The solution path of 𝑠𝑉𝐼𝐼𝐼 in 𝑓 × 𝑠 plane is presented in figure (C.24). 
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𝑠𝑉𝐼𝐼𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐹 𝐽𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐹 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐹 𝐺𝑆 (𝑡𝐷)𝑠(3)−(2)(𝑥𝐷, 𝑡𝐷), 𝑥𝐹 𝐺𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2), 𝜆(3)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.9) 

 

Figure C.22: Water saturation profile for 𝑠𝑉𝐼𝐼𝐼 
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Figure C.23: Salinity profile for 𝑡𝐹 < 𝑡𝐷 < 𝑡𝐺 
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Figure C.24: Solution path of 𝑠𝑉𝐼𝐼𝐼 in 𝑓 × 𝑠 plane 

For 𝑡𝐺 < 𝑡𝐷 < 𝑡𝐻 (solution 𝑠𝐼𝑋), the interaction between the waves 𝑘 = 3 from the 

rear and 𝑘 = 1 from the front of the slug is completed. Thus, the salinity region (3)-(2) 

and its subsequent wave in water saturation solution (𝑠(3)−(2)) disappear and a new 

constant state appears: (2-). As a result, salinity increases in region (3)-(2)- (Figure 

C.26). The effect in the water saturation solution is the appearance of a small oil bank 

(in 𝑠3−) and a small water bank (in 𝑠(2−)) (Figure C.25). The solution path of 𝑠𝐼𝑋 is 

depicted in figure (C.27). 
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𝑠𝐼𝑋 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐹 𝐽𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐹 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐾𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐺 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐻𝑆 (𝑡𝐷)𝑠(2), 𝑥𝐺 𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝜆(2)(𝑐(2), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.10) 

 

Figure C.25: Water saturation profile for 𝑠𝐼𝑋 
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Figure C.26: Salinity profile for 𝑡𝐺 < 𝑡𝐷 < 𝑡𝐻 
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Figure C.27: Solution path of 𝑠𝐼𝑋 in 𝑓 × 𝑠 plane 

In solution 𝑠𝑋 (𝑡𝐻 < 𝑡𝐷 < 𝑡𝐼), the shock wave 𝑘 = 1 from the rear interacts with the 

rarefaction wave 𝑘 = 2 from the front of the low salinity slug. Therefore, the constant 

state (2) no longer appears in salinity and saturation solutions. Note that the increase in 

salinity in this region results in the appearance of a new small water bank in saturation 

solution. The solution path of 𝑠𝑋 in the 𝑓 × 𝑠 plane is presented in figure (C.30). 
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𝑠𝑋 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐹 𝐽𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐹 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐾𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐺 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 𝐼𝑆 (𝑡𝐷)𝑠(2)−(1)(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 𝐼𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1), 𝜆(2)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (C.11) 

 

Figure C.28: Water saturation profile for 𝑠𝑋 
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Figure C.29: Salinity profile for 𝑡𝐻 < 𝑡𝐷 < 𝑡𝐼 
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Figure C.30: Solution path of 𝑠𝑋 in 𝑓 × 𝑠 plane 

In solution 𝑠𝑋𝐼 (𝑡𝐼 < 𝑡𝐷 < 𝑡𝑝𝐻) the interaction between the waves 𝑘 = 1 from the 

rear and 𝑘 = 2 from the front ends and the salinity region (2)-(1) (Figure C.32) and its 

equivalent in saturation solution 𝑠(2)−(1) (Figure C.31) no longer exist. On the other 

hand, the constant state (1-) (and 𝑠(1−) in saturation solution) appears in the solution. 

The solution path of 𝑠𝑋𝐼 in 𝑓 × 𝑠 plane is shown in figure (C.33). 
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𝑠𝑋𝐼 =

{  
   
   
  
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷)𝑠7(𝑥𝐷, 𝑡𝐷), 𝑥𝐻𝑆 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑑 𝑝𝐻𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐹 𝐽𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐹 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐾𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐺 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

  (C.12) 

 

Figure C.31: Water saturation profile for 𝑠𝑋𝐼 
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Figure C.32: Salinity profile for 𝑡𝐼 < 𝑡𝐷 < 𝑡𝑝𝐻 
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Figure C.33: Solution path of 𝑠𝑋𝐼 in 𝑓 × 𝑠 plane 

The pH waves from the front and from the rear of the slug interact with each other 

in solution 𝑠𝑋𝐼𝐼 (Equation C.13). The effect of this interaction is the disappearance of 

region (7) in salinity and saturation solutions (Figures C.34and C.35). The generated 

wave does not carry the pH effects in the reservoir. 
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𝑠𝑋𝐼𝐼 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐵 𝐽𝑅 (𝑡𝐷)𝑠3−(𝑥𝐷, 𝑡𝐷), 𝑥𝐵 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐹 𝐽𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐹 𝐽𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐾𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐺 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.13) 

 

Figure C.34: Water saturation profile for 𝑠𝑋𝐼𝐼 
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Figure C.35: Salinity profile for 𝑡𝑝𝐻 < 𝑡𝐷 < 𝑡𝐽 
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Figure C.36: Solution path of 𝑠𝑋𝐼𝐼 in 𝑓 × 𝑠 plane 

In solution 𝑠𝑋𝐼𝐼𝐼 (Equation C.14) the rarefaction wave 𝑘 = 2 from the rear and 𝑘 =3 from the front of the low salinity slug interact, which leads to the disappearance of 

region (3-) (Figure C.38) and rarefaction 𝑠3− (Figure C.37), and the appearance of the 

region where these two waves interact: region (3)-(2)— in salinity solution and 

rarefaction 𝑠(3)−(2)−− in saturation solution. In the region where the two waves interact 

there is a slight salinity increase in salinity and thus, a slight increase in water 

saturation. The solution path of 𝑠𝑋𝐼𝐼𝐼 is displayed in figure (C.39). 
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𝑠𝑋𝐼𝐼𝐼 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐽 𝐿𝑅 (𝑡𝐷)𝑠(3)−(2)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐽 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐽 𝐾𝑅 (𝑡𝐷)𝑠(3)−(2)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐽 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐺 𝐾𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐺 𝐾𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷 , 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.14) 

 

Figure C.37: Water saturation profile for 𝑠𝑋𝐼𝐼𝐼 
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Figure C.38: Salinity profile for 𝑡𝐽 < 𝑡𝐷 < 𝑡𝐾 
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Figure C.39: Solution path of 𝑠𝑋𝐼𝐼𝐼 in 𝑓 × 𝑠 plane 

Solution 𝑠𝑋𝐼𝑉 occurs when 𝑡𝐾 < 𝑡𝐷 < 𝑡𝐿, and its main feature is that part of the 

rarefaction wave 𝑘 = 2 from the rear of the slug have crossed all the rarefaction 𝑘 = 3 

from the front (salinity wave (6)-(5)-- and saturation 𝑠(6)−(5)−−). Moreover, in this 

solution all characteristics of the rarefaction 𝑘 = 3 are interacting with the wave 𝑘 = 2. 

As a result, the region (3)-(2)- no longer exists in salinity solution, and the rarefaction 𝑠(3)−(2)− disappears in saturation solution. Note that the salinity increase in region (6)-

(5)-- resulted in water saturation increase, and the water bank in the central part of 

saturation solution also increased. The solution path of 𝑠𝑋𝐼𝑉 in 𝑓 × 𝑠 plane is presented 

in figure (C.42). 
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𝑠𝑋𝐼𝑉 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐶 𝐿𝑅 (𝑡𝐷)𝑠(6)−(5)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐶 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐽 𝐿𝑅 (𝑡𝐷)𝑠(3)−(2)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐽 𝐿𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐾 𝑀𝑅 (𝑡𝐷)𝑠(6)−(5)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐾 𝑀𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐾 ∞𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐾 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.15) 

 

Figure C.40: Water saturation profile for 𝑠𝑋𝐼𝑉 
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Figure C.41: Salinity profile for 𝑡𝐾 < 𝑡𝐷 < 𝑡𝐿 
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Figure C.42: Solution path of 𝑠𝑋𝐼𝑉 in 𝑓 × 𝑠 plane 

For 𝑡𝐿 < 𝑡𝐷 < 𝑡𝑀 (solution 𝑠𝑋𝑉, equation C.16), part of the rarefaction 𝑘 = 3 is 

separated from the rarefaction 𝑘 = 2, however there is still an interaction region 

between these two waves. The separated part of the rarefaction 𝑘 = 2 creates a new 

salinity and water saturation region: (3)-(2)--- and 𝑠(3)−(2)−−−. In this region the salinity 

increases (Figure C.44), as well as the water saturation and a the water bank size. The 

solution path of 𝑠𝑋𝑉 in 𝑓 × 𝑠 plane is presented in figure (C.44). 



B.99 

 

𝑠𝑋𝑉 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐿 𝑁𝑅 (𝑡𝐷)𝑠(3)−(2)−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐿 𝑁𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐿 𝑀𝑅 (𝑡𝐷)𝑠(3)−(2)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐿 𝑀𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐾 𝑀𝑅 (𝑡𝐷)𝑠(6)−(5)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐾 𝑀𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐾 ∞𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐾 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.16) 

 

Figure C.43: Water saturation profile for 𝑠𝑋𝑉 
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Figure C.44: Salinity profile for 𝑡𝐿 < 𝑡𝐷 < 𝑡𝑀 
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Figure C.45: Solution path of 𝑠𝑋𝑉 in 𝑓 × 𝑠 plane 

Solution 𝑠𝑋𝑉𝐼 (Equation C.17) takes place in the region 𝑡𝑀 < 𝑡𝐷 < 𝑡𝑁. In this 

solution, the waves 𝑘 = 2 from the rear and 𝑘 = 3 from the front are completely 

separated, and therefore the region (3)-(2)-- disappears. Moreover, there is a new 

constant state (2--) in the solution. The solution path of 𝑠𝑋𝑉𝐼 in 𝑓 × 𝑠 plane is presented 

in figure (C.48). 
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𝑠𝑋𝑉𝐼 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 𝑁𝑆 (𝑡𝐷)𝑠3−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 𝑁𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐿 𝑁𝑅 (𝑡𝐷)𝑠(3)−(2)−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐿 𝑁𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑀∞𝑅 (𝑡𝐷)𝑠(2−−), 𝑥𝑀∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐿𝑀∞𝑅 (𝑡𝐷)𝑠(6)−(5)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐿𝑀∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐾 ∞𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐾 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷, 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.17) 

 

Figure C.46: Water saturation profile for 𝑠𝑋𝑉𝐼 
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Figure C.47: Salinity profile for 𝑡𝑀 < 𝑡𝐷 < 𝑡𝑁 
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Figure C.48: Solution path of 𝑠𝑋𝑉𝐼 in 𝑓 × 𝑠 plane 

The last solution part is 𝑠𝑋𝑉𝐼𝐼 (Equation C.18), when 𝑡𝐷 > 𝑡𝑁. In this region the 

waves 𝑘 = 3 from the front and from the rear of the low salinity slug interact and there 

is a cancelation between them (waves of the same family). Therefore, both region (3--) 

(Figure C.50) and rarefaction 𝑠3−− (Figure C.49) disappear. The solution path of 𝑠𝑋𝑉𝐼𝐼 
in 𝑓 × 𝑠 plane is presented in figure (C.51). 
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𝑠𝑋𝑉𝐼𝐼 =

{  
   
   
   
   
  𝑠𝐽2(𝑥𝐷, 𝑡𝐷), 𝑥𝐷 < 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷)𝑠(7)−(3−−−)(𝑥𝐷, 𝑡𝐷), 𝑥𝑝𝐻 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐸 ∞𝑅 (𝑡𝐷)𝑠3−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐸 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑁 ∞𝑆 (𝑡𝐷)𝑠(3)−(2)−−−(𝑥𝐷, 𝑡𝐷), 𝑥𝑁 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝑀∞𝑅 (𝑡𝐷)𝑠(2−−), 𝑥𝑀∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐿𝑀∞𝑅 (𝑡𝐷)𝑠(6)−(5)−−(𝑥𝐷, 𝑡𝐷), 𝑥𝐿𝑀∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐾 ∞𝑅 (𝑡𝐷)𝑠(2−), 𝑥𝐾 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐻 ∞𝑅 (𝑡𝐷)𝑠(2)−(1)−(𝑥𝐷, 𝑡𝐷), 𝑥𝐻 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑅 (𝑡𝐷)𝑠(1−), 𝑥𝐼 ∞𝑅 (𝑡𝐷) < 𝑥𝐷 < 𝑥𝐼 ∞𝑆 (𝑡𝐷)𝑠(1), 𝑥𝐼 ∞𝑆 (𝑡𝐷) < 𝑥𝐷 < 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷𝑠(1)−(𝐼+)(𝑥𝐷 , 𝑡𝐷), 𝜆(1)(𝑐(1), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷𝑠(𝐼+), 𝜆(1)(𝑐(𝐼), 𝜉(𝐼))𝑡𝐷 < 𝑥𝐷 < 𝐷(𝑠)𝑡𝐷𝑠(𝐼), 𝑥𝐷 > 𝐷(𝑠)𝑡𝐷

 (C.18) 

 

Figure C.49: Water saturation profile for 𝑠𝑋𝑉𝐼𝐼 
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Figure C.50: Salinity profile for 𝑡𝐷 > 𝑡𝑁 
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Figure C.51: Solution path of 𝑠𝑋𝑉𝐼𝐼 in 𝑓 × 𝑠 plane 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix C – Admissibility and Existence of the Shock Waves of the 
Low Salinity Problem (Chapter 4) 
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C.  

In this appendix we derive the admissibility and existence of discontinuities in the 

solution of the low salinity problem. This analysis is divided into two main steps: first we 

check the discontinuities of the pH problem and auxiliary system, followed by the 

discontinuities of the original system of conservation laws. 

The first step is the evaluation of Lax conditions (Lax, 1975), Oleinik conditions 

(Oleinik, 1957) and vanishing viscosity (Liu, 1981). Later, we will discuss Oleinik 

conditions for the original problem of the low salinity waterflooding. Lax condition can 

be found in Pires et al. (2006). 

a. Admissibility and existence of discontinuities in the pH problem and auxiliary 

system 

The auxiliary system associated with the problem of low salinity injection is given 

by: 

𝜕𝑎𝑖(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐𝑖𝜕𝑥𝐷 = 0, 𝑖 = 1,2,… , 𝑛       (C.1) 

where 𝑛 is the number of dissolved cations in water. 

The pH partial differential equation is: 

𝜕𝑎𝐻(𝜉)𝜕𝜑 + 𝜕𝜉𝜕𝑥𝐷 = 0         (C.2) 

where, 

𝜉 = 𝑐𝐻 − 𝑐𝑂𝐻 = 𝑐𝐻 − 𝐾𝑤𝑐𝐻         (C.3) 

in which 𝐾𝑤 is water ionization constant. Cations adsorption isotherm 𝑎𝑖 is given by: 

𝑎𝑖(𝑐, 𝜉) = 𝛼𝑖(𝜉)𝑐𝑖1+∑ 𝛽𝑗(𝜉)𝑐𝑗3𝑗=1         (C.4) 
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where 𝛼𝑖 and 𝛽𝑖 are adsorption parameters that depend on fluid pH. 

Hydrogen adsorption isotherm is written as a function of 𝜉: 

𝑎𝐻(𝜉) = 𝛼𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑛𝐻
1+𝛽𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑚𝐻        (C.5) 

where 𝛼𝐻, 𝛽𝐻, 𝑛𝐻 and 𝑚𝐻 are constants. Moreover, we consider that 𝛼𝐻 >>> 𝛼𝑖 and 𝛽𝐻 >>> 𝛽𝑖 . 
In equation (C.4) the adsorption parameters are ordered as: 

𝛼1 < 𝛼2 < ⋯ < 𝛼𝑛         (C.6) 

𝛽1 < 𝛽2 < ⋯ < 𝛽𝑛         (C.7) 

The adsorption order in equations (C.6)-(C.7) results in the following root sequence 

in the solution of 𝜔𝑛 (Equation 51 in Chapter 4): 

0 ≤ 𝜔1 ≤ 𝛼1 ≤ 𝜔2 ≤ 𝛼2 ≤ ⋯ ≤ 𝜔𝑛 ≤ 𝛼𝑛      (C.8) 

The slopes of the characteristics of a 𝑘-wave family of the auxiliary system (Equation 

C.1) is given by: 

𝜎(𝑘)(𝜔𝑘, 𝜉) = 𝑑𝜑𝑑𝑥𝐷 = 𝜔𝑘(𝜉)∏ 𝜔𝑗(𝜉)𝛼𝑗(𝜉)𝑛𝑗=1       (C.9) 

Due to equation (C.8), the characteristics slopes of the 𝑘th family will follow: 

0 ≤ 𝜎(1) ≤ 𝜎(2) ≤ ⋯ ≤ 𝜎(𝑛)       (C.10) 

The shock wave of the 𝑘th-family is given by: 

𝑉(𝑘)(𝜔𝑘, 𝜉) = 𝜔𝑘+(𝜉)∏ 𝜔𝑗−(𝜉)𝛼𝑗(𝜉)3𝑗=1 = 𝜔𝑘−(𝜉)∏ 𝜔𝑗+(𝜉)𝛼𝑗(𝜉)3𝑗=1     (C.11) 
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where the superscripts + and – represent the right and left states of the shock. 

Analogously to the slopes of the characteristics, it follows for the shock waves: 

0 ≤ 𝑉(1) ≤ 𝑉(2) ≤ ⋯ ≤ 𝑉(𝑛)        (C.12) 

For the pH problem (Equation C.2) the slope of the characteristics waves is given by: 

𝜎𝑝𝐻 = 𝑑𝑎𝐻𝑑𝜉 = 𝛼𝐻2𝑛𝐻𝑛𝐻(𝜉+√𝜉2+4𝐾𝑤)𝑛𝐻−1(1+ 𝜉√𝜉2+4𝐾𝑤)
1+𝛽𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑚𝐻 −

𝛼𝐻𝛽𝐻𝑚𝐻2𝑛𝐻+𝑚𝐻 (𝜉+√𝜉2+4𝐾𝑤)𝑛𝐻+𝑚𝐻−1(1+ 𝜉√𝜉2+4𝐾𝑤)
[1+𝛽𝐻(𝜉+√𝜉2+4𝐾𝑤2 )𝑚𝐻]2       (C.13) 

Figure (C.1) presents the slopes of the characteristics as a function of 𝜉. Note that 

when 𝜉 = 0, the derivative reaches a maximum (which is equivalent to 𝑝𝐻 = 7). 

Moreover, when 𝜉 < 0, 𝜎𝑝𝐻′ > 0, and when 𝜉 > 0, 𝜎𝑝𝐻′ < 0. 

 

Figure (C.1): Slopes of the characteristics of the pH problem 
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The characteristic diagram for the solution of the auxiliary system (Equation C.1) for 𝑛 = 3 and containing only shock waves is presented in figure (C.2). It is important to 

emphasize that 𝛼𝐻 >>> 𝛼𝑖, 𝛽𝐻 >>> 𝛽𝑖 , and 𝑉𝑝𝐻 >>> 𝑉(𝑘). 

 

Figure (C.2): Solution of the auxiliary system for 𝑛 = 3 containing only shock 

waves 

i. Lax Condition 

The generalized Lax condition for hyperbolic systems of partial differential equations 

is given by (Lax, 1957): 

{𝜆(𝛾) (𝜔(𝛾)(−)) ≥ 𝐷(𝛾) ≥ 𝜆(𝛾) (𝜔(𝛾)(+))𝜆(𝛾−1) (𝜔(𝛾)(−)) ≤ 𝐷(𝛾) ≤  𝜆(𝛾+1) (𝜔(𝛾)(+))      (C.14) 

where 𝜆(𝛾) = 𝑑𝑥𝐷𝑑𝑡𝐷  are the eigenvalues of the system of conservation laws following 

𝜆(1) < 𝜆(2) < ⋯ < 𝜆(𝑛)        (C.15) 

and 𝐷(𝛾) = 𝑑𝑥𝐷𝑑𝑡𝐷  is the shock slope of family 𝛾. 

Lax conditions for the low salinity problem are given by: 
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{𝜎(𝑘) (𝜔(𝑘)(−)) ≤ 𝑉(𝑘) ≤ 𝜎(𝑘) (𝜔(𝑘)(+))𝜎(𝑘+1) (𝜔(𝑘)(−)) ≥ 𝑉(𝑘) ≥ 𝜎(𝑘−1) (𝜔(𝑘)(+))      (C.16) 

where 𝑘 is the cation family. 

First, we will verify the first condition of equation (C.16) for the discontinuities of the 

auxiliary system (Equation C.1) and pH problem (Equation C.2). 

For the shock 𝑉(1) we have: 

𝜎(1) (𝜔(1)(𝐶)) ≤ 𝑉(1) ≤ 𝜎(1) (𝜔(1)(𝐼))       (C.17) 

From equations (C.9) and (C.11), we obtain: 

𝜔(1)(𝐶)∏ 𝜔(𝑗)(𝐶)𝛼(𝑗)𝑛𝑗=1 ≤ 𝜔(1)+ ∏ 𝜔(𝑗)−𝛼(𝑗)3𝑗=1 = 𝜔(1)− ∏ 𝜔(𝑗)+𝛼(𝑗)3𝑗=1 ≤ 𝜔(1)(𝐼) ∏ 𝜔(𝑗)(𝐼)𝛼(𝑗)𝑛𝑗=1    (C.18) 

which leads to: 

𝜔(1)(𝐼) ≥ 𝜔(1)(𝐶)          (C.19) 

for both sides of equation (C.19). Moreover, in region (𝐶) of figure (C.2), 𝜔(1)(𝐶) = 𝜔(1)(𝐽), 𝜔(2)(𝐶) = 𝜔(1)(𝐼)  and 𝜔(3)(𝐶) = 𝜔(3)(𝐼) . 
So, equation (C.19) becomes: 

𝜔(1)(𝐼) ≥ 𝜔(1)(𝐽)          (C.20) 

Now shock 𝑉(2) is analyzed. For the first condition of (C.16) we find: 

𝜎(2) (𝜔(2)(𝐵)) ≤ 𝑉(2) ≤ 𝜎(2) (𝜔(2)(𝐶))       (C.21) 

Applying equations (C.9) and (C.11) in equation (C.21), we obtain: 
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𝜔(2)(𝐵)∏ 𝜔(𝑗)(𝐵)𝛼(𝑗)𝑛𝑗=1 ≤ 𝜔(2)+ ∏ 𝜔(𝑗)−𝛼(𝑗)3𝑗=1 = 𝜔(2)− ∏ 𝜔(𝑗)+𝛼(𝑗)3𝑗=1 ≤ 𝜔(2)(𝐶)∏ 𝜔(𝑗)(𝐶)𝛼(𝑗)𝑛𝑗=1   (C.22) 

After some manipulation, both sides of equation (C.22) become 

𝜔(2)(𝐶) ≥ 𝜔(2)(𝐵)          (C.23) 

In region (𝐵) (Figure C.2), 𝜔⃗⃗⃗(𝐵) = [𝜔(1)(𝐽), 𝜔(2)(𝐽), 𝜔(3)(𝐼)], thus 

𝜔(2)(𝐼) ≥ 𝜔(2)(𝐽)          (C.24) 

The first condition of equation (C.16) for the shock 𝑉(3) is: 

𝜎(3) (𝜔(3)(𝐴)) ≤ 𝑉(3) ≤ 𝜎(3) (𝜔(3)(𝐴))       (C.25) 

Applying equations (C.9) and (C.11) in equation (C.25), we obtain: 

𝜔(3)(𝐴)∏ 𝜔(𝑗)(𝐴)𝛼(𝑗)𝑛𝑗=1 ≤ 𝜔(3)+ ∏ 𝜔(𝑗)−𝛼(𝑗)3𝑗=1 = 𝜔(3)− ∏ 𝜔(𝑗)+𝛼(𝑗)3𝑗=1 ≤ 𝜔(3)(𝐵)∏ 𝜔(𝑗)(𝐵)𝛼(𝑗)𝑛𝑗=1   (C.26) 

In region (A) of the solution of the auxiliary system (Figure C.2) 𝜔⃗⃗⃗(𝐴) =[𝜔(1)(𝐽), 𝜔(2)(𝐽), 𝜔(3)(𝐽)]. Thus, equation (C.26) results in: 

𝜔(3)(𝐼) ≥ 𝜔(3)(𝐽)          (C.27) 

From equations (C.20), (C.24) and (C.27), the first Lax admissibility condition for the 

auxiliary system is given by: 

𝜔(𝑘)(𝐼) ≥ 𝜔(𝑘)(𝐽)          (C.28) 

Finally, first equation (C.16) for shock 𝑉𝑝𝐻 leads to: 

𝜎(𝑝𝐻)(𝜉(𝐽)) ≤ 𝑉𝑝𝐻 ≤ 𝜎(𝑝𝐻)(𝜉(𝐼))       (C.29) 
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The locus of the shock for the cases 𝑝𝐻(𝐽) < 𝑝𝐻(𝐼) < 7 and  𝑝𝐻(𝐼) > 𝑝𝐻(𝐽) > 7, as 

well as the waves speed at injection and initial conditions, is presented in figures (C.3) 

and (C.4), respectively. Dashed lines connecting (𝐼) and (𝐽) are the shock 𝑉𝑝𝐻. 

 

Figure C.3: Lax Condition of the pH problem for 𝑝𝐻(𝐽) < 𝑝𝐻(𝐼) < 7 
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Figure C.4: Lax Condition of the pH problem for 𝑝𝐻(𝐼) > 𝑝𝐻(𝐽) > 7 

Comparing the slopes 𝑉𝑝𝐻, 𝜎𝑝𝐻(𝜉(𝐼)) and 𝜎𝑝𝐻(𝜉(𝐽)) in figures (C.3) and (C.4), Lax 

first condition for pH problem holds if 

𝜎(𝑝𝐻)(𝜉(𝐽)) ≤ 𝑉𝑝𝐻 ≤ 𝜎(𝑝𝐻)(𝜉(𝐼))       (C.30) 

For shock 𝑉(1), the second Lax condition for systems is given by: 

𝜎(2) (𝜔(1)(𝐶)) ≥ 𝑉(1)         (C.31) 

which leads to: 

𝜔(2)(𝐶)∏ 𝜔(𝑗)(𝐶)𝛼(𝑗)𝑛𝑗=1 ≥ 𝜔(1)(𝐼) ∏ 𝜔(𝑗)(𝐼)𝛼(𝑗)3𝑗=1        (C.32) 

From (C.31) it is possible to find: 
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𝜔(2)(𝐼) ≥ 𝜔(1)(𝐼)           (C.33) 

For shock 𝑉(2) the second condition is given by, 

𝜎(3) (𝜔(2)(𝐵)) ≥ 𝑉(2)         (C.34) 

𝑉(2) ≥ 𝜎(1) (𝜔(2)(𝐶))         (C.35) 

Therefore, 

𝜔(3)(𝐵)∏ 𝜔(𝑗)(𝐵)𝛼(𝑗)𝑛𝑗=1 ≥ 𝜔(2)(𝐶)∏ 𝜔(𝑗)(𝐵)𝛼(𝑗)3𝑗=1        (C.36) 

𝜔(2)(𝐵)∏ 𝜔(𝑗)(𝐶)𝛼(𝑗)𝑛𝑗=1 ≥ 𝜔(1)(𝐶)∏ 𝜔(𝑗)(𝐶)𝛼(𝑗)3𝑗=1        (C.37) 

Then: 

𝜔(3)(𝐼) ≥ 𝜔(2)(𝐼)           (C.38) 

𝜔(2)(𝐽) ≥ 𝜔(1)(𝐽)          (C.39) 

Shock relations of the problem for 𝑉(3) are: 

𝜎𝑝𝐻(𝜉(𝐼)) >>> 𝑉(3)         (C.40) 

𝑉(3) ≥ 𝜎(2) (𝜔(3)(𝐵))         (C.41) 

Equation (C.40) always holds because 𝜎𝑝𝐻 >>> 𝑉(𝑘). From equation (C.41) we 

obtain: 

𝜔(3)(𝐽) ≥ 𝜔(2)(𝐽)          (C.42) 

Finally, for the shock 𝑉𝑝𝐻 we must have: 
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𝑉𝑝𝐻 ≥ 𝜎(3) (𝜔(3)(𝐴))         (C.43) 

which is always true because 𝑉𝑝𝐻 >>> 𝜎(𝑘). 
Therefore, the second condition of equation (C.16) holds if: 

𝜔(𝑘+1)(𝐼) ≥ 𝜔(𝑘)(𝐼)           (C.44) 

𝜔(𝑘+1)(𝐽) ≥ 𝜔(𝑘)(𝐽)          (C.45) 

together with equations (C.40) and (C.43). 

ii. Oleinik condition 

Oleinik condition for a convex flux 𝑓(𝑢) is given by: 

𝑓(𝑢(−))−𝑓(𝑢)𝑢(−)−𝑢 ≤ 𝑓(𝑢(−))−𝑓(𝑢(+))𝑢(−)−𝑢(+) ≤ 𝑓(𝑢)−𝑓(𝑢(+))𝑢−𝑢(+)       (C.46) 

for 𝑢(−) ≤ 𝑢 ≤ 𝑢(+). 
Figure (C.5) presents the hydrogen adsorption isotherm as a function of 𝜉. The 

inflexion point (𝜉 = 0) divides the adsorption curve into an acidic (𝜉 > 0), and an 

alkaline media (𝜉 < 0), and the acidic region is presented in Figure (C.6). It will be 

considered the case where 7 > 𝑝𝐻(𝐼) > 𝑝𝐻(𝐽) (Figure C.6). 

A shock wave will follow Oleinik condition if 

𝑎𝐻(𝜉(𝐽))−𝑎𝐻(𝜉(−))𝜉(𝐽)−𝜉(−) ≤ 𝑉𝑝𝐻 ≤ 𝑎𝐻(𝜉(+))−𝑎𝐻(𝜉(𝐼))𝜉(+)−𝜉(𝐼)       (C.47) 

for all 𝜉(𝐼) ≤ 𝜉(−) ≤ 𝜉(𝐽), where the shock 𝑉𝑝𝐻 is given by Rankine-Hugoniot condition: 

𝑉𝑝𝐻 = 𝑎𝐻(𝜉(+))−𝑎𝐻(𝜉(−))𝜉(+)−𝜉(−)         (C.48) 
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Figure C.5: Hydrogen adsorption isotherm 

 

Figure C.6: Hydrogen adsorption isotherm for 7 > 𝑝𝐻(𝐼) > 𝑝𝐻(𝐽) 
In figure (C.7) we present the locus of the shock for 𝜉(𝐼) ≤ 𝜉 ≤ 𝜉(𝐽), where each 

dashed line is a shock connecting the left state (𝐽) to a right state 𝜉(−). 
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Figure C.7: Shock locus for 7 > 𝑝𝐻(𝐼) > 𝑝𝐻(𝐽) 
The shock with the greatest slope is the one connecting the states (𝐽) and (𝐼) (Figure 

C.7), which is the shock that satisfies Oleinik condition (Equation C.47). 

We now test Oleinik condition for each shock of the auxiliary system (Equation C.1). 

The shock velocity 𝑉(𝑘) in space 𝜔𝑛 is: 

𝑉(𝑘) = 𝜔(𝑘)(+)∏ 𝜔(𝑗)(−)𝛼(𝑗)3𝑗=1          (C.49) 

which can be rewritten as 

𝑉(𝑘) = 𝜔(𝑘)(+)𝜔(𝑘)(−)𝛼(𝑘) ∏ 𝜔(𝑗)(−)𝛼(𝑗)3𝑗=1𝑗≠𝑘         (C.50) 

Oleinik condition for equation (C.50) is given by: 

𝜔(𝑘)(+)𝜔(𝑘)′𝛼(𝑘) ∏ 𝜔(𝑗)(−)𝛼(𝑗)3𝑗=1𝑗≠𝑘 ≥ 𝜔(𝑘)(+)𝜔(𝑘)(−)𝛼(𝑘) ∏ 𝜔(𝑗)(−)𝛼(𝑗)3𝑗=1𝑗≠𝑘 ≥ 𝜔(𝑘)′′ 𝜔(𝑘)(−)𝛼(𝑘) ∏ 𝜔(𝑗)(−)𝛼(𝑗)3𝑗=1𝑗≠𝑘    (C.51) 
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Thus, 

𝜔(𝑘)(+)𝜔(𝑘)′ ≥ 𝜔(𝑘)(+)𝜔(𝑘)(−) ≥ 𝜔(𝑘)′′ 𝜔(𝑘)(−)       (C.52) 

For the first inequality we have: 

𝜔(𝑘)′ ≥ 𝜔(𝑘)(−)          (C.53) 

and for the second one 

𝜔(𝑘)(+) ≥ 𝜔(𝑘)′′           (C.54) 

From equations (C.53) and (C.54) a shock of the auxiliary system is admissible if and 

only if it connects initial and injection conditions. 

 

iii. Vanishing viscosity criteria for shock stability 

In this subsection we apply the vanishing viscosity criteria (Liu, 1981) to analyze the 

stability of the pH and concentration shock waves of the low salinity waterflooding 

problem in the auxiliary plane for a two cations system. For this case, the auxiliary system 

and the pH problem are given by: 

{𝜕𝑎1(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐1𝜕𝑥𝐷 = 0𝜕𝑎2(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐2𝜕𝑥𝐷 = 0         (C.55) 

𝜕𝑎𝐻(𝜉)𝜕𝜑 + 𝜕𝜉𝜕𝑥𝐷 = 0         (C.56) 

Rewriting equations (C.55) and (C.56) in matrix form: 

𝑎𝜑⃗⃗ ⃗⃗ ⃗ + 𝑦𝑥𝐷⃗⃗ ⃗⃗⃗⃗⃗ = 0⃗⃗          (C.57) 

where, 
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𝑎𝜑⃗⃗ ⃗⃗ ⃗ = 𝜕𝜕𝜑  [𝑎1(𝑐, 𝜉)𝑎2(𝑐, 𝜉)𝑎𝐻(𝜉) ]         (C.58) 

𝑦𝑥𝐷⃗⃗ ⃗⃗⃗⃗⃗ = 𝜕𝜕𝑥𝐷  [𝑐1𝑐2𝜉 ]         (C.59) 

A viscous system related to equation (C.57) is: 

𝑎𝜑⃗⃗ ⃗⃗ ⃗ + 𝑦𝑥𝐷⃗⃗ ⃗⃗⃗⃗⃗ = (𝐵(𝑦⃗, 𝜖)𝑦𝑥𝐷⃗⃗ ⃗⃗⃗⃗⃗)𝑥𝐷        (C.60) 

in which 𝜖 is a viscous dissipation parameter, such that 𝐵(𝑦⃗, 𝜖 = 0) = 0. 

Considering the case where 𝐵 = 𝐼⃡, in which 𝐼⃡ is the (𝑛 + 1) × (𝑛 + 1) identity 

matrix, we have 

𝐵(𝑦⃗, 𝜖) = 𝜖𝐼⃡, 𝜖 > 0, 𝜖 ∈ ℝ+∗         (C.61) 

Thus, we can rewrite the matrix system in its viscous form as 

{  
  𝜕𝑎1(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐1𝜕𝑥𝐷 = 𝜖 𝜕2𝑐1𝜕𝑥𝐷2𝜕𝑎2(𝑐,𝜉)𝜕𝜑 + 𝜕𝑐2𝜕𝑥𝐷 = 𝜖 𝜕2𝑐2𝜕𝑥𝐷2𝜕𝑎𝐻(𝜉)𝜕𝜑 + 𝜕𝜉𝜕𝑥𝐷 = 𝜖 𝜕2𝜉𝜕𝑥𝐷2

        (C.61) 

The solution for the system (C.61) is given by a travelling wave type of solution with 

velocity 𝜂 = 𝑥𝐷𝜑 . The travelling wave is defined as: 

𝜃 = 𝑥𝐷−𝜂𝜑𝜖           (C.62) 

We assume that the solution can be written as 𝑦⃗ = [𝑐1(𝜃), 𝑐2(𝜃), 𝜉(𝜃)]. Thus, 

rewriting equation (C.61) we find: 

𝜕𝑎𝑖(𝑐,𝜉)𝜕𝜑 = 𝜕𝑎𝑖𝜕𝑐1 𝑑𝑐1𝑑𝜃 𝜕𝜃𝜕𝜑+ 𝜕𝑎𝑖𝜕𝑐2 𝑑𝑐2𝑑𝜃 𝜕𝜃𝜕𝜑 + 𝜕𝑎𝑖𝜕𝜉 𝑑𝜉𝑑𝜃 𝜕𝜃𝜕𝜑      (C.63) 
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𝜕𝑎𝐻(𝑐,𝜉)𝜕𝜑 = 𝜕𝑎𝐻𝜕𝜉 𝑑𝜉𝑑𝜃         (C.64) 

From the traveling wave definition, we have 

𝜕𝜃𝜕𝜑 = − 𝜂𝜖          (C.65) 

Therefore, we can rewrite equations (C.63) and (C.64) as: 

𝜕𝑎𝑖(𝑐,𝜉)𝜕𝜑 = − 𝜂𝜖 ( 𝜕𝑎𝑖𝜕𝑐1 𝑑𝑐1𝑑𝜃 + 𝜕𝑎𝑖𝜕𝑐2 𝑑𝑐2𝑑𝜃 + 𝜕𝑎𝑖𝜕𝜉 𝑑𝜉𝑑𝜃)      (C.66) 

𝜕𝑎𝐻(𝜉)𝜕𝜑 = − 𝜂𝜖 𝜕𝑎𝐻𝜕𝜉 𝑑𝜉𝑑𝜃         (C.67) 

For the flux and viscous terms, we find: 

𝜕𝑦𝑖𝜕𝑥𝐷 = 1𝜖 𝑑𝑦𝑖𝑑𝜃           (C.68) 

𝜕2𝑦𝑖𝜕𝑥𝐷2 = (1𝜖)2 𝑑2𝑦𝑖𝑑𝜃2          (C.69) 

Applying equations (C.66)-(C.69) in equation (C.61), we obtain: 

{  
  − 𝜎𝜖 ( 𝜕𝑎1𝜕𝑐1 𝑑𝑐1𝑑𝜃 + 𝜕𝑎1𝜕𝑐2 𝑑𝑐2𝑑𝜃 + 𝜕𝑎1𝜕𝜉 𝑑𝜉𝑑𝜃) + 1𝜖 𝑑𝑐1𝑑𝜃 = (1𝜖)2 𝑑2𝑐1𝑑𝜃2− 𝜎𝜖 ( 𝜕𝑎2𝜕𝑐1 𝑑𝑐1𝑑𝜃 + 𝜕𝑎2𝜕𝑐2 𝑑𝑐2𝑑𝜃 + 𝜕𝑎1𝜕𝜉 𝑑𝜉𝑑𝜃) + 1𝜖 𝑑𝑐2𝑑𝜃 = (1𝜖)2 𝑑2𝑐2𝑑𝜃2− 𝜎𝜖 𝜕𝑎𝐻𝜕𝜉 𝑑𝜉𝑑𝜃 + 1𝜖 𝑑𝜉𝑑𝜃 = (1𝜖)2 𝑑2𝜉𝑑𝜃2

    (C.70) 

From system (C.70) we find: 

{  
  − 1𝜖 [𝑑2𝑐1𝑑𝜃2 − 𝑑𝑐1𝑑𝜃 + 𝜂 (𝜕𝑎1𝜕𝑐1 𝑑𝑐1𝑑𝜃 + 𝜕𝑎1𝜕𝑐2 𝑑𝑐2𝑑𝜃 + 𝜕𝑎1𝜕𝜉 𝑑𝜉𝑑𝜃)] = 0− 1𝜖 [𝑑2𝑐2𝑑𝜃2 − 𝑑𝑐2𝑑𝜃 + 𝜂 (𝜕𝑎2𝜕𝑐1 𝑑𝑐1𝑑𝜃 + 𝜕𝑎2𝜕𝑐2 𝑑𝑐2𝑑𝜃 + 𝜕𝑎2𝜕𝜉 𝑑𝜉𝑑𝜃)] = 0− 1𝜖 [𝑑2𝜉𝑑𝜃2 − 𝑑𝜉𝑑𝜃 + 𝜂 𝜕𝑎𝐻𝜕𝜉 𝑑𝜉𝑑𝜃] = 0     (C.71) 

Rewriting equation (C.71) in matrix form: 
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− 1𝜖( 
 𝑑2𝑐1𝑑𝜃2𝑑2𝑐2𝑑𝜃2𝑑2𝜉𝑑𝜃2) 

 −( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 + 𝜂( 
 𝜕𝑎1𝜕𝑐1 𝜕𝑎1𝜕𝑐2 𝜕𝑎1𝜕𝜉𝜕𝑎2𝜕𝑐1 𝜕𝑎2𝜕𝑐2 𝜕𝑎2𝜕𝜉0 0 𝜕𝑎𝐻𝜕𝜉 ) 

 
( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 = 0    (C.72) 

and 

( 
 𝜕𝑎1𝜕𝑐1 𝜕𝑎1𝜕𝑐2 𝜕𝑎1𝜕𝜉𝜕𝑎2𝜕𝑐1 𝜕𝑎2𝜕𝑐2 𝜕𝑎2𝜕𝜉0 0 𝜕𝑎𝐻𝜕𝜉 ) 

 
( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 = ( 
 𝑑𝑎1𝑑𝜃𝑑𝑎2𝑑𝜃𝑑𝑎𝐻𝑑𝜃 ) 

 
       (C.73) 

Thus, 

− 1𝜖( 
 𝑑2𝑐1𝑑𝜃2𝑑2𝑐2𝑑𝜃2𝑑2𝜉𝑑𝜃2) 

 −( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 + 𝜂( 
 𝑑𝑎1𝑑𝜃𝑑𝑎2𝑑𝜃𝑑𝑎𝐻𝑑𝜃 ) 

 = 0⃗⃗      (C.74) 

Integration of equation (C.74) with respect to 𝜃: 

− 1𝜖( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 − (𝑐1𝑐2𝜉 ) + 𝜂 (𝑎1𝑎2𝑎𝐻) + (𝑊1𝑊2𝑊3) = 0⃗⃗      (C.75) 

where 𝑊1, 𝑊2 and 𝑊3 are integration constants. The conditions to solve the ordinary 

differential equation (ODE) (C.75) are: 

lim𝜃→±∞ (𝑑𝑐1𝑑𝜃 , 𝑑𝑐2𝑑𝜃 , 𝑑𝜉𝑑𝜃) = (0,0,0)       (C.76) 

lim𝜃→+∞(𝑐1, 𝑐2, 𝜉) = (𝑐1(+), 𝑐2(+), 𝜉(+))       (C.77) 

lim𝜃→−∞(𝑐1, 𝑐2, 𝜉) = (𝑐1(−), 𝑐2(−), 𝜉(−))       (C.78) 

Replacing equations (C.76) and (C.78) in equation (C.75), we obtain: 
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−(𝑐1(−)𝑐2(−)𝜉(−))+ 𝜂( 
 𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))𝑎2(𝑐1(−), 𝑐2(−), 𝜉(−))𝑎𝐻(𝜉(−)) ) 

 + (𝑊1𝑊2𝑊3) = 0⃗⃗    (C.79) 

Therefore, the integration constants are: 

(𝑊1𝑊2𝑊3) = ( 
 𝑐1(−) − 𝜂𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))𝑐2(−) − 𝜂𝑎2(𝑐1(−), 𝑐2(−), 𝜉(−))𝜉(−) − 𝜂𝑎𝐻(𝜉(−)) ) 

 
     (C.80) 

Replacing equation (C.80) in equation (C.75), we find the following system of ODE´s: 

( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 − (𝑐1𝑐2𝜉 ) + 𝜂 (𝑎1𝑎2𝑎𝐻) + ( 
 𝑐1(−) − 𝜂𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))𝑐2(−) − 𝜂𝑎2(𝑐1(−), 𝑐2(−), 𝜉(−))𝜉(−) − 𝜂𝑎𝐻(𝜉(−)) ) 

 = 0⃗⃗   (C.75) 

leading to 

( 
 𝑑𝑐1𝑑𝜃𝑑𝑐2𝑑𝜃𝑑𝜉𝑑𝜃) 

 −(𝑐1 − 𝑐1(−)𝑐2 − 𝑐2(−)𝜉 − 𝜉(−))+ 𝜂( 
 𝑎1 − 𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))𝑎2 − 𝑎2(𝑐1(−), 𝑐2(−), 𝜉(−))𝑎𝐻 − 𝑎𝐻(𝜉(−)) ) 

 = 0⃗⃗   (C.76) 

and finally 

𝑑𝑐1𝑑𝜃 = (𝑐1 − 𝑐1(−)) − 𝜂 (𝑎1 − 𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))) = 0    (C.77) 

𝑑𝑐2𝑑𝜃 = (𝑐2 − 𝑐2(−)) − 𝜂 (𝑎2 − 𝑎2(𝑐1(−), 𝑐2(−), 𝜉(−))) = 0    (C.78) 

𝑑𝜉𝑑𝜃 = (𝜉 − 𝜉(−)) − 𝜂 (𝑎𝐻 − 𝑎𝐻(𝜉(−))) = 0      (C.79) 

Equations (C.77)-(C.79) are used to find orbits for the stable shock waves of 𝑐1, 𝑐2 
and 𝜉 following the vanishing viscosity method. 
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From equation (C.77), we define a function 𝐻1(𝑐1, 𝑐2, 𝜉) such that 

𝑑𝑐1𝑑𝜃 = (𝑐1 − 𝑐1(−)) − 𝜂 (𝑎1 − 𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))) = 𝐻1(𝑐1, 𝑐2, 𝜉)  (C.80) 

For both 𝑐1(+) > 𝑐1(−) and 𝑐1(+) < 𝑐1(−), a necessary and sufficient condition for a stable 

orbit is 𝐻1(𝑐1, 𝑐2, 𝜉) ≥ 0. Thus: 

(𝑐1 − 𝑐1(−)) − 𝜂 (𝑎1 − 𝑎1(𝑐1(−), 𝑐2(−), 𝜉(−))) ≥ 0, ∀𝑐1 ∈ (𝑐1(−), 𝑐1(+))  (C.81) 

The velocity of the travelling wave is given by: 

𝜂 = 𝑑𝑥𝐷𝑑𝜑 = 𝑐1(−)−𝑐1(+)𝑎1(𝑐1(−),𝑐2(−),𝜉(−))−𝑎1(𝑐1(+),𝑐2(+),𝜉(+))      (C.82) 

Thus, from equation (C.81), we find: 

𝑎1(𝑐1(−),𝑐2(−),𝜉(−))−𝑎1(𝑐1(+),𝑐2(+),𝜉(+))𝑐1(−)−𝑐1(+) ≥ 𝑎1(𝑐1(−),𝑐2(−),𝜉(−))−𝑎1𝑐1(−)−𝑐1 , ∀𝑐1 ∈ (𝑐1(−), 𝑐1(+))  (C.83) 

The same procedure is done for the other two ODEs. Thus, shock waves that follow 

Oleinik condition are shock waves that jump to stable orbits following the vanishing 

viscosity criteria. 

b. Oleinik condition for the original system of conservation laws of low salinity 

waterflooding problem 

In this section we evaluate Oleinik condition for discontinuities in the solution of the 

system of partial differential equations that model low salinity waterflooding in oil 

reservoirs for two dissolved cations in injection water (𝑛 = 2). The system of 

conservation laws is given by: 
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{  
  𝜕𝑠𝑤𝜕𝑡𝐷 + 𝜕𝑓𝑤(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0𝜕(𝑐𝑖𝑠𝑤+ 𝑎𝑖(𝑐,𝜉))𝜕𝑡𝐷 + 𝜕𝑐𝑖𝑓𝑤(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0, 𝑖 = 1,2𝜕(𝜉𝑠𝑤+ 𝑎𝐻(𝜉))𝜕𝑡𝐷 + 𝜕𝜉𝑓𝑤(𝑠,𝑐,𝜉)𝜕𝑥𝐷 = 0       (C.84) 

The shock waves from the auxiliary system are mapped onto 𝑥𝐷 × 𝑡𝐷 plane through 

the relations (Pires et al., 2006): 

𝐷𝑝𝐻 = 𝑓𝑤±𝑠𝑤±+𝑉𝑝𝐻         (C.85) 

𝐷1 = 𝑓𝑤±𝑠𝑤±+𝑉1         (C.86) 

𝐷2 = 𝑓𝑤±𝑠𝑤±+𝑉2         (C.87) 

where 𝑉𝑝𝐻, 𝑉1 and 𝑉2 are the pH, 𝑘 = 1 family and 𝑘 = 2 family shock slopes in 𝑥𝐷 × 𝜑 

plane. In figure (C.8) we present the characteristic diagram of the auxiliary system 

solution and the velocities of each shock wave. 

 

Figure C.8: Characteristic diagram of the auxiliary system solution 

For the relative permeability curves, we use Corey’s model, which is given by: 
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𝑘𝑟𝑤(𝑠𝑤, 𝑐, 𝜉) = 𝑘𝑟𝑤∗ (𝑐, 𝜉) ( 𝑠𝑤−𝑠𝑤𝑖1−𝑠𝑜𝑟(𝑐,𝜉)−𝑠𝑤𝑖)𝑛𝑤(𝑐,𝜉)     (C.88) 

𝑘𝑟𝑜(𝑠𝑤, 𝑐, 𝜉) = 𝑘𝑟𝑜∗ (𝑐, 𝜉) (1−𝑠𝑜𝑟(𝑐,𝜉)−𝑠𝑤1−𝑠𝑜𝑟(𝑐,𝜉)−𝑠𝑤𝑖)𝑛𝑜(𝑐,𝜉)     (C.89) 

where the parameters 𝑘𝑟𝑤∗ , 𝑘𝑟𝑜∗ , 𝑠𝑜𝑟, 𝑛𝑤 and 𝑛𝑜 are determined through: 

𝑠𝑜𝑟(𝑐, 𝜉) = 10−6𝑆𝑎𝑙 + 0.225 − 0.0978. 𝑝𝐻      (C.90) 

𝑛𝑤(𝑐, 𝜉) = −10−5𝑆𝑎𝑙 + 2.8554 + 0.05214. 𝑝𝐻     (C.91) 

𝑛𝑜(𝑐, 𝜉) = 10−5𝑆𝑎𝑙 + 2.4258 − 0.4873. 𝑝𝐻     (C.92) 

𝑘𝑟𝑤∗ (𝑐, 𝜉) = 2.10−6𝑆𝑎𝑙 + 0.3311 − 0.00517. 𝑝𝐻     (C.93) 

𝑘𝑟𝑜∗ (𝑐, 𝜉) = −2.10−6𝑆𝑎𝑙 + 05913 + 0.0181. 𝑝𝐻     (C.94) 

Water viscosity 𝜇𝑤 is calculated using the properties of brine in reservoir conditions 

(McCain Jr., 1991): 

𝜇𝐵(𝑇) = 𝐴𝑇−𝐵         (C.95) 

𝐴 = 109.574 − 8.40564 𝑆𝑎𝑙 + 0.313314 𝑆𝑎𝑙2 + 8.72213.10−3 𝑆𝑎𝑙3   (C.96) 

𝐵 = 1.12166 − 2.63951.10−2 𝑆𝑎𝑙 + 6.79461.10−3𝑆𝑎𝑙2 + 5.47119.10−5𝑆𝑎𝑙3 −1.55586.10−6𝑆𝑎𝑙4           (C.97) 

𝜇𝑤(𝑇, 𝑃) = 𝜇𝐵(𝑇)(0.9994 + 4.0295.10−5𝑝 + 3.1062.10−9𝑝2)   (C.98) 

where 𝜇𝐵 is the viscosity (𝑐𝑃) at atmospheric pressure, 𝑇 is the temperature (℉), 𝑆𝑎𝑙 is 

the salinity (TDS). 

Water fractional flow curves for the constant concentration states in the solution and 

the solution path is presented in figure (C.9). 
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Figure C.9: Water fractional flow curves and solution path for 𝑛 = 2 

From now on we analyze Oleinik condition for each shock wave, defined as: 

𝑓(𝑢(−))−𝑓(𝑢)𝑢(−)−𝑢 ≥ 𝑓(𝑢(−))−𝑓(𝑢(+))𝑢(−)−𝑢(+)         (C.99) 

For the pH shock of the auxiliary system solution, Oleinik condition is: 

𝑓𝑤𝑠𝑤+𝑉𝑝𝐻′ ≥ 𝑓𝑤(−)𝑠𝑤(−)+𝑉𝑝𝐻        (C.100) 

in which 𝑉𝑝𝐻′  is the shock slope in figure C.7. Each shock 𝑉𝑝𝐻′  results in a different right 

state [𝑐1, 𝑐2, 𝜉], and therefore, a different fractional flow curve. To verify Oleinik 

condition, we map all possible 𝑉𝑝𝐻′  shocks onto 𝑓𝑤 × 𝑠𝑤 plane, determining the shocks 𝐷𝑝𝐻′  in 𝑥𝐷 × 𝑡𝐷 plane. Locus of the pH shock in 𝑓𝑤 × 𝑠𝑤 plane is presented in figure 

(C.10), the green points are the 𝑠𝑤 shock condition for the shock 𝐷𝑝𝐻, and in figure (C.11) 

we show the velocities 𝐷𝑝𝐻 as a function of the saturation shock condition. 
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Figure C.10: Locus of pH shock in 𝑓𝑤 × 𝑠𝑤 plane 

 

Figure C.11: Velocities of the pH shock 

In figure (C.11) the blue point is the velocity of the shock wave that satisfies Oleinik 

condition in the auxiliary system solution. This is the smallest shock speed, and therefore 

satisfies Oleinik condition in 𝑥𝐷 × 𝑡𝐷 plane. 

A similar analysis for the other two shock waves of the auxiliary system was 

developed. For the shock 𝑉2, 𝜔2(𝐽) ≤ 𝜔2 ≤ 𝜔2(𝐼), 𝜔1 = 𝜔1(𝐽) and 𝜉(𝐼). The concentration 

locus of the shock is calculated changing 𝜔2 from the condition (𝐽) to condition (𝐼) and 

the relation: 
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𝑐𝑖 = 1𝛽𝑖(𝜉(𝐼)) (𝜔𝑖−𝛼𝑖(𝜉(𝐼)))𝜔𝑖 ∏ 𝛼𝑗(𝜉(𝐼))[𝜔𝑗−𝛼𝑗(𝜉(𝐼))]𝜔𝑗[𝛼𝑗(𝜉(𝐼))−𝛼𝑖(𝜉(𝐼))]2𝑗=1𝑗≠𝑖 , 𝑖 = 1,2   (C.101) 

The shock velocity 𝑉2′ for each point can be determined through the expression: 

𝑉2′ = 𝜔2(+)∏ ( 𝜔𝑗(−)𝛼𝑗(𝜉(𝐼)))2𝑗=1 , 𝜔2(𝐽) ≤ 𝜔2(+) ≤ 𝜔2(𝐼)    (C.102) 

After the concentration shock condition is calculated, the water fractional flow curves 

may be determined (Figure C.12). The saturation shock locus is found following the same 

procedure described for the pH shock (Figure C.12). 

 

Figure C.12: Locus of 𝜔2 shock mapped into 𝑓𝑤 × 𝑠𝑤 plane 

The red point is the saturation shock condition that satisfies Oleinik condition in the 

auxiliary system solution, also the smallest shock velocity in 𝑥𝐷 × 𝑡𝐷 plane. 
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Figure C.13: Velocities of the 𝜔2 shock locus 

Following the same steps for the shock 𝑉1, where 𝜔1(𝐽) ≤ 𝜔1 ≤ 𝜔1(𝐼), 𝜔2 = 𝜔2(𝐼) and 𝜉(𝐼). The fractional flow curves calculated from the concentration locus of shock 𝑉1 are 

presented in figure (C.14). 

 

Figure C.14: Locus of 𝜔1 shock 
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Figure (C.15) shows the shock velocities for the saturation condition of 𝜔1 shock. The 

shock that satisfies Oleinik condition in the auxiliary plane 𝑥𝐷 × 𝜑 has the lowest velocity 

in 𝑥𝐷 × 𝑡𝐷 plane (red point). Therefore, this shock also satisfies Oleinik condition. 

 

Figure C.15: Velocities of the 𝜔1 shock 
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