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Resumo

A injecéo de polimeros é o método quimico de recuperagcédo avangada mais utilizado.
A adicao de polimeros aumenta a viscosidade da agua de injecédo, o que resulta em
um aumento da eficiéncia de varrido. Recentemente, observou-se que a injegao de
agua de baixa salinidade e com concentracao controlada de cations e pH poderia ser
utilizada para aumentar a recuperacao de petroleo. A inversao de molhabilidade
resultante da substituicdo de um cation bivalente por um cation monovalente na rocha
€ o principal fendbmeno fisico responsavel pela mobilizacao de éleo residual na injecao
de agua de baixa salinidade. Usualmente, a inje¢cao de produtos quimicos é feita na
forma de um banco com os produtos dissolvidos e deslocado por agua.
Matematicamente, esse cenario significa que a condicdo de contorno é descontinua.
Neste trabalho apresentamos a solu¢éo para a injecao unidimensional de um banco
contendo n produtos quimicos dissolvidos e deslocado por 4gua em reservatérios de
petroleo. Como exemplos apresentamos os casos de um banco contendo dois e trés
polimeros dissolvidos, e ainda o caso da injecdo de agua de baixa salinidade
considerando trés cations dissolvidos e os efeitos do pH. Os componentes quimicos
adsorvem no meio poroso segundo uma isoterma do tipo Langmuir multicomponente.
A solucao desses problemas é construida a partir do desacoplamento do sistema
original de equagdes hiperbdlicas em um sistema auxiliar e em uma equacgao de
levantamento. O sistema auxiliar inclui apenas as propriedades termodinamicas do
sistema, e a equacao de levantamento depende das propriedades hidrodinamicas. O
sistema auxiliar foi resolvido utilizando a teoria da cromatografia multicomponente, e
sua solucdo € utilizada para resolver a equagéao de levantamento pelo método das
caracteristicas. Em seguida, a solugdo do sistema auxiliar e da equacao de
levantamento é mapeada para o plano espaco-tempo. Na solucao de concentragcao é
possivel observar o desenvolvimento completo de um ciclo cromatografico no meio
poroso. As diferentes distribuicbes de concentragdo de componentes quimicos no
reservatorio resultam no surgimento de bancos de agua e de 6leo na solugédo de
saturacao de agua. A formulacdo matematica apresentada na solucédo do problema
de injecdo de agua de baixa salinidade expande a teoria da cromatografia
multicomponente para o caso em que os coeficientes da isoterma de adsorgéo
dependem do pH.



Palavras-chave: Métodos Quimicos de Recuperacdo Avangada de Petrdleo, Injecéo
de Polimeros, Injecdo de Agua de Baixa Salinidade, Leis de Conservagao, Sistemas
de Equacdes Diferenciais Parciais Hiperbdlicas.



Abstract

Polymer flooding is the most important chemical method of enhanced oil recovery.
Adding polymer to injection water increases water viscosity and optimize the sweep
efficiency. Recently, it was observed that injection of controlled water salinity, cation
concentration and pH improve oil recovery. The cation exchange on clay surfaces
results in wettability alteration, which is the main physical phenomenon related to
mobilization of residual oil in low salinity waterflooding. Usually, a chemical slug is
displaced by pure water, leading to a discontinuity in the boundary condition of the
mathematical problem. In this work we present the solution for the one-dimensional
multicomponent chemical slug injection driven by water in oil reservoirs. The solution
for the cases of slugs containing two or three dissolved polymers and for the low salinity
waterflooding considering three dissolved cations and pH effect are presented. The
chemical components adsorb on the rock following a multicomponent Langmuir-type
adsorption isotherm. The introduction of a potential function replacing time in the
original system of equations decouples the system of conservation laws into an
auxiliary system and a lifting equation. The auxiliary system depends on the
thermodynamic equilibrium conditions, and the lifting equation depends on the solution
of the auxiliary system and on the hydrodynamic properties of the flow. The auxiliary
system was solved applying the theory of the multicomponent chromatography, and its
solution is used to solve the lifting equation applying the method of characteristics.
Next, the solution is mapped onto the space-time plane. In the concentration solution
it is possible to observe the development of a full chromatographic cycle. The different
concentration distributions in the reservoir results on the appearance of water and oil
banks in the water saturation solution. The mathematical formulation presented in the
low salinity waterflooding problem extends the theory of multicomponent
chromatography to the case where the adsorption coefficients depend on pH.

Keywords: Chemical Methods of Enhanced Oil Recovery, Polymer Flooding, Low
Salinity Waterflooding, Conservation Laws, Hyperbolic Systems of Partial Differential
Equations.
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Abstract

Injection of water containing dissolved chemicals is an efficient oil recovery technique.
One of the problems of this method is the loss of the chemical components due to
interactions between rock and fluid. In polymer injection, adsorption may happen and
lead to low process efficiency. The interaction between rock and fluid is governed by
the adsorption isotherm, which relates the polymer concentration in water with the
adsorbed amount on the rock. In this paper the problem of oil displacement by a water
slug containing n chemical components that may be adsorbed is analyzed. The system
of conservation laws is solved and the structure of the solution for the case of Henry’s
adsorption isotherm is completely described. The concentration profile of each compo-
nent and the chromatographic cycle is calculated through simple expressions. The com-
plete and detailed solution for the case of slug injection containing three chemical
components is presented. The general solution developed can be used to model sev-

eral Enhanced Oil Recovery techniques, in which the chemical components adsorb in

KEYWORDS

1 | INTRODUCTION

Different techniques can be employed to improve recovery in oil
fields. Water injection is the most used and the one-dimensional
mathematical problem was solved analytically.! It was considered
immiscible and incompressible phases (oil and water). Adding polymer
to the injection water reduces water mobility and modifies the frac-
tional flow curve, hence increasing the sweep efficiency.

Chemical enhanced oil recovery (EOR) has been applied in
onshore and offshore petroleum fields. The most used chemical com-
ponents dissolved in the injected water are polymer, surfactants, and
alkalis. This technique recovers part of the remaining oil mainly due to
a favorable mobility ratio change.

One of the first offshore chemical EOR projects took place at
West Bay and Quarantine Bay Field, in Louisiana shallow waters, in
1981. Later, other chemical EOR projects were applied in Cuadras
field in California, Bohai Bay in China, Dalia in Angola and Captain in
North Sea, among others.?

porous media following Henry's adsorption isotherm.

chemical enhanced oil recovery, conservation laws, enhanced oil recovery, hyperbolic systems
of partial differential equations, polymer flooding

Laboratory, analytical and numerical analyses must be performed
before field application of enhanced oil recovery methods. Injection of
one dissolved chemical component causes thermodynamic and hydro-
dynamic interactions between porous media and reservoir fluids (orig-
inal oil and injected water) and can be mathematically modeled by a
2x2 nonlinear mass conservation system. One-dimensional multiphase
flow in porous media with constant initial and boundary conditions
can be solved by the method of characteristics and the solution con-
sists of a combination of shocks and rarefaction waves, and constant
states.

The different enhanced recovery methods can lead to mul-
ticomponent multiphase flow problems in porous media. In general, it
may be considered that the components are distributed among
n phases in thermodynamics equilibrium, and the phase composition
affects its physical properties (density, viscosity, surface tension, etc.).
Some problems may be solved analytically depending on the physical
approach. One of the approaches is the theory of multicomponent

chromatography, which describes the behavior of a two-phase

AIChE Journal. 2019;e16735.
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system, one mobile and the other stationary, composed of
n components, and each component concentration affects the distri-
bution of all others. The second case is based on immiscible fluid flow
in porous media considering two mobile phases, however, this theory
does not include the distribution of the components between the
phases.

Helfferich® solved a general problem consisting of n phases and
n components using the coherence conditions showing the composi-
tion paths. The system of hyperbolic partial differential equations was
solved by the method of characteristics and the consistency condition
already adopted for modeling chromatography was also used. This
theory was subsequently applied by Hirasaki* in a three-component
system which simulates surfactant injection in a two-phase system.
Johansen and Winther® developed the Riemann problem solution for
a hyperbolic system composed by n equations using an “S” fractional
flow curve.

In general, the continuous injection of aqueous solutions con-
taining chemicals is not economically feasible; a more attractive alter-
native is the slug injection. In this case, the boundary conditions are
functions of time and lead to interactions between waves in the math-
ematical solution. Therefore, in slug injection problems only part of
the solution is self-similar. This part of the solution is identical to the
case of continuous injection and was applied to three adsorption
isotherms.®

The introduction of a potential function associated with the aque-
ous phase volume conservation can be used to solve the system of
hyperbolic equations that represents the two-phase multicomponent
flow in porous media. This variable is used to replace the variable time
and splits the original system into an auxiliary system and a lifting
equation. In the case of polymer injection considering adsorption, the
parameters of the flow function of the auxiliary system are related
only to the thermodynamic properties and are defined by the adsorp-
tion isotherms, that is, independent of hydrodynamic properties such
as relative permeabilities and viscosities.”

This methodology was later applied to solve the problem of water
injection containing a polymer in the presence of salt that does not
adsorb nor alter the fractional flow curve,® and to the injection of one
and n polymers.? In the last case, it was only considered continuous
injection of agueous solutions containing chemicals, leading to self-
similar solutions. Ribeiro and Pires'® developed an analytical solution
using the same model for the case of water slug injection containing
one polymer, considering linear (Henry), convex (Langmuir) and con-
cave isotherms for an “S” shape fractional flow function. For convex
fractional flow function, it was also presented a solution for the injec-
tion of slugs containing two polymers that adsorb according to
Henry’s isotherm; a solution for the injection of a slug containing a
polymer and a surfactant which does not adsorb but changes residual
oil saturation; and the solution for the injection of a water slug con-
taining one polymer in the presence of salt that changes the polymer
adsorption.

Borazjani et al.!? solved the problem of water slug injection con-
taining one polymer in the presence of salt, considering an “S” shape

fractional flow function and the linear Henry adsorption isotherm. De

Paula and Pires'? presented the solution to the problem of oil dis-
placement by water slugs containing one polymer in the presence of
salt, considering Langmuir's isotherm to model the adsorption phe-
nomena and an “S” shape fraction flow curve. They used the splitting
method developed by Pires et al.” to build the solution, which is com-
posed by concentration discontinuities (jumps) and rarefactions
waves. A sensitivity analysis was performed considering different
parameters and slug sizes showing that a smaller adsorption leads to a
more homogeneous profile and more effective oil displacement.

The splitting technique can also be applied to EOR problems con-
sidering advective transport, parabolic terms and relaxation non-
equilibrium equations. In cases where the auxiliary system allows the
development of an analytical solution, the complete exact solution
can be constructed.*®

Borazjani et al.1*

presented an analytical solution for a nonself-
similar, two-phase, one dimensional problem of displacement of oil by
a polymer slug with changing salinity, showing that the low salinity
front moves faster than the polymer due to adsorption. It was also
presented the solution to the injection of a polymer slug in a low salin-
ity system displaced by a low salinity or high salinity water drive.
Compared to the low salinity case, the high salinity increases the
velocity of water front, causing an early water breakthrough time and
increase of water-cut after water breakthrough. It was considered an
“S” fractional flow function and Henry isotherm.

Khorsandi et al.t> showed the analytical solution for low salinity
polymer flood using the splitting method. Wettability alteration based
on cation exchange reactions was considered in the problem, and the
results were compared to numerical and experimental data.

Hamid and Muggeridge® developed the analytical solution to the
problem of polymer slug injection in porous media considering viscous
fingering effects. The solution was built using the method of characteris-
tics and the splitting technique. The results were compared to numerical
simulation and were used to estimate the minimum polymer slug size
needed to avoid an early breakthrough due to the viscous fingering.

Despite of the advances in the development of solutions to enhanced
oil recovery problems, a general solution that considers a variable bound-
ary condition has not been presented in the literature. Therefore, in this
paper the 1D two-phase problem of water slug injection containing
n polymers whose adsorption is governed by Henry’s isotherm is ana-
lyzed. We consider that the polymer does not dissolve in the oil phase
and changes only the water viscosity. Next section presents the mathe-
matical model, followed by the detailed solution for the case of three dis-
solved components. After that, the general solution for any number of
polymers is shown. The developed solution can be applied to several
problems that arise in enhanced oil recovery, like polymer and surfactant

flooding, and low salinity waterflooding with polymers.

2 | MATHEMATICAL DERIVATION

In this section the mathematical model for one-dimensional oil dis-
placement by the injection of a water slug containing n polymers in

porous media is presented.
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The following assumptions are considered:

e one dimensional and isothermal flow;

e homogeneous porous media;

e incompressible system;

e no dispersive and diffusive effects;

e gravity and capillary effects negligible;

e chemicals are dissolved only in the aqueous phase;

e water density is independent of the concentration of chemical

additives.

The system that represents the physical process of oil displace-
ment by water slug containing n dissolved polymers is composed of
(n + 1) equations derived from volume conservation of water and

mass of each dissolved component:

o)

)

d(cis+ay(cr))

¢ ot x 0
ez een) +uf(czfa(xsf)) I ®
¢3(cns ‘;(:n(cn)) + UTB(cnfa(:,?» -0

where ¢ is the concentration vector of the chemical components dis-
solved in water, d is the vector of the amount adsorbed on the rock
surface, f(s,?) is the water fractional flow function, s is the saturation

of the aqueous phase, ¢ is the porosity of the reservoir and ut is the

total flow velocity. Using the following dimensionless variables:

t
7= Jour(r)de (Qfs)df (3)
Uy

we can rewrite Equations 1 in its dimensionless form:

of (s, ¢
%J' <o’>x ) -0
d(c1s+ag(cr)) +8<C1f<s’?)> -0
aT oX
Heasras(ea) , (2 () _ @
aT oX
é<cns+an<cn)) 9(ef(s)) _0
aT X

where T is the number of slug volumes injected, X is the dimensionless

position related to the length of the slug, Q. is the volume of the

AI?BEJ R NALm

injected slug and A is the cross-sectional area of the porous media.
Moreover, we will normalize the saturation by:

_s(X,T)-s)
O ®)

where s is the initial water saturation and s is the water saturation
at the porous media inlet (injection point).

From now on, we use Henry’s adsorption isotherm, which states
that the adsorbed amount of each component is a function of the

concentration of the component itself:
ai(ci) =ici (6)

In the case of slug injection containing dissolved chemicals, we
consider that when the slug injection begins, the reservoir water satu-
ration is irreducible, and no polymers are present in the reservoir. Dur-
ing the injection of the slug, water fractional flow and polymers
concentration are specified. At the end of the slug injection (T = 1),
the water drive begins (injection of pure water, no chemicals dis-
solved). Thus, we have the following initial and boundary conditions:

s(X,0)=0,
{ _ ~n X>0 (7)
c(X,00=c ,

fOo,T)=fY=1 T>0

2U 0<T<1 8
com=1¢ (8)
0, T>1

To solve the system of Equations 4 subject to the initial and bound-
ary conditions given in Equations 7 and 8, we introduce the following

potential function, associated with volume conservation of water”:
do = f(s,?)dT—st 9)

Replacing this potential function as an independent variable splits
the original (n + 1) x (n + 1) system into an n x n system, that depends
only on the adsorption isotherm (thermodynamics properties), and a
lifting equation that is a function of the transport properties and of
the solution of the auxiliary system. Thus, this technique separates
thermodynamics equilibrium and transport properties. Applying the

splitting technique in Equations 4 gives:

df_s V21 Y_p
0 f(s’z) x f(s’?) (10)

aa;(c,-) 8c,~_ .
0 +W_O" 1,2,..,n

In the space (X, @), the initial and boundary conditions given by

Equations 7 and 8 become:
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s(X,0)=0,X>0 "
cx0=¢" x>0 )
f0,9)=f"(¢)=1, >0
clo-| < 00t 2
0, ¢p>1

Defining ﬁ as U(s,?) and —ﬁ as F(U,?), the system of

Equations (10) becomes:

aF(u,E) +au<s,z)

dp oX (13)
&ai(ci) 076,‘ _ s
0 +W—O, i=1,2,..,n

Applying the initial and boundary conditions (Equations 11 and
12) in the definitions of u(s,?) and F(u,?) we obtain the initial and

boundary conditions for the new independent variables of the lifting
equation:

U— +o0
{ ,9=0 (14)

F— -

U=1
{Fz_l,X—O (15)

After the solution is found in space (X, ¢), the inversion mapping

to time domain is obtained from the following expression:

dT= dy ¥ > dX (16)

F(sXp)c X)) f(sX.p)C(Xe))

3 | RESULTS AND DISCUSSIONS

Now we will present the solution for the case of oil displacement by a
water slug containing three dissolved polymers. In such case, the sys-

tem of Equations 4 becomes:

é.'. @ =0
aT oX
dessras(er)) |, (of () -0
T X (17)
d(c2s+az(c2)) +9<C2f(5’z)) -
aT oX
9(C3$+03(C3)) +07(C3f(5,€)) =0
aT oX

Applying the potential function (9) in (17), the system of equations is

splitted in two parts: a lifting equation and an auxiliary system, given by:

oF (u, ?) au(s,E)

e TTx 7O (18)
0701(C1) n aﬂ =0
e X
902(C2) aCZ _
St ax O (19)
0703(63) n aﬁ =0
dp X

Considering the thermodynamic behavior ruled by Henry s adsorp-
tion isotherm, where the amount adsorbed is proportional to the chem-

ical component concentration in the aqueous phase, we have:

ai(cy)=I1cq (20)
az(c2) =I'2¢; (21)
as(cs) =TI'scs (22)

The components will be ordered according to the value of its
adsorption constant (I5), so that I'y > I', > I's. The water viscosity
without chemical additives will be named Mf,)v, and «; is a parameter
related to the contribution of component i to the solution viscosity. It
will be also considered that the polymer solution viscosity is described

by the expression:
=\ =0
.“w(c) —ﬂw(1+(l1C1 +aoCy +(13C3) (23)

According to Henry's law, the viscosity of the aqueous solution is
proportional to the polymer concentration in the water phase. We will
also consider that, the smaller the polymer adsorption, the smaller the
solution viscosity. Therefore, we have a4 > a, > az and we will choose
ajterms so that aq + as > a1 + az > ay + as.

Rewriting the auxiliary system (19) in matrix form we find:

d01 (Ci)

0 0
100] [ des . o 0
010||ca| +| © “§£C2) 0 ol =lo] (24
2
001 C3 X da3(C3) C3 » 0
0 S\
dC3

The eigenvalues /; of this system of equations are real and distinct:
A1 =dj(c1); A2 =d5(c2) and A3 =aj(c3). Moreover, the corresponding
eigenvectors are linearly independent, and therefore, the system is
strictly hyperbolic. Recalling that the adsorption of the components is
governed by Henry's isotherm and the assumption that the compo-
nent (n—1) adsorbs less than the component n, we can write the
eigenvalues in terms of adsorption isotherm's constants: 1, = I'y;
Ao =T, and A3 = I's. So, the solution of the auxiliary system (19) sub-
ject to initial and boundary conditions (11)-(12), which is composed

by jumps of concentration, is given by:
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0, Osgp=s<IiX

aXp)=< ), MXspsrix+1 (25)
, ' X+1l<¢ps+oo
0, O<sgp=sIyX

(X, @)= C(zj>y I XspslX+1 (26)
0, I'X+1l2¢p<+
0; 05¢5F3X

c3(Xp) = c(3”, I3X<psIaX+1 (27)

I'sX+1<¢ps<+o0

The solution of the auxiliary system divides the plan (X, ¢) into
10 regions (Figure 1). It can be observed the development of the chro-
matographic cycle, where all the injected components are completely
separated. The distribution of the components within each region is
given by:

e Regions 1;7;9and 10: c; =0,c, =0and c3 = 0;
e Region2:¢c1=0,co,=0andc3=1;
e Region3:¢,=0,co=1andc3=1;
e Region4:ci=1,co=1andc3=1;
e Region5:¢1=0,co=1andc3=1;
e Regioné6:¢c1=0,c,=0andc3=1;

e Region8:c1=0,co=1andc3=0.

The coordinates of the points that separate the regions (shock cur-

ves intersection) can be written as functions of isotherm constants I';:

e Point A:

(28)

c,=c,=c¢,=0

4 ¢,/-'".
( <20 (1)
X
FIGURE 1 Solution of the auxiliary problem
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e Point B:
1 Iy
Xg=——; pg=—"— 29
B >—T3 (] »—T3 (29)
e Point C:
1 Iy
Xe=————; @c= 30
I e I'h-rs (30)

The concentration profile is calculated from the auxiliary problem
solution (Equations 25-27). During the slug injection, all three compo-
nents are present in the reservoir, and component 3 travels ahead of
components 1 and 2 due to its smaller adsorption rate (Figure 2a).
Figure 2b presents the slug displacement by pure water injection
(no dissolved components). Figure 2c shows the splitting of the com-
ponents in the porous media and no longer exists a region where all
three components coexist. When ¢g < ¢ < ¢, component 3 is
completely separated from components 1 and 2 (Figure 2d). For
@ > @c, all components are separated, and the chromatographic cycle
is completed (Figure 2e).

Once the solution of the auxiliary problem is found and the con-
centration profile in the auxiliary plane is known, the next step is to
solve the lifting equation to calculate the saturation. Recalling that the
concentration of each component remains constant in each of the dif-

ferent regions, applying the chain rule in Equation (18), leads to:

dFoU  oU
The solution of Equation 31 is found by the method of character-

istics. The characteristic speed is given by:

dp oF
X0 (32)

On each characteristic curve the value of U is constant. The solu-
tion U(X, ¢) of Equation 31 (Figure 3) is composed by five different

regions limited by the crossing points of the shock waves of the auxil-

iary system solution:

U, O0O<g¢p<1
Ui, 1<p<qa
UX,@)=1 Ui, pa<@<og (33)
Uy, ps<@<g@c
Uv, oc<o

The solution path in (F x U) plane is presented in Figures 4-8. The
superscript (n) indicates the value of U at point n and corresponds to a
constant state region, and the subscript (n) represents a rarefaction
wave in region n. Values of U before a shock are defined as U*, and
U~ corresponds to the value of the variable after the shock. Each part

of the solution of U(X, ¢) (Equation 33) is given by:
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FIGURE 2 (a) Polymer concentration profile during slug injection; (b) polymer concentration profile: 1 < ¢ < @a; (c) polymer concentration
profile: pa < ¢ < ¢p; (d) polymer concentration profile: g < ¢ < ¢c; (€) polymer concentration profile: ¢ > ¢¢
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FIGURE 3 U-characteristics in plane (X, ¢)
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o Forp<1:
uv, X=0
Us(X,0), r — <x< 2
9F<u=1,c= > !
U
u={ u®, X< (34)
u®@ F£<X<F£
2 3
U, %<X<+oo
3
U('), »=0
o Forl<g<ga
uY), X=0
-1
U G%e) aF(u (i* 0) <X<(¢r1)
= ,C:
0 U
B} -1 -1
Us (X ), —(¢r1 ) ex< (“”rz )
Usxg), O U x0T
U= 2 3 35
"\ (0-1) .0 59
U4(X,(p), F—3<X<F_1
us), F£<X<F£
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u®@, Iii<X<F’i
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FIGURE 4 Solution of U, in plane (F x U)
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FIGURE 5 (a) Solution of Uy, in plane (F x U); (b) zoom in solution U
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FIGURE 7 (a) Solution of U,y in plane (F x U); (b) zoom in solution U,
(a) (b)
£9 ~

U

FIGURE 8 (a) Solution of Uy in plane (F x U); (b) zoom in solution Uy,
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uY), X=0
U3 (X), 0 _exloh
oF(u=1c=0) [
U
- (p-1) (p-1)
Ug X, ), 2 <X< I
-1
Us ), 2N ex< 4
T2 F (U cr=ca=1,c5=0)
U
. @ @
U=y U X< 36
" aF(u<5’>,c1:52:1,c3:0) I (36)
U
u® £<X< e-1
' Iy I's
(3) 91 R
U=, I's X< I
(2) i L
v I X< I's
um, ri;<><< +o0
U”), @=0
e Forgg<¢ <oc
uv), X=0
Uj (X). L (k)
oF(u=1,¢=0) [
U
U; ), 7Y ex< ¢
I &F(U(‘H,ci =1c=cs =o)
U
ye) 4 x< (oD
JF(U(é”,c1=1,cz=53=O) I
U,v= U (37)
us-) (p-1) <X<£
I2 It
u® P x< 2
’ Iy I,
u10 (4 <X< p-1
I I's
U@ =1l .y
I's I's
um L X<+
I's
U(”, 9=0
e Forg > ¢c:
uv, X=0
U; (X9, u <X< u
7 aF(u=1.c=0) " oF(U7"c-0)
U U
) [ X< (p-1)
aF(u<7*>,E =0) Iy
U
U @-1 w9
! Iy I
W={ uo 9 xlo7D) (38)
’ T T
u® (p-1) <X< A
’ I I
(10) Py 01
v I X< I's
(2) 91 R
U=, I's X< s
U(1>Y I%<X< + o0
U(”, @=0

The path of U(X, ¢) is shown in Figure 4 and is given by J

-4 -3 —2—1—1, where the symbol (—) indicates a shock and

(=) a rarefaction. This solution starts with a rarefaction wave from
the injection condition UY to the point U® on the curve F(U,
cq1 = €y = c3 = 1). At this point, there is a jump with velocity I'; up to
the point U® on the curve F(U; ¢1 = 0, ¢y = ¢3 = 1). Subsequently,
there is a jump with velocity I'; to the point U@ on F(U; c1=¢=0,
3 = 1), and finally a new jump to U™ on F(U; ¢4 = ¢, = c3 = 0) with
velocity I';. Note that through each jump with velocity I';, the com-
ponent i disappears. The Buckley-Leverett jump is achieved only
when X — + oo.

The rarefaction waves can be calculated by:

aF(U,Cl =C2=C3~= 1) _

@
E] X (39)

The jump that connects U and U® begins in F(U, ¢; = ¢, = c3 = 1)

where:

F(U=U%cr=cr=ca=1)
U

=I1 (40)

From the Rankine-Hugoniot conditions we find the constant
states U(3), U(z), and U™

7 F(U¥iei=ca=ca=1)~F(UPic1=0.co=c5=1)

o TS = (41
F(U(?’);cl =0,co=c3= 1) —F(U(z);cl =c2=0,c3= 1)
=0, (42)
u® -y
F(UZic1=c2=0,c=1) ~F(UMse1 =c2 =5 =0)
=I3 (43)

U@ -y

The shock path given by ¢ = I';3X + 1 separates the self-similar
region (regions 1-4 in Figure 3, which corresponds to solution
Ul(X, ¢)), from regions where the pure water injected interacts with
the polymer slug (regions 5, 6 and 7 in Figure 3). The rarefaction
waves resulting from these interactions (U5 (X,p), Ug (X,p), and
Us (X,¢)) are calculated through the solution of the following system

of transcendental equations:

o =X +1 (44)

U % )
C N
F(u ,cU?_Zgu ¥ )=r' )
U C) o
(au )=>q:—)¢<* @

Therefore, for Us (X¢), we have:
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@ =X +1 (48)

aF(U+,C1=C2=C3=1)
au

_v
“ (49)

F(U%,c1=c2=c3=1)-F(Us;c1=c2=1,c3=0)

=r 50

U+—U§ 3 ( )

JF(Us,c1=c2=1,c5=0) _o-¢ (51)
u X-X"

For the calculation of Ug(X,¢) we recall that
Ug (X,) = Uz (X, ). Thus,

0 =X +1 (52)

IF(Ug =Ussci=c2=1,c3=0)
Ju

-
=2 53
: (53)

F(Ugr =U5_,C1 =C2=1,C3=0)—F(U6_;C1 =1,C2=C3=0)

T -r;  (54)

aF(Ug,q =1,co=c¢3 =O) ¢
U CX-X

: (55)

Similarly, for U7 (X,¢), we know that U5 (X,) = Ug (X,@):
@ =X +1 (56)

BF(U; = Ug;Ci = 1,C2 =C3= O)
au

v
- (57)

F(U7+ =Ug,C1=1,C2=C3=O)—F(U;;C1=C2=C3=O)

U;-U; =I1 (58)
IF(U7ic1=c2=c3=0) ¢-¢"
= — (59)

So, the solution Uy(X, ¢) is given by (Figures 3 and 5):

o Injection condition: U constant and equal to U with
c1=Cy=¢c3=0;

e Region (7): U-rarefaction where ¢4 = ¢, = ¢z = 0, and U varies from
U” to Uy (X,0);

e Region (6): U-shock with velocity I'; from the end of the rarefac-
tion U7 (X,p) where ¢; = ¢ = ¢3 = 0 to U;'(X,) where ¢; = 1,
c2 = ¢3 = O, followed by a rarefaction wave from U.'(X,p)
to Ug" (X, 0);

e Region (5): U-shock with velocity I', from the end of the rare-
faction Ug”(X,p) with ¢4 = 1, ¢ = ¢3 = 0 to Uz’ (X,p) with
c1=¢2 =1, ¢c3=0, followed by a rarefaction wave from U5’ (X, )
to Us" (X, ¢);

e Region (4): U-shock with velocity T'; from the end of the rarefac-
tion Us"(X,p) where ¢; = 1, ¢c; = ¢3 = 0 to U,'(X,pp) where
¢, = ¢y = c3 = 1, followed by a rarefaction wave from U;/(X,(/J)
to U,"(X.¢);

e Region (3): U-shock with velocity I'; from the end of rarefaction
U;"(X,) where ¢ = co = c3 = 1 to U® in which¢; =0,¢cp = ¢c3 = 1,
followed by a constant state U(3);

e Region (2): jump from U® to U? with velocity T, followed by a
constant state U® where c1=¢=0,c3=1;

e Region (1): jump from U® to U™ with velocity Ts, followed by a
constant state UM where c1=Cr=¢3=0;

e For ¢ =0: jump from U™ to initial condition U,

The superscripts ’ and ” indicate, respectively, the values of U at
the beginning and at the end of each rarefaction wave resulting from
the interaction between waves of different families. For example, 6'in
solution U, (Figure 5b) is the point where the solution jumps from
region 7 to region 6, and 6" is the end of rarefaction in region 6 where
the solution jumps from region 6 to region 5. Note that for different
values of ¢, the beginning, the end and the length of the rarefaction
will also be different.

Analogously to the solution Uy(X, ¢), we can write the solution
path for Uy (X, @), UuX, ), and UAX, ¢). These solutions are given by:

UnXp): ()-7"" =6"'=6"=57-5" 583211
Uv(Xp):())-7* —=6'-6"" =5 —8-10-2—-1-1

UXp):())-7* -7" -6~ -9-8-10—2—-1—1

The rarefaction and shock waves in each region are calculated fol-
lowing the same procedures already described to the solu-
tion Uj(X, o).

Once the solution of the problem in the auxiliary plane is found

we can determine f(s(X, (/J)?) and s(X,¢) from the definitions of F
and U:

= 0o (60)
F(U,?)
5= - UX.0) (61)

At this point both lifting equation and auxiliary system have
already been solved. The next step is the inverse mapping from the
plane (X x ¢) to plane (X x T), calculated from Equation (16), and
determining s(X, T) and c(X, T). As the adsorption is modeled by
Henry’s isotherm, U rarefactions are straight lines carrying constant
saturations. This condition is also applied to shocks at the front of the
slug (D;, i = 1, 2, 3). However, shocks at the rear of the slug (pa = I'1X
+1, pg = [2X + 1, and ¢c = I'3X + 1) are not straight lines in (X x T)
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FIGURE 9 Solution in (X x T) plane

domain due to interactions between water injection waves (p > 1) and

polymers slug waves (Figure 9).
The relations between shock waves in (Xx T) plane (D;) and

(X x @) (V) are’:
fi
Di=——+; i=1,2,3; j=A,B,C

iy (62)
where V; is found from the Rankine-Hugoniot conditions of the auxil-

iary system:
(63)

In the solution of the auxiliary system, there is a jump from a con-
stant state in region 1 (U™ to the initial condition (U” ) when ¢ =0.
This shock is similar to a Buckley-Leverett shock (Buckley and
Leverett, 1942) in (X x ¢) plane. Therefore,

V=5 =0 (64)

¢

X
Thus, the Buckley-Leverett shock in the (X x ¢) plane is a straight

line on the axis ¢ = 0. Applying Equation 64 in Equation 62, we find

this shock in (X x T) plane:

f+

DBL=S*+

(65)
Rarefaction waves slopes in space (X x ¢), carrying constant satu-
ration and concentration, are used to determine the characteristic

waves slopes in (X x T) using Equation 16.

So, the solution of s(X, T) in plane (X x T) is also divided in five

parts (Figure 9):
s, 0<T<1
s, 1<T<Ta
s(X,T) sy, Ta<T<Tg (66)
S, Tg<T<Tc
Sv, T> TC
The solution s/(X, T) is:
) e1=cr=car=
s, X<o"f(s ,C1=C2=C3 1)T
Js
If(s¥,ci1=cr=c3=1
sax,m), e 0_;2 %=V xep,T
SI(X,T) = 5(3)7 DiT<X<D,T (67)
5<2), D,T<X<D3T
S<1), D3T<X<DBLT
S(I), Dg T<X
The solution s;(X, T) is given by:
sV, X< a"(S(J)’Cl=c2=CS=O)T
Js
Of(sY ci=cy=cs=0
5 ), e = )7 <X<DaT-1)
sg (X, T), Da(T-1)<X<Dg(T-1)
si(X,T)={ S5 (X.T), Dp(T-1)<X<D¢(T-1) (68)
s; (X, T), Dc(T-1)<X<D4T
5(3), D1T<X<D,T
S<2), D,T<X<D3T
s D3T<X<Dg T
S('>, Dg T<X

The solution to s;(X, T) is divided in three parts, separated by T,

and Tjyp. Therefore, we have for Ty < T < Ty,:

)

’

S5 (X.T),
S5 (X.T),

sia(X,T) =

of (sU),E = o)

ss(X.T), Dg(T-1)<X<
Jf(s®7),c1=c2=1,c3=0)

of (SU),? = o)

Js T

X<
——T<X<Da(T-1)
T-1)<X<Dg(T-1)
If(s®),c1=c2=1,65=0)

Js (69)

1%
Da(

P T<X<DiT

D;T<X<D¢(T-1)
Dc(T-1) <X <D,T
DT <X<D3T
D3T<X< DBLT
DBLT<X
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For TIIIa <T< Tlllb we have:

| . 8f(s“>,?=0)
Js
af(sw,z =0

T

)T<X<DA(T—1)

s (X.T), Da(T-1)<X<
(s, c1=1,c=c3=0)

Js

sp(X,T)=< 567

’ ds
s, Dg(T-1)<X<DsT
s®), DiT<X<Dc(T-1)
s®, Dc(T-1)<X<D,T
5@, D,T<X<DsT
s, D3T<X<DgT
s D T<X

and for Tlllb <T< TB:

of (sw,z = o)
s, X<—— /T
Js
8f(s<“,?=0> af<s<7+>,z’=o)
sEX.T), = T<X< =
af(s<7+>,?=o)
5(7+)’ T<X<DA(T—1)
seX.T)= 9 g6-), Da(T-1) <X <Dg(T-1)
s, Dg(T-1)<X <DyT
s®), DyT <X <Dc(T-1)
@), Dc(T-1) <X <D,T
5(2), D2T<X<D3T
S(l), D3T <X< DBLT
SU) DBLT<X
The solution to sp/(X, T) is:
of (sU),Z = o)
0, X< T
Js
af(sw,Z:o) af(s<7+>,z’:o)
s (X.T), = T<X< = T
af(s<7+>,€=o)
5(7+)’ TT<X<DA(T—1)
svXT) =9 g6, Da(T-1)<X<DsT
557, DiT <X <Dg(T-1)
5®), Dg(T-1)<X<Dc(T-1)
s(10), Dc(T-1)<X <D,T
5(2), D,T <X <D3T
5(1), D3T<X<DgT
st Dg T<X

If(s®),e1=1,c2=c3=0) -

T<X<Dg(T-1)

(71)

(72)

For s\{X, T) we have the solution:

of(s¥.c=0)
s, X<V " Ty
ds
o(sV,c=0) o (s7),¢=0)
s7 (X, T), 55 T<X< 5 T
of(s7,¢=0)

s7+), TT<X< Da(T-1)
SV(X‘T) = 5(67)y DA(T_ 1) <X<DqT (73)

$<9), D1T<X<DB(T—1)

5®), Dg(T-1)<X <D,T

s(19), D,T<X<Dc(T-1)

$<2), Dc(T—1)<X<D3T

$<1), D3T<X<DgT

s Dg T<X

The solution of ¢(X, T) for T < 1 is:

()
) X<DiT
ca(XT)=4" ! (74)
¢, DiT<X
()
), X<D,T
QX T)={ 2 2 (75)
), DaT<X
0
), X<DsT
(XT)=1 7 ’ (76)
), DaT<X
And for T > 1 we find:
0, 0<X<Da(T-1)
(X T)=4 ), Da(T-1)<X<D;T (77)
), DiT<X
0, 0<X<Dy(T-1)
X, T)={cY, Dg(T-1)<X<D,T (78)
<, D,T<X
0, 0<X<Dc(T-1)
(X, T)={ Y, Dc(T-1)<X<DsT (79)

), DsT <X

Figure 10 shows the saturation profile for the different regions of
solutions of s(X, T). When T < 1, the self-similar solution is composed by
a saturation rarefaction from the injection condition to the first concen-
tration shock, followed by three concentration and one saturation
shocks, and the initial condition. Note that this part of the solution is
similar to the case of continuous injection of water containing three dis-
solved polymers. Figure 10a presents saturation profiles for three differ-
ent slug volumes injected, where T;<T,<T3<1 (Figure 9). It is
important to point out that, for T < 1, the number of slug volumes

injected is equal to the number of porous volumes injected.
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FIGURE 10

When 1 < T < Ty, the injection of pure water leads to waves

interactions with the polymer slug waves, and three rarefaction

waves appear: one without chemical components, one with only

component 1 and a third one with components 1 and 2 dissolved.
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(a) Saturation profile for T < 1; (b) saturation profile when 1 < T < Ty; (c) saturation profile when T, < T < Tg; (d) saturation profile
when Tg < T < Tg; (e) saturation profile when T > T¢

In this region, at the beginning of water drive (pure water, no

chemical components dissolved), the initial part of the chromato-

graphic cycle can be observed, in which the polymer with the

lowest adsorption rate travels slightly ahead of the others. The
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profile for this part of the solution is calculated at T, (Figure 9)
and is shown in Figure 10b.

For T4 < T < Tg, the separation of the chemical components of the
polymer slug can be observed. It can be noted that component 3 is
completely separated from component 1, and no longer exists a
region where all the components are present. In other words, there is
no region in porous media where the water viscosity is equal to the
viscosity when all the components are dissolved (slug viscosity). The
solution profile is determined at Ts (Figure 10c).

In the case where Tg < T < T, component 2 separates from com-
ponent 3, and after Tg, component 3 is completely separated from the
other chemicals in porous media (Figure 10d).

Finally, for T > T¢, the chromatographic cycle is completed, and all
components injected in porous media are separated (Figure 10e).

It can be also observed in the solution profiles several regions of
higher water saturation surrounded by lower saturations (T > T,). This
is a feature present in the non-self-similar parts of solutions of mul-
ticomponent slug injection problems due to the separation of the
components in the porous media.

In the case of polymer slug injection, the appearance of higher water
saturation regions occurs whenever there is a decreasing in concentra-
tion (which leads to a lower value of solution viscosity) followed by an
increasing in concentration, which results in a higher value of solution
viscosity. In other words, high water saturation regions can be formed in
multicomponent polymer slug injection when a lower viscosity solution
is surrounded by higher viscosity solution (see Figures 10c-10e ).

The different solution paths in (f x s) plane are presented in Fig-
ures 11-15. Note that the solution paths are related to the solution
presented in Figure 10.

The solution for three components can be generalized to solve the
displacement of oil by water slug containing n chemicals dissolved.

This problem is modeled by the following system of equations:

o, of(s.c) "

aT oX

dersrase) , ?(@f(€))
aT oX

s ranca) , A(f(5€)) _ (80)
aT X

é(cnswﬂ(cn)) (et (s)) o
aT X

Introducing the potential function (Equation 9) into the system of

Equations 80, the auxiliary system is rewritten as:

aa1<C1) i aﬂ _
aT oX

day(ca) , 9ca _ 0

aT X (81)

0

dan(cn) 4 %n
T oxX
In this case, there is also the independent lifting equation:

=0

)

Arc,=c,=¢,=0
B:c,=c¢c,=0;¢c,=1
E:c,=0;¢c,=¢,=1
H:c,=c,=c¢c,=1

(1)
S
FIGURE 11 Solution path in plane (f x s) for region s,
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FIGURE 12 Solution path in plane (f x s) for region s;,

S /A (82)

The initial and boundary conditions for this problem are given by:

5(X,0)=0,
2X0) o X>0 (83)
C(A, =Cc ,

f(0,T)=fY T>0

c(0,T)= ¢, ocTet (84)
' 0, T>1

where, ¢ = (c1,€2,..4Cn).
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FIGURE 16
in plane (X x ¢)
In this work, we consider that the fractional flow function depends

Solution of the slug injection containing n polymers

on the concentration of the n components dissolved in the water,

given by the vector ¢, while the component adsorption, modeled by
Henry's isotherm, depends only on its dissolved concentration. The
components are numbered in order of decreasing adsorption, so that
y>I>.. >0,

To solve the thermodynamic part of the problem we write the
auxiliary system in matrix form (see Equation 24), and the eigenvalues
are Ay =T’y > Ay =T, > ... > 1, = [,. These eigenvalues are the charac-
teristic velocities of the auxiliary problem solution. So, the solution to
the problem of oil displacement by a water slug containing n dissolved
components in the auxiliary plane is composed by 2n concentration

shocks:

0, O<¢psIiX
aX)=1 ), MXspsrix+1

0, I X+1lsp<oo
0, O<@p=sTIyX

c2(X,p) = c<;>, IoX<p<IX+1
0, IX+1lg¢p<o

0, O<sgpsIy X

(X, ) = c,(qj), I XspsTX+1

0, I'X+lgs¢pso

This solution divides the plane into regions separated by straight
lines (shock waves) (Figure 16), similarly to the case of a water slug
containing three polymers presented previously. The number of
regions (Ng) and the number of crossing points dividing regions of
constant concentration (Np) can be expressed as functions of the
number of components (n):

Nr(n)=2n+1+ i(n—r) (86)
r=1
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n-1

Ne(n)=> [(n-1)-1] (87)

r=0

The points that separate the regions of the auxiliary physical plane
are determined by the intersection of two shocks. The coordinates of
the intersection points of shock trajectories ¢ = I'X and ¢ =T+ 1,
wherei=1,2,..,n—-1,j=2,3,..,n,andj > i, are given by the follow-

ing expressions:
(88)
It can be noted that:

e There are n + 1 regions where: ¢y =c, =...=¢,=0;

e There are n regions where only one component is present;

e There is only one region where all the n components are present,
sothat:cp=cp=..=¢c,=1.

From the solution of the thermodynamic part of the problem, it
is possible to determine, from the lifting equation, the saturation
solution following a procedure analogous to the one presented in
the previous section. For regions of constant concentration,
we have:

U R i g e
dUdp X  dcy dg o dp T ey do

The expression f,—)‘ﬁ = 5—5 defines the speed of the U characteristics.

g

o ), each char-

Since the concentration in each region is constant (

acteristic carries a constant value of U.
In order to map the solution in plane (X x T), we need to invert the

solution using the expression:

dT = dg + s dX (90)

F(s6o) X)) F(sep) (X))

For this case we can also generalize the expression for time in a

region R. We consider the following nomenclature:

e Ris a region of constant concentration in plane (X x ¢);
o T® s the adsorption constant of the upper limit of region R;
o X®is the position of the shock with slope T®.

So, for the self-similar region (R = n);

=X
¥l

(91)

For the region where R = n — 1 (first non-self-similar region):

(n) 4 (M) X R+1) 4 g(R)) XR+D)
T:(r )X+l (P +sE)XFT 41 X (92)
fm fR) of
Js

For the other regions (R < n — 1):

- (r +sm)x™ +1 N RX_E (r® +500) X0 - (P+ D) 4 5(00)
£ — k)
k=1 (93)

Note that this general solution comprises 2n concentration shocks
and one saturation shock (Buckley-Leverett shock type). It is impor-
tant to point out that the chromatographic cycle also takes place
(complete separation of components in porous media) and interac-
tions between the rarefaction families appear. The procedure to
develop a solution for any number of chemical components follows
the steps presented in the previous section (three component

system).

4 | CONCLUSIONS

In this paper the analytical solution for the problem of oil displace-
ment by a chemical slug containing n components displaced by
pure water is presented. By using a splitting technique based on
the water conservation, a new independent variable was intro-
duced and the system of n + 1 conservation laws is splitted into an
n x n auxiliary system and a lifting equation. The auxiliary system
depends only on the thermodynamics features of the problem,
which in this case is the Henry's adsorption isotherm. The lifting
equation is a function of the solution of the auxiliary system and of
the transport properties (phases relative permeabilities and
viscosities).

For Henry's adsorption isotherm, the solution of the auxiliary sys-
tem is composed by 2n shock waves separated by constant states.
Expressions for the number of regions and for the coordinates of the
intersection points between the shock waves in the auxiliary plane are
also presented. The solution in the auxiliary plane is mapped to
space-time plane through simple expressions. A detailed construction
of the solution is presented for the case of a slug containing
3 components.

The solution in the physical plane shows the complete develop-
ment of the chromatographic cycle (separation of the components
in porous media) and the saturation profiles along the porous
media.

The procedure presented in this paper can be applied to several
other physical systems that arise in enhanced oil recovery, like poly-
mer and surfactant flooding, low salinity waterflooding with

polymers, etc.
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Polymer flooding is the most applied chemical method of enhanced oil recovery (EOR). Usually this process
consists of injecting a slug containing dissolved chemicals displaced by water. This technique is modeled by a
system of conservation laws with constant initial condition and not constant boundary conditions. In this paper
we extend the two solute one-dimensional chromatography problem solution (Rhee et al., 2001) for a two-phase
environment. The exact solution for the injection of a slug containing two dissolved polymers driven by water in
an oil reservoir is developed. It is considered that both polymers may adsorb in porous media following Lang-
muir’s adsorption isotherm. The solution is built splitting the original system into a purely chromatographic
problem (auxiliary system), and a lifting equation that considers the hydrodynamics properties of the system.
Due to the chase water drive, interactions between waves arise along the space-time plane and change the path of
the characteristics at the rear of the slug. The presented solution is composed by rarefaction and shock waves,
and constant states. Moreover, a complete chromatography cycle develops in the porous media (complete sep-

aration of the chemical components).

1. Introduction

Injection of aqueous polymer solutions is the most applied chemical
method of enhanced oil recovery (Sheng et al., 2015). Adding polymers
to injection water increases the viscosity of the solution and reduces its
mobility, avoiding viscous fingering and early water breakthrough
(Kargozarfard et al., 2018). The polymers commonly used in enhanced
oil recovery (EOR) do not modify the interfacial tension between
aqueous and oleic phase, and therefore do not change the residual oil
saturation. In fact, the remarkable effect of polymers solution injection
in a reservoir is the increase of oil production, i.e., a larger volume of oil
is produced for a particular volume of polymeric solution injected when
compared to the same volume of pure water (Sorbie, 1991). This effect
results in a higher oil recovery at the end of the production life of res-
ervoirs subjected to polymer injection.

The design of a polymer flooding process depends on the adsorption
of the chemicals on the rock. The presence of divalent cations in the
reservoir, either on the rock or in the connate water, can increase the
adsorption of the polymer by the rock, which reduces the viscosity of the
polymeric solution and the efficiency of the process (Sorbie, 1991; Taber
et al., 1997). The injection of a water pre-flush slug containing low

* Corresponding author.
E-mail address: felipe_apolinario03@hotmail.com (F. de O Apolinario).

https://doi.org/10.1016/j.petrol.2020.106927

concentration of divalent cations can minimize the adsorption of the
polymers in sandstone reservoirs (Maitin and Volz, 1981; Davison and
Mentzer, 1982; Algharaib et al., 2014). For carbonate reservoirs, use of
salinity resistant biopolymers or neutral pH water pre-flush with low
concentration of Ca®>* and high concentration of SO3~ are the best op-
tions to avoid severe polymer adsorption (Ali and Barrufet, 1984; Lee
et al., 2019).

Due to injectivity issues, to presence of divalent cations and to
chemical components storage, polymer flooding is most used in onshore
high permeable sandstone reservoirs saturated with low/medium vis-
cosity oil (Taber et al., 1997; Torrealba and Hoteit, 2019). However, it
has been reported successful implementation of this technique in
different environments, including offshore reservoirs (Boardman et al.,
1982). In Bohai Bay field, in China, the injection of polymers in an
offshore reservoir containing heavy oil resulted in an increase of 3% in
oil recovery, and a reduction of 5% in water cut (Zhou et al., 2008). In a
deep-water field in Angola, despite of the heavy oil, polymer injection
resulted in 7% incremental oil production and 10% water cut reduction
(Morel et al., 2012).

Numerical simulation and analytical models are two of the most
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important tools to design polymer flooding projects. Numerical simu-
lators can model complex scenarios and reduce the uncertainty of
polymer flooding projects design (Alsofi & Blunt, 2010, 2014). On the
other hand, analytical models can provide effective sensitive analysis on
the performance of this technique under more restrictive assumptions
(Bedrikovetsky, 1993).

The mathematical model that governs the flow of water containing
dissolved chemicals is composed by the water volume conservation and
mass conservation of each component. These equations result in a hy-
perbolic system of conservation laws. For a one-dimensional problem
with constant initial and boundary conditions, the solution can be ob-
tained by the method of characteristics and is composed by rarefaction
and shock waves, and constant states (Bedrikovetsky, 1993).

For the case of water containing one polymer, the mathematical
problem is composed by a 2 x 2 hyperbolic system of conservation laws.
The solution is obtained by an extension of Buckley and Leverett (1942)
theory, and its structure is formed by a saturation rarefaction wave
followed by a concentration shock and the Buckley-Leverett shock
(Patton et al., 1971). This structure can be generalized to include other
enhanced oil recovery methods (Pope, 1980), such as surfactant or alkali
injection, and to different adsorption isotherms (Langmuir, Henry or
Freundlich adsorption isotherms) (Johansen and Winther, 1988).

The multicomponent polymer injection is modeled by a system of
(n+1) x (n+1) conservation laws, where n is the number of polymers
dissolved in water. The solution to the continuous injection problem was
presented in Johansen and Winther (1989), and it was developed from
the associated chromatography problem (one-phase multicomponent
problem), followed by an extension to the two-phase problem. It is
important to point out that this solution is not applied for varying
boundary conditions (slug injection).

Despite the efficiency of the continuous injection of chemicals to
increase oil production, due to economic criteria and injectivity issues,
usually a finite volume of polymeric solution is injected in the reservoir
(polymer slug) followed by pure water (water drive) (Torrealba and
Hoteit, 2019). In this case, a discontinuity arises in the boundary con-
dition at the beginning of the water drive. At this point, interaction
between waves of different families occurs along the space-time plane.
Therefore, in the case of slug injection of chemicals, the solution is not
self-similar (Vicente et al., 2014).

A theory to solve chemicals slug injection into oil reservoirs prob-
lems is presented in Pires et al. (2006). A potential function related to
the conservation of water volume replaces the independent variable
time in the system of hyperbolic equations. Considering a slug con-
taining n chemical components dissolved, the potential function splits
the original (n+1) x (n+1) system into an auxiliary system of n equa-
tions and a lifting equation. The auxiliary system depends on the ther-
modynamic model and represents a pure chromatographic process
(one-phase problem), whereas the lifting equation depends on the
transport properties of the flow and on the solution of the auxiliary
system. For a multicomponent polymer slug injection, it can be noted
that after applying the splitting technique, the auxiliary system is similar
to the one obtained in multicomponent chromatography (Rhee et al.,
2001, Borazjani et al., 2016).

The splitting technique has been applied to solve several problems
involving polymer injection in porous media. Boa and Pires (2006)
considered the case of one polymer continuous injection where the
polymer may adsorb according to Langmuir isotherm, and the amount
adsorbed is affected by the water salt concentration. Silva et al. (2007)
presented the solution for the continuous multicomponent polymer in-
jection. Ribeiro and Pires (2008) considered different adsorption iso-
therms and fractional flow functions to solve the polymer slug injection
problem.

Vicente et al. (2014) presented the solution to the problem of slug
injection containing one polymer that adsorbs following Langmuir
adsorption isotherm. The solution presented was built using the splitting
technique and compared to the results obtained in numerical simulators.
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Borazjani et al. (2014) developed the exact solution to the case of
polymer slug injection considering salt effects, and the polymer adsorbs
following Henry’s isotherm. de Paula and Pires (2015) considered
Langmuir’s adsorption isotherm and salt effects in the adsorption curve
to model polymer slug injection in porous media.

Borazjani et al. (2016) applied the splitting technique to solve the
two-phase problem of polymer slug injection with varying salinity. It
was considered that the polymer follows a linear adsorption isotherm
and that the salt does not adsorb in porous media. The solution includes
implicit formulae for saturation, polymer and salt concentrations and
front trajectories of the components.

Khorsandi et al. (2016) presented the exact solution to the problem
of low salinity polymer slug injection considering cation exchange ef-
fects that lead to wettability alteration. The results were compared to
experimental data and numerical simulations.

De Paula et. al. (2019) presented the solution to the problem of slug
injection containing n dissolved polymers that may adsorb following
Henry’s isotherm. The solution was composed by a water saturation
rarefaction, 2n concentration shock waves and the Buckley-Leverett
shock. The solution also included the effects of the interaction be-
tween saturation and concentration waves. Due to the separation of the
chemicals in the porous media, water banks appeared in the water
saturation solution.

It has been shown that it is also possible to build a solution to EOR
problems considering advective transport, parabolic terms and relaxa-
tion non-equilibrium equations applying the splitting technique for the
cases where the auxiliary system allows the development of an analyt-
ical solution (Borazjani et al., 2016).

In this paper we present the solution for the one-dimensional two-
phase isothermal two-component polymer slug injection followed by
water drive problem. It is considered that both polymers may be
adsorbed by the porous media following Langmuir’s isotherm. It was
also considered that the slug and water drive salinity are the same as the
connate water. The presented solution is a two-phase generalization of
the one-dimensional two-component chromatography solution pre-
sented by Rhee et al. (2001). This solution is general and may be applied
to any problem with two dissolved chemical components, for instance:
one polymer and one surfactant, one polymer and one salt, and so on.
The restriction is that the adsorption must follow Langmuir adsorption
isotherm.

Next section presents the mathematical description of the physical
model followed by the detailed procedure of solution using the splitting
technique (Pires et al., 2006) and the chromatography theory (Rhee
et al., 2001). Then, the solution in auxiliary space is mapped onto the
space-time plane. The paper ends with some discussions and
conclusions.

2. Mathematical model

We consider the injection of a water slug containing two dissolved
polymers displaced by pure water. The following assumptions are
adopted:

e Two-phase, one-dimensional isothermal flow;

e Incompressible system;

e Homogeneous porous media;

o Dispersion, gravity and capillarity are neglected;

e Polymers are dissolved only in the aqueous phase;

e Water density is not a function of polymer concentration;
e Newtonian flow.

According to these hypotheses, the physical model is governed by the
volume balance of water and by the mass conservation of each dissolved
polymer in the slug. The resulting system of equations is given by:
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where s is the water saturation, c; and c, are the concentration of the
components in the flowing phase, a; and a, the amount adsorbed by the
rock, f is the water fractional flow, ¢ is the rock porosity and ur is the
total flow velocity. We introduce the following dimensionless variables
in the system of equation (1):

=g @
A
th = IULE;MT 3)

A

where xp is the dimensionless position related to the length of the slug,
tp represents the number of slug volumes injected, Qg is the injected slug
volume and A is the cross-sectional area of the reservoir.

So, we can rewrite (1) in dimensionless form:

o Flsene)
GZD axD
dcrs +ai(cr,c2))

=0

+a(ch(s7chcz))

= 4
otp oxp 0 )
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Water saturation is normalized using the relation:

_s(xp,tp) — s0
ST 0 ®
where s is the reservoir initial water saturation and s“) is the water
saturation at the injection point.

In this problem, the adsorption of both polymers is governed by
Langmuir’s isotherm:

K,’C,‘
a(¢)=—g—— ©)
1+ Z/:lchj

where ¢ = (c1,¢2).
When the slug injection begins (tp = 0), there is no polymer in the

reservoir (ch) = c(zl) = 0), and the water saturation is irreducible (s =

0). During the injection of the slug, the water fractional flow is 1 at the

inlet point (xp = 0), and the injection concentration is constant (cgj),

céj)). After the injection of the slug (xp = 0,tp = 1), the water drive
begins (c; = ¢z = 0). Thus, the initial and boundary conditions of the
problem are given by:

s(xp,0) =0,
) L
tD:(), C]()CD7O) =c 0< XD<Q—‘ (7)
¢ (xp,0) = C;I), 4
£0,1p) =Y >0
()
cy, O0<tp <1
c1(0,1p) = : v
xp=0, o, >1 ®
()
o', 0<tp<l1
0,1p) =
(0, 1) { : tp>1
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2.1. Splitting between thermodynamics and hydrodynamics

At this point we introduce the following potential function associated
to water conservation:
do = f(s, )dtp — sdxp 9

in the system of conservation laws in dimensionless form (Equation (4)),
leading to:

d K d 1
2 V-2 (_—)=o0 (10)
o (3701702)> axo(f(&ﬁ&z))
0a,(ci,¢2) | Oy
daz(cl,cz)Jr&:O (11D
op Oxp

This procedure splits the original 3 x 3 system of equations (Equa-
tion (4)) into a 2 x 2 system (Equation (11)), which is a function of
thermodynamic properties only and is similar to the chromatography
problem (Rhee et al., 2001), and a lifting equation (Equation (10)),
which is a function of hydrodynamic properties of the system and of the
solution of the auxiliary system (Pires et al., 2006).

The initial and boundary conditions (Equations (7) and (8)) inxp x ¢
space become:

s(xp,0) =0,
L
p=072 ci(x,0)=c", 0<xp<gy 12)
¢ (xp,0) = cy), 4
f0.0)=f"p)=1 ¢>0
)
¢y O<p<l1
c1(0,9) = ! (T
Xp = O7 07 »> (13)
()
¢, O0<gp<l1
c(0,9) = ’ ¢
0, @ >1
Defining m as U(s,c1,c2) and ~foere A8 F(U, ¢1,¢2), the lifting

equation (Equation (11)) becomes:

5F(Ua01acz)+aU(SaCnC2)

" =0 14

The initial and boundary conditions (Equations (12) and (13)) for the
lifting equation (Equation (14)) are:

U— + 0
(/):0"{F—>700 as)
mzm{gjil 16)

After both auxiliary system (Equation (10)) and lifting equation
(Equation (14)) are solved in xp x ¢ plane, the inverse mapping to xp x
tp plane is obtained from the following expression:

do s

o :f(s(xquo)?Cl(xDv¢)$62(x07§”) ) +f(S(XD7w)’cl(xl):(p)vq(xl)vq”))

dxp

a7n
2.2. Solution of the auxiliary 2 x 2 problem
The methodology to build the solution of the auxiliary problem fol-

lows the steps presented in Rhee et al. (2001) for the problem of
two-component chromatography:
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e Apply the hodograph transformation to determine the concentration
waves in the ¢; x ¢y plane;

e Build the solution path in ¢; X ¢y plane;

e Map the solution from c; x ¢z plane onto xp x ¢ plane.

The derivation of the characteristic and shock waves in the hodo-
graph plane for the system of equation (11) is presented in Appendix A.
The detailed theory for the two-component chromatography problem
can be found in chapters 1 and 2 of Rhee et al. (2001).

In the hodograph plane, the slopes of the characteristic curves are
given by:

d 1
Iy:a= <ﬂ> =&, :Eaz‘]' [(011 —an)+1/(an — 022)2 + 461216!12} (18)

dc 1
r:p= <d_c;)7 =& :Ell{]l [(011 —ayn)—\/(an — 022)2 + 46121012} (19)

The characteristic velocities of the rarefaction waves are:

d

1 =2 _ kyyab? (20)
an
d

=22 _ Kya®b 1)
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where the parameters a and b are functions of @ and g, which are defined
as:

a=a(a) :Zi; (22)
_ _p+1
b=0b(p) =5, (23)

From Rankine-Hugoniot conditions, it is possible to determine the
shock velocity:

Vi (a,b,b*) = xﬂ = Kyyab b 49
D
-y P -+
V_(a,a",b) —x——szba a (25)
D

where the superscripts + and — represent the value of a or b before and
after the shock, respectively.

In equations (18-21), (24) and (25), the subscripts + and — denote
the slow and fast wave family, respectively.

At this point we present a solution for an arbitrary initial and
boundary condition. Fig. 1 shows the solution path in the concentration

(4)

&1

) c:

Fig. 1. Solution path in the concentration plane.
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plane. The injection condition is represented by the point (J), and the
initial condition is represented by the point (I). Points (A) and (P) are
intermediary points along the solution path. We indicate a rarefaction
wave as “—”, and a shock wave as “—”.

During the slug injection (¢ < 1), the solution is self-similar and is
composed by two shock waves: (J)—(A)—(I). The first shock velocity is
denoted as V, and is a b characteristic parameter jump. On the other
hand, V_ is the second shock velocity and is an a parameter jump in
auxiliary space (Fig. 2).

Across the shock (J)—(A) (b parameter jump), the concentration cz
jumps to the initial condition, whereas the concentration c; increases to
a value higher than the injection condition (point A). On the other hand,
the component 1 concentration jumps to the initial condition through
the shock (A)—(I).

For ¢ > 1, the injected fluid does not contain dissolved polymers,
and the solution in the concentration plane is composed by two rare-
faction waves: (I) — (P) and (P) — (J). The first rarefaction wave is a I";.
type family, whereas the second rarefaction is a I'_ characteristic family
in concentration plane.

The characteristic curves C,, with slope 1, in xp x ¢ plane, corre-
spond to the segment (I) — (P) in the hodograph plane; and the char-
acteristic curves C_, with slope A_ in xp x ¢ plane, correspond to the
segment (P) — (J) in the hodograph plane. The slope of the rarefaction
waves, which is a function of polymers concentration, is given by
(Fig. 2):

C.:h =K [b(B)) (26)
C_: - =Ka(a)bY (27)

where bY) denotes the value of b at injection condition. Along the
rarefaction family C, there is only component 2 in water (segment (I) —

(P) in Fig. 1, where ¢c; = c<11) = 0), and the concentration c; is inversely
proportional to the slope of the rarefaction characteristic. Along the
family C_, both chemicals are dissolved in water, and their concentra-
tions are inversely proportional to the characteristic slope (Fig. 2).

The water drive (used to displace the polymer slug) leads to in-
teractions between the characteristic waves. Waves of different families
(I'; and I'_) are transmitted through each other and their slopes change.
Waves of same families (['y and ", or I'_ and I"_) adsorb each other, and
a shock wave appears at the intersection point. The theory of interaction
between rarefaction and shock waves is detailed in Rhee et al.,
2001et al

Fig. 2 shows the characteristic diagram in xp x ¢ plane. The shock
waves OB and OE are straight lines whose slope is given by:

V.(0B)(a=a" b~ =1,b" =bY) = Kyya" bV (28)

1
V_(OE) <a’ = a*=a" b= 1) =K,ya" (29)

The coordinates of point B are:

1
= Koy (1 — ) 0
1

[ :m 31

At point B the interaction between the shock V, and rarefaction C_
begins (Fig. 2). At this point the shock wave is transmitted through the
rarefaction wave, and the rarefaction wave through the shock wave.
Each rarefaction characteristic C_ carries a constant a value, whereas b
jumps from b“) to b through the shock wave. Therefore, to calculate
the shock path along the interaction, it is necessary to solve the Rankine-
Hugoniot conditions considering the value of a carried by each rare-
faction wave. So, the new shock path is given by:
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c,=c,=0

A\
=

W
o

EEEEE LA
EEEREEEEA

IEER R AR

1 —a)?
Xp (a):xg((l_iaa)z) (32)

and ¢® can be calculated by:

2
q:<”“<a)—< KaybVxy -\ ﬁ_1> ! (33)

This shock path generated by its interaction with the rarefaction C_
is part of a parabola where the shock velocity decreases. At point C the
interaction ends and the shock path of V. is a straight line with slope
K,b"). Ahead of the shock V. the component 2 no longer exists, i.e., ¢, =
0. The coordinates of point C are (Fig. 2):

r(1—aY)

e = e T~ 1 (34)

@Pc = (l;am)z (35)
a1 =)

and the shock path CG is:

x5 =y (36)

As the rarefaction C_ intercepts shock V., the slope of the charac-
teristics changes due to the jump of b. Thus, the new slope of rarefaction
C_ is given by:

25 =Koy (37)

After the interaction with shock V,, the rarefaction C_ intercepts
shock V_. As both waves belong to the same family, the shock adsorbs
the rarefaction, but its slope changes. The first interaction between the
shock V_ and the rarefaction C_ occurs at point E, whose coordinates are
(Fig. 2):

o5 — Kay(aV )zxs

Xp = 7[{2(1(/)(1 —a) (38)

@ = sz(aw )z(xE — xp) (39)

The shock path of V_ along the interaction with C_ is:

rp

A N S (40)

9" = Kyaxy™ (41)

and when xp— + oo the shock slope tends to the last rarefaction char-
acteristic slope.

After the interaction with rarefaction family C_, shock V., catches up
rarefaction C., and the shock adsorbs the rarefaction and its trajectory
changes continuously (shock and rarefaction belong to the same family).
The interaction begins at point G (Fig. 2):

(1 —p +KabVxc)

X = 42
T Kb (1—bY) “2)
@G = K,b) (x6 — xc) + @¢ (43)
After point G the shock path of V. is given by:
2
G (1=6Y)
xXp o =X (44)
P 1=y
@) = Kby + 1 (45)

Analogously to the case of the interaction between C_ and V_, when
Xxp— + oo the shock slope tends to the last rarefaction characteristic
slope.

The solution of the auxiliary system is divided in 6 parts (c;, ¢y, cu,
v, ¢y, and cyy), which are bounded by the end of the polymer slug in-
jection (¢ = 1), and by the first and the last points of the regions where
waves interaction take place (points B, E, C, and G). Thus, the overall
solution is:

c, @<l

cr, 1 <@ <qg
Cur, P <@ <@g
v, P <@ <@c
v, Pc <P <@g
Cvi;, P <@

clxp,p) = (46)
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where, ¢;(xp, @) is the self-similar part of the solution, given by:

¢
==, x< s
+
4 4
abwg)=ga=cd"a=d" (0B) =™ =V (0F) “”
f g
() () ¢
— ,Cy = , <
Cq Ci,C Cy Vﬁ(OE) XD
c (A)’ Cs m Cl (ID7 (P)
..... Co (mD, QO)
Cll(xDafp):
—_ a?c?
S-
Q
3
T
D
Fig. 3. Concentration profile for solution c;(xp, ¢).
0 o p—1
1 =0,¢=0, *p As (a(l)7b(l) )
—0. ¢ = ¢ — p—1
c1 =0, ¢; = e (xp, 9), PREONG) <Xp < 7 (a5
—0 o P ¢ -1 »—1
a=0c=c’ I @ 50 S a5
p—1 BC
cm(xp, @) = { €1 = ¢i_(xn, ), &2 = 5, (xp, 9), PPN <xp < xp(alxp, @)
(BC)
- »— ¢ (alxp, @) )
= Clr—(xD7¢)', C = C§1)7 ngc)( (.Xf[m(ﬂ)) <Xp < A (u(A) b(l) i)bi)
(BC)
_ o ¢ —¢"(alxp,9)) ®
asanesa 80 =p7) = Vi)
4
c; = cgl),cz = C(QI)7 % (OE) < Xp
_ _ p—1
€ =0,¢c=0, AN (@ 50
o o p—1 p—1
a =0, & = coi(x0,9), RPN SW<on @ 57)
_ p—1
=0, ¢, =c ¢ <xp <
vl )= 1T AT (@59 =S (@ 5
_ _ o+ ¢~ )
a=c (0.9). 2 =0, (0.9). 7 (@57 <xp <xp (alxp, )
c1 =c,_(xp, @), &2 = 0(21)7 ngﬂ (a(xp,)) <xp < Xgm) (a* (xp,0))
= Cfmvcz = C(zl>7 Xgm)(f(xbvf/')) <Xp
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The other parts of the solution are:

Cy :O,Cz :07
c1=0,c,=cor4 (Xp,9),
(P)

c=0,00=c;",

Cy :Clr—(xvap)162:CZr— (XD=¢)>

) IS )]
CL=C =6,

_.A)
CL=C ,0=0Cy

c :cg”,cz:c;”,

48)

(49)

(50)
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€175 G Cl(xD7§0)
..... C2 (mD’ go)
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S-
Q o
B
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: =0, c; ¥
D
Fig. 4. Concentration profile for solution c;(xp, ¢).
@ . m
G052 c1(zp, )
----- C2 (xD , (P)
—~
S
Q
O I
O :
el |
D
Fig. 5. Concentration profile for solution cy(xp, ¢).
C1 (I D> QO)
----- C2 ('T:D N (p)
~—
S-
Q
o
o
Tp
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g(xDa gp)

Fig. 6. Concentration profile for solution c;y(xp, ¢).

Cl(xD7Q0)
..... 02($D7¢)

D

Fig. 7. Concentration profile for solution cy (xp, ¢).

8(','EDa (10)

D

Fig. 8. Concentration profile for solution cy;(xp, ¢).

p—1

c1=0,¢,=0, xD<W

@—1

c1 =0, ca=ca4 (Xp,9),
A (am,b(’))

0 P p—1 (c6)
c=0,c=0¢y", /‘l+(a(l>7b(J))<XD<XD

cy(xp, ) =
P—@c

=0 0 — (CG)
Cy —(),(,2—07 Xp <Xp <ﬂi(a(’)7b(’))

T P —¢c
a=cl_(xp,9),c0=0, ——————<xp<xp
! ’ > (a(”,b(”)

3 x> (@ (xp,0)) <xp

0
,C0=0Cy

1
c=c,

@—1
<Xp <l+ (a(l),b(‘”)

(Eco)

(@ (xp,0))

(51D
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Fig. 9. Lifting equation solution in auxiliary plane.

p—1
c1=0,0,=0 Xp<—r——
’ ’ A (a0
— ot ¢ (Go)
c1=0,c 7C2r+(XD7(ﬂ)~, Ay (a(’),bm) <Xp <¥p
(@) =19 ¢ —0,¢, =0, xE)G°°)<xD</1 (<_1>(p1:<1>)
— ot _ P—9c (Eeo) ¢+
cr=c,_(xp,9),c2=0, 2 (a(”,b“))<xb<x[) (@ (xp,))
c= C(]1>7c‘2 = C(QI), xgEoo) (a*(xD,(/))) <Xp

(52)

In equations (47)-(52), ¢j(xp,¢) denotes the rarefaction wave where
component j concentration changes, subscripts r+ and r— denote the
rarefaction waves C, and C_, respectively, and the superscript in
parenthesis denotes a constant state in the phase plane.

Figs. 3-8 show the concentration profiles for each part of the solution
(Equation (46)) along the xp x ¢ plane.

In Figs. 3-8 it is possible to see the development of the chromato-
graphic cycle. Note that component 1 front travels ahead of component
2 due to its lower adsorption rate.

In Fig. 3 there is a region where the concentration of both compo-

nents is the injection condition concentration (CY) 0(2])). This region is
followed by a shock wave where the concentration of both components
change. After the shock wave, the concentration of component 2 jumps
to its initial condition, whereas the concentration of component 1 in-
creases to a higher value than the injection condition (see Fig. 1).

In Fig. 4, the water drive has begun, and a rarefaction wave appears

Journal of Petroleum Science and Engineering 188 (2020) 106927

at the rear of the polymer slug. Note that at this part of the solution the
chromatographic cycle begins. Figs. 5 and 6 stress, besides the separa-
tion of the components, the development of a sharp edge on the con-
centration profile of both components.

In Fig. 7, components 1 and 2 are completely separated and travel in
porous media as two single component slugs separated by a pure water
region. In Fig. 8, it is possible to see the spreading of the concentration at
the rear part of each component slug. This effect is dependent on the
adsorption isotherm.

When ¢— + oo, the rarefaction waves are completely absorbed by the
shock waves, thus components 1 and 2 concentration along the porous
media is equal to their water drive concentration (Rhee et al., 2001).

2.3. Solution of the lifting equation

In this subsection we present the solution of the lifting equation,
which depends on the solution of the auxiliary system (previous section)
and the transport properties (relative permeability and viscosity of each
phase), using the method of characteristics. Applying the chain rule in
equation (10) we find:

OF U 0U _ OF dc; OF dc,

(53)

In constant concentration regions of the solution, we have %1 — %2 —

dp O
0. Thus,
oF oU dU
242" 0
oU 99 + o (54

In these regions each characteristic curve carries a constant value of
U, and its velocity is given by:

dp OF(U,cy,c,)
e T 69

In regions where c¢; and/or c, vary, U is no longer constant along the
characteristic. In this case, U can be found through the following
equation:

dU  OF dc; OF Ocy

&~ 0 dp 0 dp 0
The viscosity of the polymer solution is calculated by:

t,(c1,¢2) = pn (141,61 +1,62) (57)

where 49 is the viscosity of pure water, and the coefficient #; is an
empiric parameter that represents the effect of the polymer concentra-
tion in the solution viscosity. In this work, we assume 7, > 7,.

Fig. 9 presents the solution of the lifting equation in the xp x ¢ plane,

Fig. 10. Solution U; in F x U plane.
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@)
(1): ¢,=0; c,=0
(5): ¢,=0; c,=¢,”
(2): ¢,=¢,"”; ¢,=0

(3): ei=¢,”s e.=c.”

Fig. 11. Solution Uy in F x U plane.

! (I

(1
ST
)
(1): ¢=0; c,=0

(2) c1:07 CZZCE(P)
(5): ¢=¢,"”; ¢,=0
(4 (%0,9)): €7, (x:0); €;=C, (X,0)
(4-(X01(P)): C,=C, (X5,0); C,=C; (Xp,p)

U

@
(4 (x,9))

(3)

@) U

Fig. 12. Solution Uy in F x U plane.

which is divided in 9 regions:

- Region (3): Us rarefaction, ¢; = c(lj) and ¢, = C(ZJ)

>

) " ) - Region (4): interaction between U, rarefaction and C_, concentra-
- Region (I): constant state: U = U, ¢1 = ¢z = 0 (xp axis); tions vary from injection condition (J) to the intermediate state (P)
- Region (1): constant state: U = U1, ¢; = ¢y = 0; (Fig. 1);

- Region (2): constant state: U = U®), ¢; = c(1A> and c, = 0 (Fig. 1);
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- Region (5): Us rarefaction, c; =0 and ¢z = c(zp) ;

- Region (6): interaction between U rarefaction and C,, ¢; = 0 and ¢

varies from c(zp) to cg) =0 (Fig. 1);

- Region (7): Uy rarefaction, ¢; = ¢ = 0;

to c<11) andc; = cg)

- Region (4°): Uy rarefaction, c; varies from ch)
0;
- Region (5): constant state: U = U®), ¢; =c; = 0.

The solution of U(xp, ¢) is presented in six parts. When ¢ < 1, the
solution is self-similar. The remaining regions are bounded by ¢ =1
(part II), and by the waves interaction (points B, E, C, and G):

l][7 @ <1
Un, 1<¢<gg
_ YU, ¢ <o <e¢g
U, @) = Uy, ¢p<¢<gc 8
Uy, ¢c<¢<g¢g
Uvi, @6 <@

The self-similar part is given by:

—1
IF(UD,e; =0,6,=0
) xD<(<ﬂ—1)< ( ClaU =
—1
OF(UT,¢; =0,¢,=0) ’
Us(xp, @), (p—1
2(xp, ), (@ )( U < </1+(a(
p—1 o1
Us(xp, ) W<xn <W
@ -1 o1
U5()CD<§0)7 <<
(@ A (a, b
Uy (xp, @) = +( ) ( /1 )
@ - ¢
Us(xn, ), @50 S (57
p—1 d
Us(xp, ), 2 (a(”,b(”) <xp < A
NG » £
A <X < V_
y % <xp < +oo
U(’)7 Xp— + o

10
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%

GF(U(S),CEJ),C(ZJ)
uv, <p| ———+~
Xp < @ oU
-1
) ()
ﬁF(U(3),c1 ,C ) "
U3(XD7(p), 4 <xp < —
oUu V.
UI(XDJP) = (59)
l](z)7 ﬂ < < i
v, Sy
U<l)7 a <xp <+
V_
U(I)7 Xp— + o

The structural formula for this part is (I)—(1)—(2)—(3) — (J)
(Fig. 10).
The solution Uy(xp, ¢) is (Fig. 11):

-1

0 p0)

(60)
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(4" (x09)
h 7”

(1): ¢,=0; ¢,=0
(2): ¢,=0; ¢,=¢,”
(5): ¢,=¢,"; ¢,=0
(4 (x0:0)): €,=C, (%003 €:=C; (%5,0)
(4'7()([»([’)): Clzcl‘r(xmq)); C2:C|F(Xnaq3)

(4”-(XI>3‘P)): C=¢," (Xp,0); C=C," (Xp,p)

4 x-9)
(4" (x,0))

U
(4 x00)
D@ e 6 -7 =]
D@0 67 - e 4 )
R S
Fig. 13. Solution Uy in F x U plane.
and its structural formula is (I)>(1)>(2)»3" -4 -5 - 6 — 7 — For Up(xp, ¢) we have

(J). The superscript ** denotes the first rarefaction wave in the region.

-1
OF (UM ¢, =0,c,=0
U(J)7 XD<(§0—1)< ( i €2 )>

ou

-1
OF(UD ¢, =0,c,=0 -1
Uz (xp, @), (‘PU( ( - 2 )> <XD<“¢7
i

0 7]
@—1 p—1
Us(xp, 9), <xp <
(xp, ®) i (a(l)7b(1) ) D A, (a(l),bm )
@p—1 p—1
Us(xp, o), <xp <
s(xp, @) i (a“),b(” ) b= (a(’),b(") )
U (xp, ¢) = 1 "
; el o
U; (xp, ), re (a(1)7b(1) ) <xp < Xp
-~ (BC) P — P
Uy (xp, ), xp " < Xp <m
@ _P— P s
v, (@ 6™y =PV
U, T < < +oo
U(’)7 Xp— + 00

11
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)
(1): ¢,=0; c,=0

(2): ¢,=0; c,=¢,”
(5): ¢, =¢,"”; ¢,=0

(4 (x0,9)): €7, (Xp,0); =€, (Xp,0)

(4x,9))

(4 (x0))

U

Fig. 14. Solution Uy(xp,¢) in F x U plane.

The structural formula is (I)—(1)—(2) — 4"~ — 4~ —4"+ —5" — 6" —
7" — (J) (Fig. 12). The superscript > denotes the last rarefaction wave in
the region. We also add superscripts “+ ” and “— ” in the rarefaction
notation (either Y or Y”) to indicate that the rarefaction is a left or a
right state of a shock wave, respectively. In Fig. 12, Y*(xp, ¢) denotes

-1
OF (U7 ¢y =0,c,=0)
U\, < —1 ’ -
, xp < (@ ) U
-1
OF (U7, ¢; =0,c,=0) i
U .0, -1 < <
1060, 0), (@ )( oU b Ae(
p—1 p—1
Us(xp, @), 1 (a('),h“)) <xp < n (a(l)J)(J))
U (xp, ) = p—1 o1
Us(xp, ¢), 7@ 57) <xp < i (a,5)
. @ —1 (BC)
U (xp, ), W<XD<XD
Ui (0. 0), x5 < <y
v\, x5 < xp < +oo

v, Xp— + o

the concentration rarefaction waves in region Y connected through a
shock. This structure appears in concentration profiles that cross the
shock waves ¢BC), pE*) and ¢ (regions where concentration rare-
factions waves interact with shock waves).

The solution Uy (xp, ¢) is given by

-1

b7)

PON0)

(62)
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& o
(1): ¢,=0;
(2): ¢,=0; ¢,=¢,"”
(5): ¢=¢,"; ¢,=0

(4 (x0,9)): €,=C,(x,9); €,=0
(60,9)): €,=0; ¢,=¢,(x,0)

<
3o
S

(A G0)

~

23 (6(x0))

U

(4 (x0))
(6(x0:6))

(409)  (6(x,,9))
7

Fig. 15. Solution Uy; in F x U plane.

Fig. 16. Characteristic diagram in xp x tp plane.
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Sj (x D t D)

)
N

2)
N

(D
N

@
S

D

Fig. 17. Self-similar part of the solution.
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Fig. 18. Solution path for s; in phase plane.
9(/}
S,(x,1,) So(Xp 1) t
S5(Xptp) bt
S4(xDrlD)
S s,
— Sy(x,1,)
Q
“ﬁ S'(Z)
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8
S~—
o0
§
S4(/;
D
Fig. 19. Solution profile for sy (xp, tp) for tps (1 < tps < tp).
)
S n
Eh
S~
),/ (5): ¢,=0; c,=c,”
’ (3) cI:cl(‘”; C2:C2”)
’ o L
’ (2) Clicl( )s 02*0
(1): ¢,=0; c,=0
@ S

Fig. 20. Solution path for s; in phase plane.
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Fig. 21. Solution profile for sy (xp,tp) for tps (tg < tps < tg).
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Fig. 22. Solution path for sy in phase plane.
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Fig. 23. Solution profile for s;y(xp,tp) for tps (tg < tpe < tc).
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and its path in F x U plane is shown in Fig. 13. The structural formula for
this part of the solution is (I)=(1)=4 ~ -4 -=4"* -5 — 67— 7" —
).

For the region of solution Uy(xp, ), we have:
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Fig. 15 shows the solution path of Uy in F x U plane. Its structural
formula is (I)=(1)—»4"~ - (57)=6 "= 7" — (J).

From the definition of the variables U and F, the water fractional flow
function f(s(xp, ¢),c1,c2) and saturation s(xp, @) can be easily deter-

-1
OF (U7, ¢y =0,c,=0)
uv) -1 : ’
) xp<(p—1) U
~1
OF (U7, c; =0,c,=0) »—1
Uy (xp, ) (¢1)< oU <XD<W
@ —1 @ —1
Us(xp, ) % (@ 50 <Xp < 2 (a b
Uy (xp, ) = p—1 (c6) 63
V(XD (ﬂ) U5()CD, (ﬂ) W <xp < Xp (63)
(5-) (CG) P —@Pc
U xp | <xp < /17(:> ((1(’)7 0 )
- P —Pc (Eco)
Uy (0, ), 25 (a®,57) <X <Xp
ym xg:'oo) <xp < 40
U('), Xp— + o0
mined through the following expressions:
1
Fig. 14 presents the solution path of Uy in F x U plane, whose f= UG 9) (65)
structural formula is (I)»(1)—»4"~ — (57)=5*+ -6 — 7 — (J). -
Finally, the solution Uy;(xp, ¢) is given by F(U(xp, ), c1,2)
XD, _VPEL AL ) (66)
(i) Ul )
U <(p-1) IF (U™, c1 =0,c, =0) B
’ W= oU
-1
OF (U7, c; =0,c, =0) o—1
U7(x07¢)~, (q)l)< oU <Xp <W
p—1 Goo)
Us(xp, ) 7@ 50 <xp <xp
Uy (xp,p) = - ’ (64)
(5-) (Go) — Pc
Uur, xp  <xp < 20 (a(').b(’))
— P —Pc (E)
U4 (xD7 (ﬂ) /17,) (a([)~ b(,) ) <xp < Xp
v, xE) < xp < +oo
U, Xp— + o0

15
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2.4. Inverse mapping to time domain

At this point we have already calculated the solution of s, ¢c; and c; in
the xp x ¢ plane. The next step is the inverse mapping of these solutions
onto the space-time plane through the relation:

do s

o :f(S(XD,(ﬂ),Cl(X[),gD),CQ(xD,gD) ) +f(s(xD>(P)7cl(xD7¢)7CZ(XD7§0) )

dxp

(67)

Rarefaction waves and constant states are calculated directly from
expression (75), whereas the shock trajectories are determined by (Pires
et al., 2006):

fi

= i=+4,— 68
si+V,-'l + (68)

where V; is the respective shock velocity in the auxiliary plane (Equa-
tions (24) and (25)).

The complete mathematical derivation and the exact equations for
the inverse mapping are presented in Appendix B. Fig. 16 presents the
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f(s<J)7 C(lj)r C;J))

s s xp <" 7 195}

st

f(s(f> ) C(lj)v C;J))

s3(xp, 1p). g tp < xp < tpD,
s1(xp,tp) = | (70)
s, tpD, < xp < tpD_
S“), tpD_ < xp < Dptp
s Dptp < xp

Fig. 17 presents the self-similar part of the solution for three different
times (tDl <ltp2 <tpz3 < 1).

The path of the solution s; in the f x s plane (phase plane) is shown in
Fig. 18 (structural formula: (J) — (3)—(2)—(1)—(I)). This part of the
solution is equivalent to the solution of continuous water injection
containing two dissolved polymers.

The solution sy is

o D0
s el e
sV, Xp <f7( '(})’ 2 )(ZD—l)
s
- (n (1 o (D)
F(s9, 0 ¢ fs;,¢ ¢
57(xp, 1), %(h) 1) <xp< %(h) —1)
K s, + Kyya [b ]
oo () () (P)
f(s,,¢),c f(sq,¢) ¢
$6(Xp, 1p), %(h) - <xp< %(’D -1)
s; + Kayya [b } e +K2ya( [b( )]
s (P X ”)
fsg,¢1’sc fss,¢i’ ¢
s5(xp,tp), %(h) —1)<xp < ( hhd 7(,)22 ) (tp — 1)
su(xps 1p) = s, + Kaya" DY) 55 + Koy[a"]b 71)
F(s5,e)”, ") F(s¥ e, &
s4(Xp,1p), ﬁ(’b —1)<xp < S e (tp—1)
S5 +K2y[a( ] b 5@ +K2y[a( ] )
3) )0
f(s“),c1 ,C) )
ap), —— L2 ()< toD
0k S Rl ) < <
5@, tpD, < xp < tpD_
sM, tpD_ < xp < Dgitp
s(’), Dy tp < xp

characteristic diagram of the solution in xp x tp plane.

The solution is also divided in six regions. For tp < 1 the solution is
self-similar. Beyond this point, the solution is bounded by the start and
end of the waves interactions regions (points B, E, C, and G):

s;, tp<l1
sy, 1 <tp<ty
Sur, g <tp <tg
Siv,y g <tp < tC
sy, tc<tp<lts
svi, tg <tp

s(xp, ) = (69)

The self-similar part of the solution (s;) is given by:

The profile of the solution sy is presented in Fig. 19 and its path in the
phase plane is shown in Fig. 20. The structural formula is (J) = 7" — 6" —
5" — 4" — (3)=(2)=(1)=(I). The same notation previously used for the
F x U solution is followed for f x s plane.

At the beginning of water drive, for 1 < tp < tg (Fig. 19), two con-
centration rarefaction waves appear at the rear of the slug. These rare-
factions interact with the saturation rarefaction waves from region 3
(Fig. 16). Note that the separation of the components begins (chro-
matographic cycle), where component 1 travels ahead of component 2
in porous media.

The solution Sy is given by:



F. de O Apolindrio et al.

Journal of Petroleum Science and Engineering 188 (2020) 106927

) 0 ()
s© el e
sV xp <f( (Jl) 2 )(tD _ 1)
s
f s(/)) C(I)7 C(l) f S"yc(1)7c(1)
7(Xp; 1p), ( (,l) : )(ID*1)<XD<%(ID*1)
s s, + Kyya® [b( )}
f s”,cu),cm f s”,cu ,C P)
56(*p, 1), %(f - <xp< (s 1(1)2(1)> 5 (o —1)
s, + Koya [b"] 55 + Koya® [bY)
£l e e Flse e,
85(xp, 1p), %(m —1) <xp < %(’D -1
5y + Kard" 0] S+ Kara
su(xXp, tp) = oW P (72)
f(ss,cl ,C) ) dxp
S4(.Xf[)7l1))7 ”7(,)2(”([[) — 1) <xp < |— (t[) — l]g) + Xxp
55 + Koy[a"]b dip / pe
)
- dx; f(s, ,cy,_,c
83 (*,1p), (f) (tp —t5) +xp <2xp < L(A‘—l,zz)(,)(tn -1)
p ) sc s, +Koy[a,_]'b
S0
S, ,Cr_,C
5@, fiﬁi;_k;_%l7(hr—1)<xD<:mD,
s, + sz[a;} pD
s tpD_ < xp < Dptp

s Dprtp < xp

where a,_ is the value of a on a rarefaction wave C_ after its interaction
with shock D, . Fig. 21 shows the profile of the solution sj;, and in Fig. 22
we present its path in the phase plane. The structural formula for this
region is: (J) — 7" — 6" — 5" — 4+ 4"~ — (2)=(1)=(I).

In this part of the solution, a lower viscosity water region between
two regions of higher viscosity appears (Fig. 21). This effect is caused by
the separation of the dissolved polymers. In the low viscosity region, a
peak in water saturation can be observed in the solution profile (see
beginning of s; (xp, tp) in Fig. 21).

For the solution s;ywe have

7.0 e)
)

Fig. 23 presents the saturation profile for the solution s;y and Fig. 24
shows its path in f x s plane. For this case the structural expression is (J)
_7r_ @' _5"_ 4//+_)4’7 _ 4//7_)(1)_)(1).

At this point the polymers are almost separated, and there is only a
small region where both components coexist (s4(xp, tp) in Fig. 23). The
peak of water saturation increases and the constant state (2) no longer
appears in the solution.

The solution sy is

(73)

([D — IE) + xg

s¥) xp < U (tp—1)
7690 ) Pl )
7(*p, 1), #(m —1)<xp < S e D2
s s, + Koya [b7]
f(s7.e” &) (sg.et” ")
6(xD7tD)7 7(1‘D - 1) < XD <
i ) [p7]? ' ) [p)
s; + Kyya [b ] s¢ + Kaya [b ]
f(ngcsl)uc;P)) f(s;76(11>762p))
ss(xp,tp), ———————=(tp—1)<xp <
" 0 [pD7? 012p0)
sv(xp,tp) = sq + Kaya [b } S5 +K27[a } b
v (P
Ss,C1 5 C
s4(xp,1p), %(h) -1 <xp < (d—D> (tp —tg) + xp
s5 + Koy [a?] bV b / pc
_ dxp f (SX’ ,Clrs c;]))
Xp, I — tp—tg) +xp <xp <——7-—"7-—"7>=-
« G- o), <dtD)BC( D) N < < v
S ()
S, ,Cl._,C
s, M(h) —1tg) +xp < xp < Dptp
s, + Kyya,_
s Dpitp < xp
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sy(xp,tp) =

Fig. 25 shows the profile for sy for tp7, where t¢ < tpy < tg. The path
of sy in the phase plane is presented in Fig. 26. Its structural represen-
tationis (J)— 7" — 6" — 5+t =(57) — 4" =(1)=(I).

Note that the components are completely separated in porous media
(full chromatographic cycle) (Fig. 25). The chemical components are
traveling in two different slugs separated by a pure water bank (constant

state s(57)).

Finally, sy; is given by:

svi(xp,tp) =

where b, is the value of b on a rarefaction wave C,. before its interaction

s7(xp, 1p),

s6(Xp, ),

1606l £(55.¢. ")

th—1) <xp <— (tp—1)
57 + Kyya" [p"]?

f(s7. 6", &) f(sg. ", &)
_,7/)(12(10 —-1)<xp <H7W(tp -1)
s, + Kaya” [b )} 55 + Koya" DY)

v (P
f(stg)ng ))(

52 1 Kb

f(S(Si), Cil) ’ 6(2[>)
$6) 4 sz[a(”}zb(”

SPG)

S, Cp 5 C
7“" ) S(tp—1) <xp <
sy + Kaya® [b]

Fs5,e. ) (
vs + KbV

tp — tc) +x¢

tp —tc) +xc < xp < (tp — tc) + x¢

o (5-) (D) () (T (1)

f(s(i );Cl ) Gy ) f(54 GG )
———(Ip —lc) t Xc < xXp < ———(lp — 1) +x£
s(5*>+K2y[a<’>}2b(’)(n c) ¥ <xp s,~ + Kyya,_ (to — 1) + 3z

Flsien )

= tp —tg) +xg < xp < Dpt,
S+ Kaya_ (tp — 1) E D BLID

Dgtp < xp
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(74)

In Fig. 28 we present the solution path of sy;(xp,tp)in f x s plane. The
structural representation of the solution in this region is (J) — 7" — 6" " —

(57) — 4 =(1)=(D).

In this part of the solution, the slugs containing the chemical com-
ponents travel with different velocities in the porous media, and the high
water saturation region (water bank) becomes larger. Moreover, the
constant state (5) no longer exists, which implies in no constant con-
centration regions in porous media.

For tp— + oo, both concentration rarefaction waves are completely

adsorbed by the respective shock waves of the same family. Thus, the

SORG!
§,,C C
tD—1)<xD<7,,f(7’ 156 )

(i = 1)
s, + Koya” [b“)}z

PO S
flsy,¢¢ fst e
%(m,l)<%<w(m,w)+x6
S5 +Kz}’a [b } S¢ +K2br+

f(s(57) ’ C(][) ’ C(ZI))

$59) 4 sz[au)]zb(l)

N
f(56+’c(] >7C;r+)
sé*bi:Zr
(5-) 0 D -
s ¢, c s, ,Cl._,C
Sehalha) 22) (tp — tc) +xc < xp <f7(..{ b f)(
s+ Koy[a"] B sy + Kaya,_

(tp — 1) +x6 < xp < (tp — tc) + xc

(1)
ZD — tE) +XE

flsi e, e

= tp —tg) +xg < xp < Dpt,
s+ Koya (tp — tg) E D BLID

Dgtp < xp

(75)

chemical components concentrations are c¢; =c; =0 and the water

with the shock D, . The saturation profile of the solution sy; is shown in

Fig. 27.

19

saturation is s = s) (boundary condition for tp > 1) (Rhee et al., 2001).
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3. Conclusions The presented solution can be used to validate reservoir simulators
and to evaluate the most important parameters to polymer flooding

In this paper we derive the analytical solution to the one-dimensional projects design. It is also possible to forecast fluids production, and
two-phase water slug injection containing two dissolved polymers water and polymer breakthrough.
problem. The solution was built using the splitting technique, which The solution methodology shown in this paper can be applied to
consists in applying a potential function that splits the original system of solve similar slug injection problems, such as surfactant-polymer sys-
equations into an auxiliary system and a lifting equation. The solution of tems or low-salinity polymer systems. The only restriction is that the
the problem was obtained in the auxiliary plane and subsequently adsorption of the chemicals must follow Langmuir adsorption isotherm.
mapped to the space-time plane. Effects of interactions between waves
of different families and between waves of same family were considered CRediT authorship contribution statement
in the construction of the solution.

The solution is divided in six regions bounded by the crossing points Felipe de O Apolinario: Methodology, Software, Formal analysis,
of the waves in the space-time plane. Analytical expressions and profiles Investigation, Writing - original draft, Writing - review & editing. Analia
for water saturation and polymer concentrations were presented for S. de Paula: Methodology, Formal analysis, Investigation. Adolfo P.
each region. Pires: Methodology, Formal analysis, Investigation, Writing - review &

It was shown the development of a full chromatographic cycle, and editing, Supervision.
how the separation of the chemicals influences the saturation profile. It
is highlighted that in regions where a lower viscosity aqueous solution Acknowledgements
appears between two regions of higher viscosity aqueous solution, water
banks without polymers appear. We also showed that the water bank This study was financed in part by the Coordenacao de Aperfeicoa-
region increases with time due to the different velocities of the polymer mento de Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001.
slugs.

Appendix A

In this appendix we present the detailed derivation of the solution of the auxiliary problem in the hodograph space, following the procedure
presented in chapters 1 and 2 of Rhee et al. (2001). For the sake of clarity, we adopted the same notation as the one of Rhee et al. (2001).
Applying the chain rule in the auxiliary system (Equation (11)), we find:

0C1 aCZ 601 _
a”a_(/) + alza—{p oy 0
()Cl aCz aCz (A'l)
=1 =212
ay) P +an 3o o
where,
()(l,' . .
a,jza—cj,z:I,Z;J:I,Z (A.2)

It is possible to write xp and ¢ as a function of ¢; and c, applying the hodograph transformation. This procedure can only be applied if the Jacobian
matrix does not vanish nor approaches infinite for any concentration pair:

der - dey
a(ﬂ a.Xf[) Bcl (302 061 602
J= =———————#0,J€R (A.3)
@ & dp Oxp  Oxp Op 7
dp  Oxp

If equation (A.3) is satisfied, we can write xp = xp(c1, c2)and ¢ = ¢(c1,¢2), and apply the chain rule to find the relation between the partial
derivatives of c¢; and c,, and the hodograph variables:

dey

% -5 (A.4)
‘:‘Tj _ %% (A.5)
g—z’] - 3} (A.6)
% - _;’;' (A7)

Replacing equations A.4-A.7 in equation (A.1), we find the system of equations in the hodograph space:

20
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o 0w
002 a”a(,‘z 206‘]
do oxp oxp
dei e, e,

The characteristic velocity of system of equation (A.8) are the roots of:

ﬂz]fz - (1111 *ﬂzz)f—alz =0

where ¢ = g%(see section 1.3 of Rhee et al. (2001) for details).
Solving equation (A.9) for &, we find

&= { Z } :%a;‘ [(011 —ay)x\/(ay — azz)2 + 4421‘112}

The characteristic curves I', and I'_are denoted as:

dc 1
I :a= <d_c;>_ =& :Ea;'] [(an —ay)—\/(an — azz)2 +4a21a12}

dc 1
ry:p= (dic;>+ =&, :Eail [(011 —an)+1/(an —an)* + 4(121012}
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(A.8)

(A.9)

(A.10)

(A11)

(A.12)

In the phase plane (plane c; x c»), the characteristic parameter a varies along I',. and it is always negative, whereas f varies along I'_ and it is

positive.

From Langmuir’s adsorption isotherm, we calculate the partial derivatives of the adsorption isotherm with respect to the dissolved polymer

concentrations:

K](l + K2C2)

ay =T
(1 +K1C1 +K2C2)

—K]chl
adp=—"—""" " 3
(1+Kic + Kye2)
7K1K26‘2
as) =T
(l +K1C1 +K2C2)
K2(1 +K1C1)
Aaxn =

(14 K¢, + Kxc2)?

Substituting equations A.13-A.16 in equation (A.9) it is possible to obtain:

2
02(@) _(M_CQ"FC])E_C] =0

dCz dCz
where,
K, — K.
M= 1 2
KK,

Differentiating equation (A.17) with respect to c,leads to:

dZC‘l dCl
— [c>—— (M — =0
dc Czdcz ( ata)

Solving the ordinary differential equation (A.19) we find:

M
=& 754»751

(M+c) —c) +4cic,=0

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

Equation (A.20) represents the characteristic curves (straight lines) in the phase plane. The equations for the two characteristic waves are found

applying the parameters a and $ in equation (A.20):

Mp
I'i:c=pcy ——
+ 1 =pe s
Ma

T :c=ac —
a=ae a+1

(A.22)

(A.23)

As the parameter a is negative and f is positive, the family I'; is composed by straight lines with positive slopes, and the family I"_ by straight lines

with negative slopes.

For any pair (a, ), the constant concentration state can be determined by the following relations (derived from equations A.22 and A.23):
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_ Map
S E Y 29
M
“Tar D@t (A.25)

We now establish a relation between the phase plane and the xp X ¢ plane. Consider the linear combination of the auxiliary system equations
(Equation (A.1)):
()cz

dc ac
+ (hay +lza21)af(pl+12@+(llalz +12022)T;:0 (A.26)

dcl

}»1@

where 4;and Aoare the eigenvalues of equation (A.1). If wrepresents a characteristic parameter (either aor ), the derivatives %and %C—(jwill be in the

same direction if the following system of equations (Rhee et al., 2001):

7] Ox

Al%‘ (han +/12a21)0—(5:0 (A.27)
7] Ox

lza—z — (happ + ﬂzazz)a—;}) =0 (A.28)
d 0

PRy e S\ (A.29)
0w Jdw

dc dc
(han +/12(121)a—ai+(/11a12 +/12a22)a—aj:0 (A.30)

is satisfied.
From equations A.27 and A.29, one can find that:
dp Oxp

%— (011 —§a2])£70 (A.31)

Moreover, we consider that the independent variables x, and ¢ can be written as a function of the parameter w. The eigenvalues of the auxiliary
system are given by

O 44
i=gt =t (A.32)
XD 0
Thus,
o 0
20 " au =0 (A.33)

Defining fas the characteristic parameter for the family C, (', family on the hodograph plane), and afor the family C_(family I'_on the hodograph
plane), we have

op Oxp
. =2P A.34
B P ( )
dgp oxp
% 4 %o _ A.
oa oa 0 (A-35)
Comparing equations A.34 and A.35 with equation (A.31), we can establish the relation between the hodograph plane and the xp x ¢ plane:
d.
Ay = 2 an — pax (A.36)
dXD
d.
A= dx_(/; = d;; — Qdy (A.37)

Replacing equation A13.-A.16 in equations A.36 and A.37, we find

B a+1\ [B+1)?

=) () 3
B a+1\*/p+1

wor(i) () 32

where y = % For convenience, we denote

_a+l
Tadty

a=a(a) (A.40)
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WS
By

The functions a(a)and b(p)represent a pair of characteristic parameters and their values lie between 0 < a(a) < % < b(p) < 1. The plane a(a) x

b=b(p) (A.41)

b(p)is spanned by orthogonal straight lines, where the awaves are vertical and bwaves are horizontal. The characteristic velocities are now recast as:
A, = Kyyab* (A.42)
A_=Kyyd®b (A.43)

After deriving the expressions for the characteristic waves of the auxiliary problem, the shock velocities are found from the Rankine-Hugoniot
conditions:

Vo(a,b™,b") = xﬂ = Kyyab b* (A.44)
D

V_(a ,a",b) = xﬂ = Koyba a* (A.45)
D

where the superscripts + and -represent the value of aor bbefore and after the shock wave, respectively.
Now we analyze how 1, and 1_change along the phase plane. We denote D_the derivative of A, with respect to the concentration along the family
I'_and D, the derivative of A_with respect to the concentration along the family I',. We will consider K, > Ki, and therefore, y > 1. Thus, we have:

iy 2 3 B
DA _w_ oy @V BED e 20 s (A.46)
Dex 5 (@+7)B+7) (a—1)
DA % 1)° 1? 1-
A Dy G RN Ch ) e W Gt 2 TER (A.47)
De, 3 (@a+7)(B+7) (b-1)

Since both derivatives (Equations A.46 and A.47) are negative, we conclude that Adecreases along I', and I"_as cyincreases.
Appendix B

In this appendix the inverse mapping of the waves from the xp x @plane to the xp x tpplane is presented. We also derive the exact coordinates of the
crossing points of these waves related to the beginning and the ending points of the interactions between the waves.
The relation between the shock waves in the xp x gplane and xp x tpplane is given by (Pires et al., 2006):
fi
D;= =4, — B.1
e (®.1)

where D;is the shock velocity in the xp x tpplane and V;is the shock velocity in the xp x ¢plane.
From equations (75) and (A.38), the velocity of the rarefaction family C.in xp x tpplane is:

e f

“0__ J B.2
dtp  Kyyab? +s (B.2)
and the velocity of the rarefaction family C_(Equations 75 and A.39):
dxp f
~0__J B.
dtp  Kyya’b +s (B.3)

From equation (B.1), the shock path OBis given by:

+

X0 = o B + 5 (B-4)

Following the same procedure, the shock path OFis:

+
(B.5)

Xp=IlpF—F77——
P PKoyal) + s+

From equations (A.43) and (A.44), we find the shock velocity BCin xp x ¢plane:

1
d Var—1
<_¢) kg - N (B.6)
dxp ) yc KoybV) /szb<!>x§f">

Then, through equation (B.1), the velocity of shock BCin x x tpplane is:
+
(d)CD> _ f (B~7)

dip ) yc s++<i¢i>
"/ sc
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Therefore, we can write the shock path BCas:

Xp = (dx_n> (tp — t5) + x5 (B.8)
dtp ) ge

where (x,tg)is the point where the shock OBintercepts the first rarefaction characteristic of C_, given by:

Kyyap) + s+

= Koy d b (1 — o) (B.9)
_ fr
T Kol b 5 (®-10)
The rarefaction C_is transmitted through the shock BC, its new slope is:
dx,
D f (B.11)

dty Kyya?b) + s

The shock BCfinishes at point C, which is the point where the last characteristic of the rarefaction C_intercepts the shock BC. The coordinates of
point Care:

+

L
KoplaD P 15t KppD st B B
fe= r[a®] ﬁs - (B.12)
KarlaD P 45t KabDs™
+
! (te=1) (B.13)

T K [d Db + 5+

After the interaction with the rarefaction C_, the shock path continues from point Cas a straight line up to point G, which is the point where the
interaction between shock V, with the rarefaction C, begins. The shock path CGis:

f+

:m(tgfzc) +xc (B.14)

Xp

and point Gcoordinates are:

f- to — fr . c
KbV +s+ Koyal) [b(-’)]‘ﬂ’
to= - e (B.15)
Kyb) 45 KayalD [,,u)]zﬂer

f+

- . ltc— 1] (B.16)
Kyya® [b)]” + s+

XG

After point G, the rarefaction C_is absorbed and the path of shock Goois:

f+

=K gyt T le) T X0 (B.17)

Xp

The last interaction occurs between the transmitted rarefaction C_and the shock OE. The rarefaction is absorbed by the shock wave, and the new
shock path is defined as:

j‘+

=———(tp — 1 : B.18
D sza_'_ﬁ(n £) + Xg ( )

where the point (xg, tg)is given by:
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Injection of water containing dissolved chemical components is one of the most important enhanced oil recovery
(EOR) techniques. This problem can be modeled by an (n+1) x (n+1) system of hyperbolic partial differential
equations representing the conservation of water and chemical components. In this paper we present the solution
to the problem of oil displacement by a water slug containing n dissolved chemicals driven by pure water. It is
considered that the chemicals can be adsorbed by the rock following Langmuir adsorption isotherm. The solution
for any number of dissolved chemicals was obtained from a generalization of the case where three polymers are
dissolved in the slug. To build the solution we first introduced a potential function replacing time as an inde-
pendent variable. This procedure splits the original system of equations into a one-phase purely chromatographic
problem and a scalar hyperbolic equation. The one-phase problem was solved using multicomponent chroma-
tography theory, and its solution was used to solve the scalar equation. Both solution procedures are based on the
method of characteristics. Finally, the solution of the scalar equation was mapped onto the space-time plane. The
concentration solution shows the development of a complete chromatographic cycle in the porous media, and
due to the separation of the chemicals, water banks appear in the water saturation solution. These results are new

Conservation laws
Hyperbolic systems of partial differential
equations

and present important insights for two-phase multicomponent flows in porous media.

1. Introduction

Waterflooding is the most used oil recovery technique. However, it
may not achieve high ultimate recovery factors (Ogbeiwi, 2018). The
performance of a waterflooding project is highly dependent on the
displacement efficiency, which is a function of the relative permeabil-
ities and viscosities of the fluids saturating the porous media (Zhao et al.,
2016).

To increase the displacement efficiency, chemical components can
be dissolved in the injection water aiming to reduce its mobility and
increase the oil-water mobility ratio. The adding of chemicals to injec-
tion water is defined as a chemical method of Enhanced Oil Recovery
(EOR) (Lake, 1989). Surfactants reduce interfacial tension between oil
and water phases, and modify the displacement efficiency by changing
wettability and relative permeabilities (Fayers and Perrine, 1958;
Adams and Schievelbein, 1987; Pal et al., 2018).

Polymers can also be dissolved in injection water. The polymeric
solution is more viscous than pure water, thus, its mobility is lower and
the displacement efficiency is improved (Needham and Doe, 1987;

* Corresponding author.
** Corresponding author.

Mishra et al., 2014). The most important feature of this technique is the
increase of oil production when compared to waterflooding (Usrick,
1967). It also reduces viscous fingering and increases the efficiency of a
posterior waterflooding due to the reduced permeability after polymer
flooding (Sheng et al., 2015; Kargozarfard et al., 2018). The mobiliza-
tion of residual oil in polymer flooding processes is relevant only for
highly concentrated solutions (Asghari and Nakutnyy, 2008; Koh et al.,
2018; Seright et al., 2018). Due to its efficiency, polymer flooding is the
most applied chemical method of EOR (Sorbie, 1991).

Adsorption of the polymer by the pore rock surface plays an
important role in screening and designing a polymer flooding project.
Polymer flooding is mostly applied in sandstone reservoirs (Sorbie,
1991; Taber et al., 1997; Sheng et al., 2015).

Connate water salinity is also an important parameter in a polymer
flooding project design. The mixture of formation water containing
divalent cations with polyacrylamides solution (PA), which is the most
used polymer in EOR, reduces its viscosity (Amro et al., 2002). So, it is
necessary to use a higher polymer concentration in order to achieve the
same viscosity, or to inject a water pre-flush containing divalent cations
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in low concentration (Maitin and Volz, 1981; Davison and Mentzer,
1982; Algharaib et al., 2014). Biopolymers (e.g. xantham gum) are
salinity resistant and can be injected in both carbonate and siliciclastic
reservoirs (Ali and Barrufet, 1994). However, for high temperature
reservoirs, xantham gum solutions gradually lose its viscosity (Sofia and
Aliouche, 2016).

Mathematical models are important tools to analyze fluid flow
through porous media for EOR techniques. A set of partial differential
equations (PDE’s) based on the balance laws of water and each chemical
component governs the one-dimensional incompressible two-phase oil
displacement. From the solution of these systems of PDE’s it is possible
to build saturation and concentration profiles, analyze the positions of
the water and chemical components fronts, and forecast the production
profile (Buckley and Leverett, 1942; Welge, 1952; Patton et al., 1971).
The solutions of these systems of equations can be obtained by the
method of characteristics (MOC) and are composed by sets of rarefaction
and shock waves, and constant states (Wachmann, 1964; Claridge and
Bondor, 1974; Bedrikovetsky, 1993).

Relevant effects of the physical model, such as adsorption or mass
transfer between phases must be included in the system of conservation
laws (Pope, 1980; Johns and Orr Jr, 1996). The adsorption phenomena
can be modeled by an adsorption isotherm, which is a relation between
the concentration of the chemical in the flowing phase and in the sta-
tionary phase (rock). The adsorption of some chemicals used in EOR
processes is described by the Langmuir adsorption isotherm (Langmuir,
1918; Dangq et al., 2011; Ali and Mahmud, 2015). The adsorption of the
chemical components delays its concentration front with respect to the
water saturation front (Patton et al., 1971; Entov and Polishchuk, 1975;
Farajzadeh et al., 2016).

Non-isothermal displacement is also modeled by a system of con-
servation laws. For these problems, the energy conservation equation
must be included in the system of PDE’s to evaluate the energy transfer
and the temperature influence on the displacement (Braginskaya and
Entov, 1980).

The case of continuous injection of water containing one dissolved
polymer in an oil reservoir is composed by a 2 x 2 system of conserva-
tion laws with constant initial and boundary conditions. For an “S”
shape fractional flow curve and considering a convex adsorption
isotherm, the solution is composed by a saturation rarefaction, followed
by a concentration shock wave and by a Buckley-Leverett shock type
(Patton et al., 1971). For a concave adsorption isotherm, the structure of
the solution is composed by a saturation rarefaction followed by a
concentration rarefaction wave and by a Buckley-Leverett shock type
(Johansen and Winther, 1988).

Entov and Zazovskii (1982) presented the solution of oil displace-
ment by a solution containing two chemical components: one active
component that will change the displacement efficiency and a passive
additive that increases/decreases the adsorption of the active compo-
nent. The problem is composed by a 3 x 3 system of conservation laws.

Multicomponent chemical injection in oil reservoirs is modeled by an
(n+1) x (n+1) system of conservation laws, where n is the number of
chemicals dissolved. Helfferich (1981) developed a theory to solve
two-phase multicomponent problems neglecting adsorption effects. This
theory was later applied to solve the problem of two-phase three--
component surfactant displacement in oil reservoirs (Hirasaki, 1981).

When the adsorption is considered for two-phase multicomponent
flow problems, the components split along the reservoir due to their
different adsorption rates, and the lower adsorption ones travel ahead of
the chemicals with higher adsorption rates (chromatographic cycle)
(Rhee et al., 2001; Liiftenegger and Clemens, 2017). The solution for
constant concentration injection problems can be built by a general-
ization of the chromatography theory, and consists in solving the asso-
ciated multicomponent chromatographic problem, followed by the
extension of the solution for a two-phase environment (Johansen and
Winther, 1989; Dahl et al., 1992). This procedure was applied to solve
the problem of two-phase multicomponent polymer injection,
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considering that the adsorption of the i component is only a function of
the concentration of component i (Johansen and Winther, 1989). Later,
a Riemann solver was developed for the same physical model (Johansen
et al., 1989). Next, the solution was extended for a general adsorption
isotherm (Dahl et al., 1992).

The efficiency of polymer flooding is a function of the amount of
polymer injected. Continuous injection and high concentration slug in-
jection displaced by water yield to similar results if the amount of
injected polymer is the same (Sheng et al., 2015). However, for polymer
slug injection, the cost is smaller. Therefore, polymers are commonly
injected in high concentration slugs displaced by water rather than
continuous injection.

The boundary condition of the slug injection problem is discontin-
uous, and the solution is no longer self-similar. In such cases, the
methodology presented in Dahl et al. (1992) cannot be applied.
Considering a slug containing one polymer dissolved, the hodograph
transformation can be used to recast the 2 x 2 system of conservation
laws in terms of Riemann invariants (Bedrikovetsky, 1982; Logan, 1994;
Dafermos, 2000; Rhee et al., 2001). A similar problem considering
viscous fingering can be solved by a graphical method analogous to the
one presented in Bedrikovetsky (1982) (Hamid and Muggeridge, 2018).

Pires et al. (2006) presented a methodology to solve complex prob-
lems of chemical slugs injection in porous media. A potential function
related to water conservation replaces time as an independent variable.
For the case of slugs containing n chemicals dissolved, the introduction
of the potential funection splits the original system of (n+1) x (n+1)
conservation laws into an auxiliary system of n equations and a scalar
equation. The auxiliary system contains only thermodynamic properties
(one-phase chromatography process), whereas the scalar equation is a
function of the transport properties of the flow and of the solution of the
auxiliary system. For multicomponent polymer slug injection, the
auxiliary system is analogous to the multicomponent chromatography
problem (Rhee et al., 1970; Borazjani et al., 2016b).

This technique was applied to solve different EOR problems. The
solution for the case of one polymer continuous injection considering
that the polymer may adsorb according to the Langmuir adsorption
isotherm and the effects of salinity in polymer adsorption was presented
in Boa and Pires (2006). Silva et al. (2007) developed the solution for the
case of oil displacement by continuous multicomponent polymer injec-
tion using this technique. Injection of a slug containing one polymer that
may be adsorbed by the rock was solved for different adsorption iso-
therms (convex, linear and Langmuir type) and for a concave fractional
flow curve (Ribeiro and Pires, 2008).

The solution for the case of slug injection containing one polymer
that may be adsorbed by the porous media following Langmuir
adsorption isotherm and an “S” shape fractional flow curve is presented
in Vicente et al. (2014). The results were compared to a numerical
simulator with close agreement. Borazjani et al. (2014) included the
effect of salinity in the polymer adsorption isotherm, and it was
considered that the polymer followed a linear adsorption isotherm. de
Paula and Pires (2015) extended the Borazjani et al. (2014) solution to
the case of polymer adsorption modeled by Langmuir isotherm.

Borazjani et al. (2016a) applied this technique to solve the problem
of oil displacement by the injection of a polymer slug with varying
salinity. It was assumed that the salt was not adsorbed by the rock but
changed the polymer adsorption, which followed a linear adsorption
isotherm. Khorsandi et al. (2016) presented the solution for the case of a
slug containing one polymer dissolved in low salinity water injection.
The low salinity effects were included in the polymer adsorption
isotherm and rock werttability. The results were compared with experi-
mental data and numerical simulators.

de Paula et al. (2019) developed a general solution for the multi-
component polymer slug injection in oil reservoirs for a linear adsorp-
tion isotherm. It was considered that the adsorption of the i polymer
was a function of its own concentration in flowing phase. The solution
showed that the components splitting in porous media (chromatography
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cycle) led to the appearance of water banks with different viscosities.

Apolinario et al. (2020) used the two-component chromatography
theory presented in Rhee et al. (2001) to model the injection of a slug
containing two dissolved polymers in an oil reservoir. It was assumed
that both polymers adsorbed in porous media following Langmuir
adsorption isotherm. Beyond the development of the full chromato-
graphic cycle, the solution showed that for long times the chemicals
concentrations are constant along the porous media.

The splitting technique can also be applied to solve problems
considering advective transport, parabolic terms and relaxation non-
equilibrium equations in cases where the auxiliary system allows the
construction of an analytical solution (Borazjani et al., 2015).

In this paper the solution for the injection of a slug containing n
chemicals dissolved and displaced by water in an oil reservoir is pre-
sented. It is considered that the chemicals can be adsorbed by the porous
media following Langmuir adsorption isotherm. The solution is a
generalization of the model presented in Vicente et al. (2014) and
Apolindrio et al. (2020) for any number of components dissolved in the
water slug, which has not been published.

Several problems of chemicals injection in porous media can be
modeled by the solution presented in this paper, such as multicompo-
nent polymer slug injection, alkali-polymer injection, low salinity
waterflooding, ete. The main constraint is that the chemical adsorption
by the rock must follow Langmuir adsorption isotherm.

The solution also presents important features regarding the flow of
chemicals in a reservoir: the impact of the chemical separation in the
water saturation profiles, the generalized water saturation behavior in a
multicomponent injection for long times, and the impact of each
adsorption constant in the saturation and concentration profiles.

In the following sections we present the general formulation, fol-
lowed by the solution of the problem of slug injection containing three
dissolved polymers in an oil reservoir. The solution is built applying the
technique presented in Pires et al. (2006) and the multicomponent
chromatography theory of Rhee et al. (1970). Then, we present the so-
lution for the case of n dissolved chemicals in the slug.

2. Mathematical model

In this section we present the mathematical formulation for the
problem of one-dimensional two-phase oil displacement by a water slug
containing n dissolved chemicals driven by water. Further assumptions
are:

e Homogeneous porous media;

e Incompressible system;

e Dispersion, gravity and capillarity are neglected;

e The chemical components are dissolved only in the water phase;
e Water density is not a function of the chemicals concentrations.

These assumptions are better suited for horizontal flow of two low
compressibility immiscible liquid phases, or, from a mathematical point
of view, advection dominated flow (water and oil). As phases velocities
in reservoirs are very small, dispersive effects are usually neglected.
Moreover, as the injected polymer concentrations are small, the infinite
dilution condition can be applied.

Under these hypotheses, the flow of fluids through porous media is
governed by a hyperbolic system of partial differential equations (PDE),
composed by the conservation of water and of each chemical compo-
nent. This system of PDE’s is written as:

Os L)
rf);-}—u;-ﬂj(&,g—ﬂ
(<))

ot

(1)

Po(cis+a; +urd(cf o =0,i=1,2,...,n

where ¢ = [cy,¢a, ..., Cy] is the concentration of each component in the
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flowing phase, g; is the adsorbed chemical amount on the rock surface, f
is the water fractional flow, ¢ is the rock porosity, and ur is the total flux
velocity.

We define the following dimensionless variables:

Xp :g‘ 2
A
ip = Jor (o) (3)

e
s

in which xp is the dimensionless position related to the length of the
slug, tp represents the number of slug volumes injected, Qg is the volume
of the injected slug and A is the cross-sectional area of the reservoir.
Introducing equations (3) and (4) in the system of equation (1), we have:

ds  df(s,cp, 0

75+ f (s, c1,¢2) —0

dip dxp

deis +ai(c)) | def(s, )

+
o oxp

4

=0,i=1,2,..,n

We consider that the adsorption of the chemicals on the rock surface
is governed by the multicomponent Langmuir adsorption isotherm
(Langmuir, 1918):

Kici
a( €)= (5)
L+ 300K

where K; is the Langmuir adsorption constant of i.
At the beginning of the slug injection (tp = 0), there is no polymer in

. 1 L .
the reservoir (¢’ = ?U = 0), and the water saturation is irreducible
(s =sU). During the slug injection, the water fractional flow is 1 at the

inlet (xp = 0), and the injected chemicals concentration will be denoted

J . . .
as ¢ The warer drive begins at tp = 1, and no more chemicals are
injected. Thus, the initial and boundary conditions of the problem are:

s5(xp, 0) = s L
tp =0, 0< xp<g 6
D {?(xu,o) _ 20 _ 0. D % (6)
f(O.I{J) :fﬂ-’) =1 ip > 0
xp =0, 2(0,1) — V0 <l (7
Ip) = 0. > 1

2.1. Splitting between thermodynamics and hydrodynamics

We now define the following potential function associated to the
water volume conservation:
dg :f(.h' ?)dl‘u — sdxp (8)

Introducing equation (8) in the system of equation (4), we obtain:

o0 73) 2w (5:27) =° ©

(¢) 9 .
i —=0,i=12,..., 10
r» +ax,) i=1,2,...n (10)

da

This procedure splits the original system (Equation (4)) intoann x n
auxiliary system of equations (Equation (10)), which is a function of the
concentration of chemicals, and a scalar equation (Equation (9)) that
includes the hydrodynamic properties of the flow and the solution of the
auxiliary system (Pires et al., 2006). Note that the potential function
replaces time as one independent variable of the problem, and the
problem is defined in the auxiliary plane xp x @. The auxiliary system is
analogous to the system of PDE’s that models multicomponent chro-
matography problems (Rhee et al., 1970).

The initial and boundary conditions (Equations (6) and (7)) in the
auxiliary plane are given by:
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s(xp, —sPxp ) =51,

) L
@ sWxp, @ (xps—s"xp) = TV =0,0 < xp < o an
A
FOp)=f=1  9>0
xp=0,¢ _, Y o< <] (12)
C (0,(}’) - 0’ {P" > l
Defining — as U(s, ¢) and —+ as F(U, ¢’), equation (9)
(s, C) f(s. C)
becomes:
<) <)
JF(U,== + dU(s, =0 13
(Ui, UG5 (13)

The initial and boundary conditions for the variables F and U are:

U
@ = —s0xp, { F: j;’;’ (14)
U=1
=0, { v=t, as)

where sV} =1 — s,, and s,r is the residual oil saturation.
The solution for this new problem is built following the steps:

e Solution of the auxiliary system (Equation (10)) using the chroma-
tography theory (Rhee et al., 1970);

e Solution of equation (9) by the method of characteristics (MOC);

e Inverse mapping of the solution from the auxiliary plane to the xpx
tp plane using the following expression:

dp K
dx
TG00 € o)) | F @) )

Note that in equation (16) s(xp, ¢) is the solution of equation (9) and

ditp = (16)

T (xp, ) is the solution of the auxiliary system. Therefore, the path of
the solution in the xp x tp plane is a function of the solutions of the
auxiliary system and equation (9), and of the path of the waves in the
auxiliary plane. For a bounded system, there is a one-to-one corre-
spondence between the solution in the auxiliary plane and in xpx tp
plane (Wagner, 1982; Pires et al., 2006).

2.2. Slug injection containing three dissolved polymers

For the sake of simplicity, we present the solution of the two-phase
oil displacement by a slug containing three dissolved polymers fol-
lowed by water drive.

The water saturation is redefined as:

S(XD I’[J) — S(”

s — gD a7z

s(xp,tp) =

Equation (17) normalizes water saturation and leads to a new set of
dimensionless variables, given by:

Xp= (1 8)

[0]

_ Jour(r)dr
p = 7{}5(5“’ =0 )% (19)
Applying the new dimensionless variables (Equations (18) and (19)),
the system of equation (1) becomes:
as Bf(s,q,c‘g)
Bl A A
BtD + Bxp
deis +a;(€))  dlcf(s, )
+
01‘;) ()ID

(20)

=0,i=1,2,3

with initial and boundary conditions given by:
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s(xp,0) =0, L
tp=0 0 < <= 21
D {?(xu,O) _ ?{I) _ 0’ Xp % ( )
FO)=fD =1 >0
xp =0, 2(0,1m) eV <<l (22)
,Ip) = 0, > 1

where ¢ = [c1,¢2,¢3].
Applying equation (8) in system (20), we split the original problem
into a 3 x 3 auxiliary system and a scalar equation:

» (J(H)) e (f(s,l?)) - @9

(&) G i
aa,a +0x,; 0,i=1,23 (24)

with the following initial and boundary conditions:

S()C[),O)ZO,
¢ =0, {?(xD,O) P =0,0< 5y <L (25)
2
_ gl
FO.@)=f"=1 >0
xp=0,¢ _, [TV, <<l (26)
con={s 0"

2.2.1. Solution of the auxiliary system
The first step is the solution of the auxiliary system (Equation (24)),
which is given by:

aa L) 00 _ g

43 aJCD
(€) ez
, ger 27
oay dp Jr()JC,D 0 27

G
das dp +axn

with the following initial and boundary conditions:

L
@ =0, ?(XD,O) =770 =0,0< xp <£T. (28)
A
<90 1
_ — _ c, U< <
xp =0, c(O,(p)f{O7 o1 (29)

In this paper we applied the methodology of multicomponent chro-
matography developed by Rhee et al. (1970) to solve the auxiliary sys-
tem (Equation (27)). The detailed solution procedure is presented in
supplementary material.

The chemical components are sorted in ascending order of adsorp-
tion constant, i.e.:

K, <K; <Kj; (30)

The concentration states are written as a function of a parameter @
which decouples the auxiliary system (see supplementary material for
details). The characteristic slope o) of the k™ wave family was calcu-
lated as a function of the parameter @ using the expression (Rhee et al.,
1970):

(k)
Ok = dxu Cl) H

i=1

(ft)

(3D

The k™ shock path is defined by the relation:

do\ ® k1 J)
V“‘):(dTZ) = H (32)
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Equation (32) is derived from Rankine Hugoniot conditions (Rhee
et al., 1970). Note that equations 31 and 32 can be applied for any
number of components.

After computing all @ waves, we can calculate the concentration
waves from the relation (Rhee et al., 1970):

: y B.j
K,'C,‘ = (‘ﬂK—): = l) Hj:lj#i %*7—1' (33)
i

Due to the discontinuity in the boundary condition (Equation (29)),
two types of wave interactions appear in the solution of the auxiliary
system: interactions between rarefaction and shock waves from different
families and between rarefaction and shock waves from the same family.

Along the interaction between a rarefaction and a shock wave of
different families, the waves are transmitted through each other and
their paths change (Rhee et al., 1970). The Kt family rarefaction slope
after the interaction with a w; shock wave is given by:

dep (k) W@ el o
=|\-— = @ == ! 34
Sk (dxn) k K Hl:[ﬁ K; (34)

where the superscript —denotes the value of w; and 6, after the shock. A
rarefaction wave can cross more than one shock wave. In such cases, we
denote the new rarefaction slope as o7, . Note that for a multicomponent
system there will be up to k — 1 rarefaction-shock interactions for the k"
family.

The k™ family shock path along the interaction with a w; rarefaction
is:
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dpy w; A @
Vi = (de;) ol TT (35)

where @; varies continuously along the interaction. Therefore, the shock
path is no longer a straight line.

When waves of the same family interact, the rarefaction is adsorbed
by the shock wave, i.e. it is not transmitted, and the new shock path can
be obtained from the relation:

do (k) L )
Vi :(—) =gk ! (36)
(k) o/, k K, K.

i=1

where the superscripts + and — denote the value of @ at the right and at
the left state of the shock wave, and @] changes continuously along the
interaction. We denote the shock path along an interaction region as
Xsr(¢), where the subscript s denotes the shock family, and the subscript
r denotes the rarefaction family. The shock path x;,(¢) can be calculated
integrating equation (36) along the interaction region.

The characteristic diagram of the auxiliary problem solution pre-
senting all wave interactions can be seen in figure (1).

The solution of the auxiliary problem in xp x ¢ plane is divided in 16
regions, each one contains either a concentration rarefaction wave or a
constant state (Fig. 1). Table 1 summarizes the concentration states in
each region of the solution of the auxiliary system.

Concentration profiles of the auxiliary system solution (c(xp, ¢)) can
be calculated for different ¢ (Fig. 2). We present the solution ¢(xp, @)
divided in 11 regions, bounded by the end of the slug injection (¢ < 1)

e

s
e

Fig. 1. Characteristic diagram of the solution of the auxiliary problem.
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and by the crossing points of the waves (points A to I in Fig. 1):

cr, @ <1

. L<g <oy,
Cur, Py <@ < Pp)
v P <P <P
Cy, Py <P <P
clxp,p) =19 cvi, @) <@ <@g (37)
v, P <P < P
v, Py <P < P
s Py <P <P
s Py <@ <@
xr, Py <@

In equation (37) ¢y, represents the coordinate ¢ of the point ¥ in
figure (3), where Y = A,B,C,...,I. The complete description and exact
expressions for each part of the solution of the auxiliary system (Equa-
tion (37)) is presented in the supplementary material. The concentration
waves travel with different velocities in the porous media, which leads
to the development of a complete chromatographic cycle. Note that from
the beginning of the solution cy, all three chemical components become
completely separated in the reservoir. When ¢— + oo, the concentra-
tions of the three components approach their concentration in the water
drive.

2.2.2. Solution of the scalar problem (lifting equation)

The second step of the solution procedure is to solve the scalar
equation (23). At this point it is considered the transport properties of
the displacement (relative permeabilities and viscosity of each phase).
The scalar problem solution is built from the solution of the auxiliary
system (Equation (37) and Figs. 1-2), and it extends the associated one-
phase problem solution (auxiliary system solution) to a two-phase
environment.

The following new variables

U(s, ¢) :f (38)

1
(5. )
)

U, @)= (5. ©)

(39)

are applied in equation (23) to get

Table 1

Auxiliary system solution.
Region ra
(1) Constant state (?m)
(2) Constant state (?(B))
(3) Constant state (?{A))
4) Constant state (?U;)
(5) Rarefaction wave (?m) - ?(ﬂ )
(57) Rarefaction wave (?(5. - ?(A))
(5) Rarefaction wave (?m - ?(E) )
(©) Constant state (?ID)]
(67) Constant state (?(E)]
(e ) Constant state (?m)
(7) Rarefaction wave (?(_C) - ?(D)]
7) Rarefaction wave (?(T) - ?(E))
(® Constant state (?(’C)]
(&) Constant state (?m)
(%) Rarefaction wave (?U) - ?(C)]
(10) Constant state (?m)
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OF(U,T) oU(s, T)
a{p an

=0 (40)

The initial and boundary conditions (Equations (25) and (26)) for
equation (40) are:

_ U— + o
{“9_0’{]7—»700 1
U=1
xD:O, {F: 71 (42)

Equation (40) will be solved for U. Further details regarding the
construction of the solution of the lifting equation are presented in the
supplementary material.

We define the viscosity of the polymeric solution as:

3
1o &) =4, (1 + ch;) (43)
i=1

where 10 is the pure water viscosity, and the coefficients #; are experi-
mental parameters that represent the effect of the polymer concentra-
tion in aqueous viscosity. We assume that the higher adsorption rate, the
higher n;, i.e.:

m <1y <1 (44)

The characteristic diagram for the solution of the lifting equation is
presented in Fig. 3. The different waves families and their interactions
divide the solution plane in 17 regions. Compared to the concentration
solution, there is only one new region (region I') and two new rare-
faction U-waves appear in regions where the concentrations are con-
stant. One of them is a centered rarefaction wave in region 4 and the
other one appears in region I' (also a centered wave). The region 4
centered rarefaction wave leads to 3 new interactions between waves at
the rear of the slug. Thus, a new type of interaction appears: interaction
between rarefaction waves of different families (Rhee et al., 2001).

The U-wave path in regions 5, 7 and 9 (regions where interactions
between U-waves and concentration waves take place) is affected by the
concentration waves. However, the concentration waves paths are not
affected by the U-wave because the trajectories of the concentration
waves are not a function of U.

The U-rarefaction slope along its interaction with a concentration
wave is given by:

aF(U. € (xp, ¢))

au (45)

ou(U, ¢ (xp,p)) =
There is an infinity slope semi-shock at the end of region (I'), which
is equivalent to the Buckley-Leverett shock (Buckley and Leverett, 1942)
for one dimensional two-phase incompressible flow. Table 2 summarizes
the solution of the lifting equation.
We present the lifting equation solution for the same ¢ used to
describe the auxiliary system solution. Thus, we have:

Uy, @ <1

Uy, 1< <oy
Un,  puy <@ <op
U,  om <@ <@g
Uv. g <@ <op
Ulxp,p) =S Uy @) <o <oy (46)
Uvn:  ew <@ <o
Uy, puy <@ < @
U, @G <o <ou
Ux: o <o <gq
Ux]. l’[JU) <@

where each solution U; is built for a value of ¢; presented in Fig. 3. The
exact expressions and complete description of equation (46) can be
found in the supplementary material.
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Fig. 2. Concentration profiles for the auxiliary system solution.
2.2.3. Inverse mapping to xp x tp plane 4
Once the lifting equation is solved, the inverse mapping of the so- Ay = (dﬂ)
lution onto the xp x tp plane is developed. From the relation given by: *D/ ()
1
dyg = (k)
dip =+ s F(s(xp, @), c1(xp, @), €2(xp, @), c3(xp, 9) )
Fls(ep, @), c1(xp, @), c2(xp, ), c3(xp, ) ) s (48)
$ + 48
+= dxp (47) S (s(xn, @), c1(xp, @), €2(xn, @), c3(xp, @) )
Fs(xp, @), e1(xp, @), e2(xp, @), €3(xp, @) )
L . . - . . where o, is the rarefaction slope in the auxiliary plane.
itis p(.)sstble_to map equation (37) (solution of the auxiliary system) and The shock paths are given by (Pires et al., 2006):
equation (46) onto the xp x tp plane.
The path of the k™ rarefaction wave in space-time plane is obtained Do — dip\ = (49)
integrating the expression: ® dxp/ gy, 5=+ Vi

where the superscripts “+ " and “~“indicate the value of the variable
before and after the shock wave. The concentration waves follow the
same notation used for the auxiliary plane solution (k = 1,2,3). The
velocities of the saturation rarefaction waves will be denoted as 4y or
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Fig. 3. Characteristic diagram for the lifting equation.

Ap), and the Buckley-Leverett type shock will be denoted as D).
The characteristic diagram for the solution in the xp x tp plane is
presented in Fig. 4. The space-time plane is divided in 17 regions,

Table 2
Lifting equation solution.

Region b c similarly to the solution of the lifting equation (Table 3). Note that the
y g eq
() Rarefaction wave (U — [/+)) Constanit stats (2™ rarefaction paths depend on saturation and concentration (Equation
(48)). Thus, in the interaction regions (5), (7) and (9), the concentration
(1) (W) s} s g E
Constant state (U s o " -
Constant state (¢ rarefactions are not straight lines. Furthermore, the Buckley-Leverett
@) Constant state (U%) Constant state (¢"”) shock wave does not lay on the xp axis and there is an initial condi-
(3) Constant state (U(3)) Constant state ('E—(f‘)) tion (I) region.
(4) Rarefaction wave (¥ — T4)) Constant st 129 Analogously to the solution of the lifting equation, the saturation
. T _(D v profile in the xp x tp plane is calculated for 11 different times tp’s. Thus,
(5) Rarefaction wave (UY) — (%) Rarefaction wave (¢ — € ) S(XD rD) is given by:
(57) Rarefaction wave (U¢~) — U®)) Rarefaction wave (?(E) - ?EA)}
. i _ 57y ip < |
5) Rarefaction wave (U®~) — U®)) Rarefaction wave (€0 — @) sy L <ip <ty
()] Rarefaction wave (UY) — U®)) Constant state (€™) sur,  fay < ip < Ip
(67) Constant state (U7(6)) Constant state (?(E)) v, lpy <o <l
: . o sy, l <itp <lgy
6 ) Constant state (U' ) Constant state (') s(xp, fD) = su,  tgyy <tp <l (50)
7 Rarefaction wave (UY) — 7)) Rarefaction wave (?(55 _ ?(D')) Svir, g <Ifp <
: 2 Svi,  try < ip < 6
77) Rarefaction wave (U® ) — U6)) Rarefaction wave (?U) - ?(EJ} > (
six, ey <ip <lIln
® Rarefaction wave (UY) — U®)) Constant-state (-E—(C)) Sx, try < Ip < I
(87) Constant state (U(®)) Constant state (?m) Sxi, Iy <Ip
© Rarefaction wave (UY) — U®)) Rarefaction wave (€ — € In equation (50) the notation ty, represents the coordinate tp, of point
(10) Rarefaction wave (UY) — U(19)) Constant state (2) YinFig. 4, where Y = A,B,C,....I. The exact expressions for each part of

equation (50), water saturation profiles, and solution path in f x s plane
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Fig. 4. Characteristic diagram of the solution in the xp x tp plane.

are presented in a supplementary material. From now on we present
some important aspects of the solution of equation (50).

During polymer slug injection (t; < 1), the solution is self-similar
and is equal to the solution of the continuous polymer injection prob-
lem (Dahl et al., 1992) for Langmuir adsorption isotherm. Thus, s;(xp, tp)
is given by:

i
) L)
s Xp <
D i (sm’ —;rj))
n Ip
.5'4(){;). [D}. o< Xp <o
2y (s, 7 Dy
1 T
(3) D
&y < xp <
D) Dy
1 I,
2) D D
si(xn, tp) =1 5 Dy == Dy (51)
n In
(1)
g B 5 e 7
)
D(l] /1(_‘-)(5(') ra )
In In
Sri (XD.ID), < Xxp <
1 >(1) iy —(0)
A5 (st ) A (s7),70)
I
s X > %
Ay (s, 2"

The saturation profile for three different tp, where tp; < tpy <itp3 <1,
is presented in Fig. 5. The solution path of s; in f x s plane is shown in

Fig. 6, and the structural formula is: (J) — (4)—=(3)=(2)—=(1) — I'"=(I).

As time evolves, the polymers separate in porous media and water
banks appear in the water saturation profiles. Note that when
t) <tp < ty, sx part of the solution, two components are already
splited from the other, thus, two water banks with constant water
saturation appear (Fig. 7). In figure (8) the f x s plane of solution sy is
presented.

For tp = t;, the rarefaction wave 13 meets the shock wave D3
(solution sy (xp,tp)). At this part of the solution, the region (8) no longer

2 . e (I
exists and the constant concentration state is F’ — ? ) =0.

When tp— + oo, the rarefaction waves are completely absorbed by
the shock waves of the same family (Rhee et al., 2001). Therefore, the
chemicals concentration and water saturation along all the reservoir are

T =0and s = sV, respectively.
3. Generalized solution for n components

The generalized solution for the problem of slug injection containing
n dissolved components (Equations (4), (6) and (7)) is built following the
same steps presented in the previous section.

The problem in the auxiliary plane is given by:

2 (7555) 3 () = &2
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Table 3
Solution in xp x tp plane.
Region s <
n Constant state (s7)) Constant state (<)
(048] Rarefaction wave (s{1) — s(+)) Constant state (-C—U))
(1) Constant state (s1)) Constant state (?cn)
(2) Constant state (s?)) Constant state (?(H:]
(3) Constant state (s)) Constant state (¢'*)
(4) Rarefaction wave (s — s(%) Constant state (?(J))
(5) Rarefaction wave (s¢) — 5(5)) Rarefaction wave (?)(DJ el )
(57) Rarefaction wave (s(¢) — s3)) Rarefaction wave (?(E) g
(57) Rarefaction wave (s ) — s-)) Rarefaction wave (?(1) — ?(B))
(6) Rarefaction wave (s¥) — (%)) Constant state (¢'™)
6) Constant state (5© ) Constant state (¢ )
e ) Constant state (5 7)) Constant state (_?m)
@ Rarefaction wave (s — s)) Rarefaction wave (?m - ?(D))
77) Rarefaction wave (s — 5(67)) Rarefaction wave (_c’m - ?(EJ}
8) Rarefaction wave (st — s(8)) Constant state (?(Ca)
(87) Constant state (s®) Constant state (?m]
9 Rarefaction wave (st — () Rarefaction wave (—sz — ?(C))
(10) Rarefaction wave (s — 5(19)) Constant state (?m)
SUJ
4)
Sy ( Xy tu) S 2)
- 2)
S
1
S( )
S{+ (XD’ tDJ
Q T+
£ s (+)
tpj tDZ tD3
IS
< (e8]
rp
Fig. 5. Saturation profiles of the solution.s;(xp,tp)
el
c de
PR L T (53)
dfp Bx,)
with the following initial and boundary conditions:
s(xp, 0) = s, i
=0, {?(X,J,O):F’(”:O,O< xp < g ©
a
09 =f2=1  §>0
xp =0 Y 0<p<l 55
D ’ ?(0, {ﬂ) —} 7y P (55)
0, p>1

where ¢ = [¢y,€3,...,C). The general Langmuir adsorption isotherm is
given by equation (5) and the adsorption constants also follow:

Ky <€Kypd . 2K

(56)

10
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Fig. 7. Saturation profile of the solution.sx(xp,tp)

The i Riemann invariant J; is calculated from (Rhee et al., 1970):

Kia; (¢

T (57)
K, —w

and the parameter @ is calculated by (Rhee et al., 1970):

3 Kia() _ | (58)
K,' — @

The constant concentration states are obtained from the following
expression:

5

K; n w;
Kic;= (5— I)H,-:u;ef% —1

(59)

i

The path of the waves in the multicomponent solution can also be
determined as a function of @. The rarefaction slopes are given by:

n

(k)
o’ 1]
i=1

ol

K;

dg
ag = L?’; - (60)

and the shock waves by
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Fig. 8. Solution path of sx in f x s plane.

do (*) k1) separated in porous media, and the solution of the auxiliary system is:
Vig = (—) = w] : (61)
( dxp s ! i=1 K
( —1
(‘1:0,(‘3:0. ,(‘,,ZO, xD<(ﬂ—‘,]
om(@?)
0,6=0 ! (0, ) Pl o e
¢ =0,00= < Cn =€, (XD, @), — = <X < X @
’ (&)
c;=0,c0=0 ¢, =clh, Nailn) cap PP o
clap,p)=q " 7 AR o (2) <3 O (@) M (63)
=9
o7 =it = |(Xn,(ﬂ)-cn=f£,” —ﬂf;*xm <Xp < Xu 14 1)(90)
G(m)(w )
& = (‘[ln‘(‘z = L‘g”, veryCp = CE,"I)T x(|,|)({,u) < Xp

The interaction between waves are calculated from equations 34-36
(Rhee et al., 1970).

In figure (9) we present the characteristic diagram of the auxiliary
system solution for 1, 2 and 3 chemical components dissolved in the
slug. For 1 component, the plane is divided into 4 regions (Fig. 9a); for 2
components, the plane is divided into 9 regions (Fig. 9b); for 3 chem-
icals, there are 16 regions (Figs. 9c and 1), and so on. Thus, for the
general case of n dissolved chemical components, the solution divides
the xp x ¢ plane in (n+ 1)* regions. Moreover, note that the fastest
rarefaction wave (k= 1) interacts with (n —1) shock waves before it is
absorbed by the k = 1 shock; the k = 2 rarefaction wave interacts with
(n —2) shock waves and then it is absorbed by the k = 2 shock. Thus, the
k™ rarefaction wave interacts with (n—k) shock waves before it is
absorbed by the k™ shock wave.

The concentration solution for ¢ < 1 is given by:

J J P
CJ_((| 952:5‘;]5 1(‘!4:(‘51)» Xp <
Vin)
A) A 7 @
¢ :(.‘5 ,cz:céJ, Jow =, = < Xp 7
c(xp,p) = (n) (n 1) (62)
[y,
Ccy :(‘5”.(‘2:(3(2”.....(‘ :CS,”, ‘L‘(JCD
Vi

For high values of ¢ (denoted by ¢,), all dissolved chemicals will be

11

For intermediate ¢, the calculation of the general solution follows the
same procedure for three components presented in the previous section.
However, due to the high dependence of the solution on the viscosity
parameters and adsorption constants, it is not straightforward to write a
generalized description of all intermediate regions (1 < ¢ < ¢.).

Applying equations (38) and (39) in the lifting equation (Equation
(52)), we have:

dF(U, ) 5 (s, ¢)

=0 64
dp dxp tG4)
with the following initial and boundary conditions:
_ U— +
W_O’{Fafoo (65)
U=1
xp=0, {F:fl (66)
Equation (66) can be rewritten as:
FOU U OFde e O, -
oU dp odxp  dcy dp  dcy dp T de, dg

In I’EgiOllS where the concentrations are constant,



F.O. Apolinario and A.P. Pires

Journal of Petroleum Science and Engineering 197 (2021) 107939

Cc

I

Fig. 9. Auxiliary system solution characteristic diagram for: a) 1 component; b) 2 components; ¢) 3 components.

doy _doy B g (68)

dp Op dp

and the lifting equation becomes:

oF oU dU

oo 0 i N . 69

g a {69)
The characteristics velocities are given by:

dop OF(U, ¢

i o N P Ve Bl & 70

preand au 20l

In regions where the concentration is not constant, along each
characteristic U is calculated by:

dF dey  dF dcy JF dc,

dey dp dey dp T ey Iy

w
dxu

1)

For the generalized problem, the viscosity of the polymeric solution
is defined by:

p, (€)=, (1 +y m-c:) (72)
i=1

where:

< <...<, (73)

If a U-rarefaction wave at initial concentration state exists, the
characteristic diagram of the lifting equation solution for the general-
ized problem is divided into [(n + 1)* +1] regions. In this case, the so-
lution U(xp, tp) for ¢ < 1 is:

o) .
i o Gu(UU), ?(J))
@
Uni1(xp, @),
ou(UD, TV < xp < =
(m)
um, Vi<xn<vq)
U 9) = G
unh <xp <
Vi iy Vin2)
» ®
Up (x, 3 <xp < ;
.'\( Dy’l’) GU(U(”.?U)) D Gu(U” ).?(]J)
uh, Xp— + o0

12

When all chemical components are completely separated in porous
media (¢ > ¢,,), the solution of the lifting equation is composed by
sequences of a rarefaction wave connecting the curve F(U, ?m)
(3n+1)", (3n—1), and (3n —2)" at curve (I) in Fig. 10) to an inter-

mediate concentration point on the curve F(U, ¢ (xp,¢) ) (point (3n)” at

(points

curve 1 and point (3n — 1)" at curve 2 in Fig. 10), and a shock wave from
the intermediate concentration point on the curve F(U, ¢ (xp, ¢) ) (point
(3n)" at curve 1 and point (3n — 1)" at curve 2 in Fig. 10), to the curve

F(U, ?U)) (points (3n — 1)’ and (3n — 2)/ atcurve (I) in Fig. 10). After the
sequence of concentration waves, a U-rarefaction wave in the region (I*)
completes the solution.

The inverse mapping from the auxiliary plane xp x ¢ to the plane
Xp X tp is given by:

dtp =

<

d
P 2P (xp,p)) + @ (o, 0) ) dip (75)

K
flslxp, @), F(slxp, @)

The rarefaction waves in the xp x tp plane are found from the
expression:

dtp 1 i dfﬂ) s s

—— | =7 ¢(xp, =] e ———Ic(Xp; (76)
(dxo){k) Fotma, <o) (i o Tl ), < o)
and the shock waves by:

dip ft
Dy={— =TT (77)
“ (dxi)) ) S V(k)

74)
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Fig. 10. Schematic solution path in F x U plane for t; > t,,.
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For tp < 1, the solution of the generalized problem is given by:

7
)] D
K3 Xp { ————————
! J ()
Aoy (59, )
Ip Ip
sa(Xp,p), o < Xp L
Ay (s, 2 )) Dy,
In ]
(n—1)
§ 5 < Xxp <
Dy Dy 2)
9 I 1,
s, D exyt—2
s(xo, 1) = Dir 2 Din 3) (78)
by T,
1 D D
L —D <X <7(11 =)
) Ay (s, )
In In
S (XD,ID)7 < Xxp <
1) =0 1y —)
B0, 70 S @, 70)
Ip
Sfﬂ7 oS

/l(s) (S{J" )7 ?(ﬂ)

For long tp, when all chemicals are completely separated in the
reservoir (denoted as tp = t,,), the saturation solution is (Fig. 11):

L <ap< fir]
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I I
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(1) 1 (1)
(@27 a @, @")
0 n
gvl, iIp———
1o (s, 7°)
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Note that when tp >t the saturation solution will be a sequence of nn
rarefaction waves (each one carrying one component) separated by a
jump to the curve f(s, e ) (slope given by equation (77)), and a constant
state (pure water bank). Then, there may be a rarefaction wave s;:, and
the Buckley-Leverett shock. Observe that for n components, there will be
(n—1) water banks in the solution after all chemical components are

separated in the reservoir.

4. Summary and conclusions

In this paper we present the solution for the multicomponent
chemical slug injection driven by water in oil reservoirs. The
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mathematical model is composed by a system of (n+1) hyperbolic
equations representing the conservation of water and each chemical
component. It was considered that the chemical components can be
adsorbed by the rock following Langmuir isotherm.

The system of hyperbolic equations was splitted into an associated
one-phase multicomponent problem (auxiliary system), and a scalar
hyperbolic equation. This solution extends the multicomponent chro-
matography theory for a two-phase environment.

The detailed solution was derived for the case of three polymers.
First, the problem was splitted and solved in an auxiliary plane; then the
solution was mapped on the xp x tp plane. Exact solutions were devel-
oped for concentration and saturation, whose profiles clearly show the
complete separation of the components in the reservoir (chromato-
graphic cycle) and the development of water banks.

A generalized solution for n components showed that the space-time

plane is divided in (n + 1) regions. After all chemicals are separated in
the reservoir, (n—1) pure water regions appear.

The results of this paper can be used to solve other chemical
enhanced oil recovery problems, such as alkali-polymer injection, low
salinity waterflooding, ete. This solution presents new insights for
saturation and concentration behavior in two-phase flows in oil reser-
voirs: the impact of the chemical separation in the water saturation
profiles, the generalized water saturation behavior in a multicomponent
injection for long times, and the impact of each adsorption constant in
the saturation and concentration profiles. It can also be applied to
validate numerical simulators.
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Abstract

Low salinity waterflooding is the injection of water with smaller salt concentration than
the connate water. The control of the pH of injection water, and the amount of dissolved
monovalent and divalent cations in the water affect the cation exchange in the reservoir
and the mobilization of residual oil. This process is modeled by an (n + 2) X (n + 2)
system of hyperbolic partial differential equations representing the conservation law of
each dissolved cation, pH, and water. In this work we present the solution for the problem
of low salinity slug injection driven by seawater considering three dissolved cations and
pH effects. It was considered that the cations and H* adsorbed on the rock follow a
Langmuir adsorption isotherm type. The adsorption parameters of the cations depend on
the water pH. The introduction of a potential function replacing time as an independent
variable splits the original problem into three decoupled problems: a pH equation, a one-
phase chromatographic system, and a scalar equation. First, the pH problem is solved,
and its solution is used to calculate the one-phase chromatographic problem, and both
results are applied in the scalar equation solution. Next, the solution is mapped onto
space-time plane. The solution shows that due to the high adsorption rate, the pH effects
take place close to the injection point and disappear. Moreover, the high contrast between
the adsorption rates creates regions where salinity changes, but these regions disappear.
Cations separation in the porous media, similar to a chromatographic cycle, lead to the
generation of several small oil and water banks along the reservoir. The oil banks contain

residual oil which was mobilized by the cation exchange.

Keywords: Low Salinity Flooding; Multicomponent Cation Exchange; Enhanced Oil

Recovery; Conservation Laws; Hyperbolic Systems of Partial Differential Equations.



1. Introduction

Low Salinity waterflooding is a low-cost Enhanced Oil Recovery (EOR) method used
to optimize reservoir’s production by injecting water with controlled ionic composition
and salinity smaller than the connate water (Sheng, 2014). The injection of low salinity
water can increase the displacement efficiency up to 38% when compared to injection of

seawater (Jerauld et al., 2008).

Several physical phenomena take place in the reservoir when the low salinity water
interacts with the reservoir fluid and pore surface. In siliciclastic reservoirs the main
phenomena are clay swelling and cation exchange (Morrow and Buckley, 2011). Clay
swelling changes relative permeability and increases the displacement efficiency (Tang

& Morrow, 1999).

Cation exchange in low salinity waterflooding is the replacement of a divalent by a
monovalent cation on the clay mineral surface (which has negative charge) according to

the following chemical reaction:
((Clay Mineral)™ — X?**)* + Y* & (Clay Mineral)~ — Yt + X?* (1)

This phenomenon is directly related to the mobilization of residual oil in low salinity
waterflooding processes (Romero et al., 2013). The replacement of divalent by
monovalent cations can also change wettability (Morrow & Buckley, 2011), expand
double layer (Ligthelm et al., 2009; Lima et al., 2020), increase pH and decrease
interfacial tension (McGuire et al., 2005). These effects change the relative permeability
curves and increase the recovery factor of the reservoir (Lager et al., 2006). Data collected
from 411 coreflooding experiments have shown that better recovery factors are obtained
in reservoirs that were originally oil-wet and changed wettability to mixed-wet after the

low salinity waterflooding (Aladasani, 2014).



In sandstone reservoirs the clay content, the adsorbed cations on the mineral surface
and the dissolved cations in the connate water directly affect the cationic exchange
capacity (CEC). CEC is greater where the clay content and the concentration of divalent
cations are higher (Austad et al., 2010). The presence of calcium on the clay mineral
surface enhances its reactivity. A similar behavior is observed for magnesium, but its

reactivity is smaller (Aghaeifar et al., 2015).

Injection water composition also plays an important role on low salinity flooding in
sandstone reservoirs. Low concentration of divalent cations in injected water led to
greater recovery factors (Austad et al., 2010; Nasralla & Nasr-el-din, 2011; Nasralla &
Nasr-el-din, 2014; Xie et al., 2014; Al-Saedi et al., 2018). The pH of the injected water
also affects the method. The cation H* is a high reactivity monovalent cation (Austad et
al.,2010), and changes the adsorption-desorption isotherm of divalent cations on the rock
surface. Higher pH enhances the cationic exchange on the rock surface (Aksulu et al.,

2012; Xie et al., 2014; Brady et al., 2015).

The cation exchange equilibrium is governed by a modified Langmuir’s Adsorption
Isotherm (Langmuir, 1918; Akai et al., 2020; Lima et al., 2020). Moreover, the two-phase
flow of oil and water containing dissolved cations in a porous media can be modeled by
a system of hyperbolic partial differential equations that represents the conservation law
of water and of each dissolved ion. It is possible to build water saturation, cation
concentration profiles and recovery factor curves from the solution of this system of
equations (Jerauld et al., 2008; Borazjani et al., 2016; Khorsandi et al., 2016). These
solutions are found by the method of characteristics (Wachmann, 1964; Claridge &
Bondor, 1974; Bedrikovestky, 1993). The adsorption of the chemical components on the
rock surface results in a delay of the cation-front when compared to the water-front
(Patton et al., 1971; Entov & Polischuk, 1975; Pope, 1980; Farajzadeh et al., 2016).
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During low salinity waterflooding in sandstone reservoirs, the most active chemical
species are the cations Ca?*, Mg?* and Na*, and the anion Cl~ (Brady et al., 2015;
Dang et al., 2016; Pouryousefy et al., 2016). Balance laws generate a 4X4 system of
hyperbolic partial differential equations. For the case of constant concentration injection
and neglecting adsorption effects, the solution of the system of equations is self-similar
and can be found applying the theory presented in Helfferich (1981). This theory was also
used to solve the problem of two-phase flow containing three surfactants dissolved in

water (Hirasaki, 1981).

If the adsorption effects are considered, the concentration front of each ion travels
with a different velocity due to their different adsorption rates, and analogously to a
chromatographic cycle, these components separate in the porous media (Rhee et al., 1970;
Luftenegger & Clemens, 2017). In such cases, the solution can be developed generalizing
the chromatography theory for two-phase flow (Johansen & Winther, 1989; Dahl et al.,

1991).

Low salinity waterflooding usually takes place after a secondary recovery water
injection period, or eventually a slug of low salinity water is injected and displaced by
seawater (Lager et al., 2008; Seccombe et al., 2010; Mahani et al., 2011). This
mathematical problem is modeled by a varying boundary condition. Therefore, the
solution is no longer self-similar, and the procedure presented in Dahl ez al. (1991) can’t
be applied. The solution of the problem of water slug containing one dissolved chemical
component injection displaced by pure water can be developed through the hodograph
transformation and written in terms of Riemann Invariants (Bedrikovetsky, 1982; Logan,

1994; Dafermos, 2000; Rhee et al., 2001).



For multicomponent slug injection displaced by water ((n + 1) X (n + 1) system of
equations), it is necessary to use a different approach. A potential function replacing time
as a new independent variable decouples the original system of equations into a system
of n X n partial differential equations, where n is the number of chemical species
dissolved; and a partial differential equation that depends on the solution of the n X n
system and on the hydrodynamic properties of the flow in the reservoir. The n X n system
is called auxiliary system and can be solved using the theory of one-phase
chromatography (Rhee et al., 1970; Borazjani et al., 2016; Apolinario & Pires, 2021).
The hyperbolic equation that depends on the flow properties is called lifting equation

(Pires et al., 2006).

The theory developed in Pires ef al. (2006) is called splitting technique, and it was
used to solve several mathematical problems related to enhanced oil recovery (Cardoso
et al., 2007; Ribeiro & Pires, 2008; Dutra et al., 2009; Vicente et al., 2014; de Paula &
Pires, 2015; Borazjani et al., 2016; Garcia, 2019; de Paula et al., 2019; Apolinario et al.,
2020; Apolindrio & Pires, 2021), and several other EOR associated mathematical

problems.

In this work we present the analytical solution to the problem of the injection of a low
salinity slug containing calcium, magnesium, and sodium in a sandstone oil reservoir.
The low salinity slug is displaced by seawater and pH effects are considered. Cations’
adsorption follows a modified Langmuir’s adsorption isotherm, and the anions are not

adsorbed by the rock.



2. Mathematical Model

In this section we present the formulation of the one-dimensional two-phase flow
problem of low salinity slug injection containing three dissolved cations driven by
seawater considering pH effects in a sandstone reservoir. The chemical species in the
system are the cations H*, Ca?*, Mg?* and Na*, and the anions OH~ and CIl~. Note
that the ions H* and OH~ are products of water dissociation. The adsorption sites (clay

minerals) are negatively charged, thus only the cationic species adsorb on the pore

surface. Further assumptions are:

e Homogeneous porous media;

e Incompressible system;

Gravitational, dispersive, and capillary effects are negligible;

Electrical charges in equilibrium.
From the conservation law of water and of each ion, we find:

(9s  of(sC) _
atp = dxp
a(cis+ai(€)) 4 acif(s,C) =0, i=123
dtp Oxp
) dccs) |, dcaf(s,C) —
dtp dxp
d(cys+an(cy)) | dcuf(s.C)
+
dtp Oxp

a(COHS) aCOHf(S,E) _
s + o +R; =0

0

+Rl=0

where xp, and tj are dimensionless variables defined as

x
Xp = o
A
t

fo ur(t)dr

tp =~ —

A

2)

3)

4)



in which x is the space coordinate, () is the low salinity slug volume, t is the time

coordinate, and 4 is the cross-sectional area of the reservoir. In equation (2) s is the water
. . . = . .

saturation, f 1s water fractional flow, C is the concentration vector [cl, Cy,C3, CH], C1, Co

and c3 are the concentrations of calcium, magnesium and sodium, c.; is chloride

concentration, ¢y and ¢y are the concentrations of the ions H™ and OH ™, R; is the source

term related to water ionization, and a; is the adsorbed concentration of the cation species

[, given by a modified Langmuir’s adsorption isotherm type (Lima et al., 2020):

a;(C) = —alama (5)

1+33, Bj(en)c;

in which a; and B; are adsorption parameters that depend on the pH following the

relations:
a;(cy) = g (CH - f—:)kl (6)
Bulen) = h (cu —52)" M)

where g;, kq, h; and k, are experimental constants, and K,, is the water ionization

constant:

KW = CHCOH (8)

In equation (2) ay is the adsorbed concentration of hydrogen, given by (Lima et al.,

2020):

n
chHH
o, .mg
1+ﬁHCH H

9)

ay(cy) =

where ay, By, ny and my are constants related to the hydrogen adsorption rate.



The adsorption parameters are ordered according to the chemical reactivity of the

cations on clay surfaces (Austad et al., 2010):
H* >>> Ca?* > Mg?*t > K* > Nat > Lit (10)

Thus, in equation (5) we have

ay >>> a1 > ay > a3 (11)
and
Bu >>> 1 > B2 > B3 (12)

In our model we assume that the cations Ca?*, Mg?* and Na™ are associated with

anions Cl™:
Cq + Cy + C3 = SCCl (13)
and the chloride concentration equation does not have to be solved.

Subtracting the last conservation law (OH ™) from the H* balance in system (2), we

obtain:

d((cu—com)s+an(cy)) | d(cu—cor)f(sC)
+ =0
dtp 0xp

(14)

From the water ionization constant (Equation 8), we can write OH™ concentration as

a function of H* concentration:

K

Con = i (8)

Applying equation (15) in equation (14), we find

3((011 —'C(—L”)s+aH (CH)> acy -IC(—Z,”)f(Sf)

dtp + 0xp

(14)



Denoting the variable ¢ as:
Ky
£le) = ey — 2 (15)
H

equation (14) becomes:

o(gstan(ew) | 35£(sC) _

dtp dxp (1 6)
From the definition of cpy we can write cy as a function of &:
2
= &+ E%244K,, (17)

2

therefore, it is straightforward to rewrite equations (2), (5)-(7) and (9) as a function of ¢.

Using equations (13) and (16) in the system of equations (2) we obtain the following

system of partial differential equations:

E dxp
a(cis+ai(c,f)) + acif(s,c.§) — 0, i = 1’2’3 (18)
dtp Oxp

ka(fs+aH(€)) + 0f (5.8 _ 0
dtp dxp

as of(s,Cé) _ 0

where ¢ = [cy, 5, 3] is the vector containing the cations concentrations.

At the beginning of the low salinity waterflooding (tp = 0), the reservoir is saturated
with high salinity water and oil (s, (D). At the inlet point (xp = 0) low salinity water
(fP =1, ¢UY) with controlled pH (CIS] Y which leads to £€UD using equation 15) is
injected until time tyg. After tys seawater is injected into the reservoir (¢U2),U2)),
Therefore, the initial and boundary conditions are:

s(xp, tp =0) = s

tD = 0, 8(xD, tD = 0) = E(I) (19)
E(xp,tp = 0) = &0

10



f(xD = OitD) :f(]) = 1
=(J1) th <t
B(XD = O’ tD) = {i( 2)! D HS
Y2 tp > tys (20)
UV, < tys
EUD th > tys

xD: )

kf(xp =0,tp) = {

where ¢UD < ¢U2 < ¢ Moreover, we consider that the reservoir is acidic (pH < 7),

the low salinity slug is alkaline, and the seawater drive pH will be slightly greater than
the low salinity slug pH. Thus, we will have cg) > 1077 [mTOl] > cgl) > cgz), resulting

in 5(1) >0> f(]l) > 5(12)'

2.1. Splitting between thermodynamics and hydrodynamics
Introducing the following potential function (Pires et al., 2006)

do = f(s,c,&)dty — sdxp (21)

in system of equations (18) we find:

0 S d 1
0 (f(s,E.f)) " axp (f(s,E,f)) =0 (22)
0ai(CE) | dci _ o _

o0 + oxp 0,i=123 (23)
day() | 9§ _

20 Taxp 0 (24)

Equation (24) is decoupled and is a function of pH only. Equation (23) isa 3 X 3
auxiliary system that depends on the cations concentrations and the solution of the pH
problem (Equation 24). Equation (22) is a function of the hydrodynamics properties of
the flow and depends on the solution of the auxiliary system and the solution of the pH
problem (Pires et al., 2006). The potential function (Equation 21) replaces time as an

independent variable, and the problem is placed on the auxiliary plane xp X ¢

11



(Apolindrio & Pires, 2021). Equation (24) is analogous to a one-component
chromatography problem, whereas equation (23) is similar to a three-component

chromatography problem (Rhee et al., 2001).

The initial and boundary conditions of the problem (22)-(24) can be obtained mapping
the conditions given by equations (19)-(20) using equation (21), which leads to:
s(xp, —sPxp) = 5D,

@ =—sDxp,{¢(xp,—sPxp) =2®, 0< xp < ﬂis (25)
E(xD’ _S(I)xD) = E(I) A

f0,p)=fD=1, >0

e _[eUY 0 <9 < pys
_0,]¢09) =100
xp =0, cY, @ > Qps (26)
EUD 0<p <o
£(0,9) ={ U2 "
VY, @ > oys

Note that in equation (25) the initial condition no longer lays on the xp axis, but on a

straight line with slope given by —s®.
The algorithm to build the solution to the problem given by equations (22)-(26) is:

e Solution of the pH problem (Equation (24) by the method of characteristics;

e Compute the adsorption parameters a; (&), B;(¢), i = 1,2,3 using equations
(6) and (7) throughout the auxiliary plane using the pH solution;

e Solution of the auxiliary system (Equation 23) using the one-phase
chromatography theory (Rhee et al., 1970);

e Use the solution of the auxiliary system and pH problem to solve the lifting

equation problem by the method of characteristics.

After the development of the solution in the auxiliary plane xp X ¢, it can be mapped

on the xp X tp plane using the expression:

12



= de + > dx
- f(S(XD,(p),E(XD,(p),f(XD,(P)) f(s(xD,(p),(?(xD,(p),f(xD,(p)) b

dtp (27)

where s(xp, ), ¢(xp, @) and &(xp, @) are the solutions of water saturation, cations

concentrations and pH in the auxiliary plane, respectively.

3. Solution of the pH problem
The pH problem is composed by:

day(§) , 9§ _
20 + P 0 (28)

and the following initial and boundary conditions:

= _S(I)Xp;f(xu' _S(I)XD) =& (29)
EUD 0 <@ < gys
xp =0,800,0) = 30
D E( (p) {5(12)’ ® > Pus ( )
The hydrogen adsorption constants (Equation 9) are presented in table (1).
Table 1: Hydrogen adsorption constants (Lima et al., 2020)
ay 14
Bu 1
ny 0.2
my 0.6
Applying the chain rule in equation (28) we obtain:
day 9§ | 9 _ (31)

dé d¢p  9dxp -

Therefore, the characteristics slope g,y 18 given by:

13



— do _ dan
OpH = Gp ~ az (32)

From equation (9) and the definition of ¢y (&) given by equation (17), we can rewrite

hydrogen adsorption isotherm as a function of ¢:

2

my
&+ /§2+4K
1+ﬁy<—w>

ny
&+ |E2+4K

ay(§) = (33)

2

Thus, the exact expression for the characteristic slope is:

Zoﬁl—*;[nH(Eh/fZMKw)nH_l 14—
_day _ £2+aKyy,

O, = X =
pH d& my
&+ /$Z+4K
1+,8H<—W>

2

‘;‘ﬁﬁfﬁz’(f+¢62+4Kw)”H+mH_l(“/ f )
244Ky,
(34)

my 2
2
1+ﬁH<$+ & +4Kw) \

2

The shock waves are calculated using the Rankine-Hugoniot condition:

_agl _ ag(EF))-ay(¢9)
Vo = I HONIS) (35)

where the superscripts + and - represent a condition before and after the shock wave,

respectively.

The characteristic diagram of the solution of the pH problem (Equations 28-30) is
presented in figure (1) and it is divided in two parts: the injection of the low salinity slug

(Figure 1a), and the seawater drive after the low salinity slug (Figure 1b).

14



Figure 1: Characteristic diagram of the pH solution: a) during low salinity slug

injection; b) during the injection of seawater

In figure (1), the thick dashed lines represent shock paths, the thin dashed lines are

the rarefaction wave, and the thick continuous line is a shock path with varying velocity.

The shock slope l/;f;) is given by:

V(l) _ay(§UV)-ay(¢0))

pH — 7 fUD_g) (36)

The shock wave Vp(;) is a semi-shock where &(xp, @) = £(7) along its path (Rhee &
Amundson, 1970). The rarefactions slopes are calculated using equation (34) with &
varying from &) to £,

After the injection of the low salinity slug (¢ > @pyg, Figure 1b), the boundary
condition changes and a shock wave with slope Vp(;) arises at @ = @ys. The shock slope

Vp(le) 1s calculated applying the Rankine Hugoniot condition (Equation 35):

@ ap(§U?)-ay(§U0)
pH — EU2)_gUn

(37)

At point (xp H» Pp H) in figure (1b), the shock waves with slopes Vp(;) and Vp(;) interact

generating a new shock wave with slope

15



V(_) _ aH(f(]z))_aH(f(_))

PH — T f02_¢O) (38)

This shock interacts with the rarefaction wave changing the shock path (x, (¢)). The

derivative of the new shock path can be calculated by the relation:

an(§Y?)-an @)

eU_¢ ’ 5(12) <é< E(I) (39)

- d
Vo (©) = “22(5) =
The solution of the pH problem (Equations 28-30) is divided in three parts:

¢ Xp < Pps
E(xp, @) =3¢ »Pus < xXp < Ppy (40)
¢ Xp > Qpy

For ¢ < @ys (solution &;):

¢
5(11);x0<m

pH
¢ ¢
& (xp, @) = 4§00, tD)'@ < *p < oED) (41)

)] ¢
kf " opu(§D) < XD

If s < @ < @py (solution §;;) the solution is:

2 P—PHus
pH

(J1) $=%us 9
St] ’V(,Z} <xD<V(111)
— p P
En(xp, @) = 3 ECen, i), <p1 <xp < © (42)
v G

on_¢
Lf " opr(§D) < XD

Finally, when solution &;;; is:

§U2,x) < Xpu (@)
£ Cepy @) = 4§ O t0) %ou(9) < Xp < s 43)

€))] '
kf ’ OpH (E(D)

< xp
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The characteristics velocities for U2 < & < €D and the solution path for ¢ < @y

and for ¢ > @y are presented in figure 2.

Figure 2: Characteristics velocities for §U?) < & < £ and solution path for pH

problem

4. Solution of the auxiliary system

The auxiliary system, given by:

0a;(¢§) | dci _ o . _
20 + oxp 0,i =123 (44)

with the following initial and boundary conditions:

¢ = —sOxp, & (xp,—sVxp) =D, 0< xp <o (45)
a

¢Ub 0 < ¢ < gys

46
¢U?, ¢ > pys (10)

xp =0,¢(0,¢9) = {

is solved after the pH problem.
The first step is the calculation of the adsorption parameters @;(¢) and B;(§) on the

Xp X @ plane according to the solution of the pH problem through the relations:

17



a;(cy) = g 47)
Bi(cy) = h;&*2 (48)

Constants g;, h;, k; and k, were obtained interpolating the data presented in Lima et
al. (2010) and Lima et al. (2020) (Table 2).

Table 2: Constants for parameters @; and f;

g1 0.012
go 0.06
gs 0.12
hy 0.0325
h, 0.039
hs 0.065
ky —0.568
ks —0.549

The problem defined by equations (44)-(46) is analogous to the system of partial
differential equations that models one-phase multicomponent chromatography processes.
The solution procedure for multicomponent Langmuir adsorption isotherm is presented
in Rhee et al. (2001). In this work we followed these steps to extend the multicomponent
chromatography theory to pH-dependent adsorption coefficients.

The Riemann invariants J; are calculated by:

- _ ﬂl(f)al(af) .
]l(cl 5) - ai(g)—(l) ] L= 1’2l3 (49)

where w is a characteristic parameter of the problem. It is also known that (Rhee et al.,
2001):
i=Ji=1 (50)
Thus,
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3 Bi®ai(cd) _
gm0 L oD

Equation (51) is an n-order polynomial in w, and n is the number of the dissolved
cations in the water (n = 3 in this example). This polynomial has n distinct positive roots
for any concentration and pH state. For a fixed pH condition and a concentration state
¢ = [c4, ¢4, c5] there is only one vector @ = [w4, W, W3], where its components are the
roots of equation (51) (Rhee et al., 2001; Apolinario & Pires, 2021). Thus, equation (51)
maps the concentration state on the w-space. In a constant pH region, all concentrations
change along a ¢-wave but only one w changes. In a region where the pH changes, the
coefficients a; and f3; also change, and therefore all components of @ change.

The initial and boundary conditions (Equations 45-46) are constant pH regions (pH D,
and pHUYY and pHU? respectively), therefore it can be mapped on the w-space solving
equation (51) for each condition, which will result in states @@, @YV and @U?,

The characteristic slopes of the k™ rarefaction family O(k) can also be written as a

function of w (Rhee et al., 2001; Apolinario & Pires, 2021):

w;(§)
0G0 (Wp, §) = Wi (§) H?=1 a]]-(f)

(52)

For a constant pH, if w,((kﬂ) < a),((k), we have a(k)(w,((kﬂ)) > a(k)(w,((k)), which

leads to a rarefaction wave whose slope is defined by equation (52). In this case, wy

(k+1) (k)
k

changes from w to w, , and all other wj,; remain constant. For the case of a

(k+1) (k)

0D > % | a shock wave from 0™ to ™ appears, and all other

constant pH and w

Wjx| remain constant. In this case, the shock slope V(y is defined by:

w0 () [T, L8

_ 3 @; (&)
V(k) (wkl f) - w;(f) H : j=1 a}(g)

= ey 3
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Note that the characteristic and shock speeds depend on the pH of the media.
Therefore, when a k™ family wave crosses a pH wave, the new pH will change the
concentration (and &), and the characteristic or the shock slope of the k™ family.

In regions where pH varies, the compatibility condition (Rhee et al., 2001) for non-
isothermal chromatography is valid, and therefore for any pH wave (either shock or
rarefaction wave), here is a concentration wave with same velocity. So, for a pH
rarefaction wave interacting with concentration characteristics, we must solve the 3 X 3

system of equations:

0 (@1,8) = 0 (§) = 01O [To 245 (54)
0 (@1,8) = 0 (§) = w2 () [Fes L5 (59)
03y (w1, &) = 0oy (§) = w3(8) [y 2L (56)

a;(®)
where w{, w, and w3 are the unknowns. In the case of a pH shock wave, we must solve

the following system for w; , w, and ws;:

Vi (@1,) = Vo = 02§D [Ty 25 = 0y (6 Ty 245 57)
Vi) (w2, &) = Vyy = w, (&) H}?"=1 (:]J((;:)) = w,(§7) H?=1% (58)
Vigy(ws, &) = Vo = w3 (€ T le(é’ ) (- i 1218;)) (59)

The initial condition @@ is calculated using €. For ¢ < @ys, the boundary
condition @YV is determined using UV, The boundary condition waves interact with
the self-similar part of the pH solution, resulting in a new state @Y*™). The conditions
@@ and @Y1 are used to compute the w-waves using chromatography theory (Rhee et
al., 1970). Table 3 summarizes the & solution for ¢ < @ps.

Table 3: Concentration solution for ¢ < @ys
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Boundary condition w gl D w gl D w gl 1

pH interaction wil 1-) w gl 1-) w gl 1-)
w3-wave V! wd™ w
wW,-wave wil 1-) wg) wgl)
w1-wave (initial condition) w? ) w gl ) w gl )

Seawater injection starts at ¢ = @ys and the boundary condition changes to (J2). The
pH solution for ¢ > ¢S is composed by two shocks and a rarefaction wave (Section 3).
The pH solution rear shock wave interacts with the boundary condition (J2) w-waves.
We will denote the w-state before the pH-shock as wU?) and the w-state after the shock
as wY?7). The condition @U?7) and state @YY are used to compute the concentration

waves at the rear of the low salinity slug. Table 4 presents the w-waves solution for ¢ >

Pys-

Table 4: Concentration solution for ¢ > @ys

Boundary condition (J2) w §1 2) w gl 2) w gj 2)

pH shock wave (rear) wgz_) ngz_) ngz_)
w3-wave (rear) wijz_) wglz—) ngl)

w,-wave (rear) wif 2-) w gl ) w gl 1)

w4-wave (boundary condition (J1)) a)ij D w gl £y w gl 1)

pH-waves (front) W gl 1-) w gl 1-) w _5,] 1-)
w3-wave (front) a)g] 1-) ng 1-) wgl)
w,-wave (front) a)gl 1-) w gl ) w gl)
w4-wave (initial condition) wg ) o gl ) w gl )
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When ¢ increases, the w-waves from the rear of the slug interact with the pH waves
from the front of the low salinity slug. The new wave paths along and after the interaction
can be computed using equations (54)-(59). The transmitted waves from the rear of the
slug will interact with the waves from the front of the low salinity slug, leading to several
types of interactions: transmission of a rarefaction wave through a shock wave of a
different family, transmission of two rarefaction waves of different families, cancelation
of a rarefaction wave by a shock wave of the same family (Rhee et al., 2001).

The slope of the wave generated by the transmission of a rarefaction wave through a

shock wave is given by:

- _ w¥ 3 wj(f)
O'(k)((l)k) = (J)k(XD, (P)a_zl_[;z; ;) (60)

where ag(; is the slope of the transmitted rarefaction wave of the k™ family, wf is the

value of w after the shock of the s family. Moreover, the shock path of the s family
will be continuously changed by its interaction with the k'™ rarefaction. The shock path
can be calculated integrating the following expression:

+
J

Ao\ _  coxGp@ 3 ) _ - exGp@) s ©F
(de)(S) o (l)s ag H]=1 a; - (l)s ay H]:l a; (61)

jrk ! Jj*k
where wy (xp, ) is the value of w along the k' rarefaction wave, and w; is the value of
w; before the shock.

The characteristic path resulting from the interaction of two rarefaction waves of

different families k1 and k2 is computed by the ordinary differential equation:

d (xp.p) w;
(_d - ) = W1 (Xp, ) Lk2 7DD 3j=1 _]_ (62)
xp/ (k1) Qe jekz Y

A rarefaction wave is cancelled when it reaches a shock wave of the same family, and
the shock path changes continuously while it crosses the k™ rarefaction. The new shock

path can be found from the following equation:
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de _or@pe) 3 @
— =wp——|5=1— 63
(de)(k) k (2473 H‘]];t,](' (Zj ( )

A detailed description of the theory of the interaction between waves in
multicomponent chromatography can be found in chapter 4 of Rhee et al. (2001).

After the determination of the w solution in the xp X ¢ plane, the concentration

solution is calculated through the relation:

(64)

1 (wi—ai(§) aj (f)[w —Qj (f)]
¢ = ( )H] e J%

Bi(§) wj w] a](f) al(f)]

Equation (64) generalizes the inverse mapping equation presented in Rhee et al.
(1970) for the case of pH-dependent coefficients of the Langmuir adsorption isotherm.

The characteristic diagram of the solution of the auxiliary system is presented in figure
(3). Note that due to the difference between the adsorption rates of H™ and the other
cations (Equations 10-12), the slope of the pH waves is much greater than the slope of
the concentration waves (Zoom in the upper left corner of the figure). Moreover, due to

the low adsorption rate of the cation Na®, the slope of w(q) waves is close to zero.

Consequently, the interaction between waves of the family k = 1 will take place when
xp tends to infinite. The solution of this problem presents slopes approaching zero and
infinite leading to very small regions in the characteristic diagram. To observe these
regions and clearly illustrate the solution, several zooms are displayed in figure (3).

In figure (3), the thick lines represent shock waves, and the thin lines denote

rarefaction waves. At the shock slopes V(%S and rarefaction characteristics slopes 0(1,1(55 ,

¢ ¢¢

the superscript “HS” indicate the rear of the low salinity slug, and the superscript
denotes that the wave path was changed due to an interaction with another wave. The
number of “-* is equal to the number of interactions. The letters “A” to “N” refer to points
(xx, @x) used as reference for the construction of concentration profiles, and the numbers
in parenthesis represent regions of constant state @, which are described in detail in table
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(5). The dashed lines represent the pH waves, the continuous lines denote the family k =

3, the dotted lines the family k = 2, and the dashed-dotted lines the family k = 1.
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Figure 3: Characteristic diagram of the auxiliary system solution
25



Table 5: Solution of the auxiliary system

Region  state C state
(@) [wf), wé’), w31)] Cg)» cé’), C?(,I)]
(1) [w(n -) wé”, 0)31)] cf),cz(l),cgl):
) [w(ll ) Z511 ) gl)] C§2)'C2(2)'C§2):
3) [w(ll ) gll—)' ngl—) c§3),c2(3),c§3):
4) [will)’ wgll)’ wgll) [ (11) 11) 11)]
(5) [w(IZ ) (/1) §’1)] C§5)’C§5)’C§5)_
(6) [w§12—)’ wgﬁ—), wé’l) Cie)' Cée)’ c§6)_
@) [w§12—), wgn—), wgn—)] C§7)’ C§7)’ C§7)_
J2) [w(JZ) (12) (12) [Cim, C§]2)’C§]2)]
(1-) [w(IZ——) wg’),wé’)] [ §1 ) §1 -) §1—)]
(2-) [w§12——)’w§11 -) wgl)] [ iz ) gz -) §2—)]
(2--) [w(JZ——) 512——) §')] [C§2——)’C§2——)’C§2——)]
(3-) [w§12——) wgfl -) wgll -) [ §3 -) 53 -) ga—)]
(3--) [wgﬂ——)’ wgﬂ——)’ wgh—)] [CF")» Cga——)’ Cgs——)]
(3---) [w(JZ——) 512——) ngz -) [053———),Cés———)'cgsn—)]

Note that only one w; changes along each w-wave, but all concentrations change

when this wave is mapped on ¢-space. In pH waves (transition from region (J2) to region

(7), and transition from region (4) to region (3)), both @ and ¢ change.
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The solution of the auxiliary system can be divided into 17 regions (Figure 3)

separated by the points (x4, @4)-(xy, @x) and the point (po, Pp H) that comes from the

pH solution (Equation 64).

-
( CI )

R —

Cir»
R —
Crirs
—_—
Crv,
e

Cy,
e
CVI )

 —

Cyir»

1

Cvir
E(XD' (p) =1 m’
Cx )
X1

P m—

Cxir»

Cxir s
_—

Cxv
—_—
Cxv,

P —

Cxvi,

\Cxv1I

@ < QPus

Pus < P < Py

Pa< @ < @p
P <P < Pc
Pc<P<Pp
¢p <@ < Yg
P <@ < QPr
Pr <@ <@g
P <P <Py
Py <@ <@
Q1 <P < Ppy
Py < @ < @y
Q<@ <@g
Pk <P <@g
Q<P <Py
Pu <P <Py
Py <@

(65)

The solution parts ¢; (self-similar), ¢;;” (beginning of seawater drive), ¢;;,’ (interaction

between pH waves and rarefaction waves from the rear of the low salinity slug) and cx;;;

(interaction between concentration rarefaction waves) are detailed in this section. The

remaining part of the complete solution can be found in the supplementary material.

The self-similar part of the solution takes place when ¢ < @y (¢ in equation 65).

The concentration profile is detailed in equation (66):
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(20D, xXp <25
Vor
cW=®) (xp, ), é < < %
3 ﬁ <xp < m
¢~ (xp, ), m <X < m
=1, 7@ <% < o, 0
c@~W(xp, ), m << %
o) m <xp < m
eV, 9), e < ¥ < sy
2. m <Xxp < %

In equation (66) we denote ¢ () as a constant concentration state in region X (see table
5 for & and &), and ¢®~W)(x,), @) as the rarefaction wave from a region (X) to a region
(Y), where @ is known and the concentration is calculated using equation (64). A
concentration profile of ¢; is presented in figure (4) emphasizing the effect of pH waves

on the solution.

(J1

Cl ! —C3
: ' C2
i (4)-(3) (3) 2 o S
oy X ‘ Cy C(_—J Cu-(l) C1
G (3) L W 1 C(n
, C cHe !
_______ . T
(J1)
C, A0
e ) 3) 1o (1)
A1)
i
an (3)-(2) 2
CS C2 (2) 2)-(1 L“
(4)-(3) & Cy \C[r"‘ ) 3
\\CB ) :I 2 _' :5
e (: L . .
W 4 4—[3—/ 2)
~_3 | (3) C.
C:% Y3)-(2) 3
C, 2y

Figure 4: Solution of the auxiliary system (c;)
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Along @ys < @ < @y, after the beginning of seawater drive, a new set of waves

appear. The solution of the auxiliary system for this region is defined as ¢;; (Equation

(65), and it is given by:
(¢u2)
e,
c®,
cO=G)(xp, ),
c®,

gun),

8(4‘)_(3) (xD’ (p)’
C” = A<
Z®),
c(3)-2) (xp, @),
@,
E(Z)_(l) (xD, (p)'
e,
5(1)_(1)(950' ®),

2o,

\

Figure (5) presents the concentration profile of the solution cj;.

P—PHS
(2)
VpH

% <Xp < U(Z)Epa_(ffgsul))
0(2)({5_((2’f ;(11)) <Xp < a(z)g(f)?(m)
a(z)((pw_(gsa)l,{gs(h)) <Xp < %

P—PHs <xp < -~
Vi VoH

xp <

< 0(3)(5’(3),5(1))

__ %9
< Xp < 0-(3)(5'(2),5(1))

0(3)(@3),¢M)
¢
a(3)(@3 D)
4 P
(2)(@3 D) <% < (2) (@M ,§M)
¢ S
o@D ZD) o0 @D D)
4 4
o()(@HED) << oy @D,ED)
P
o1y (@D,EM)

N
<xp < a(z)(w(z)g(l))

<xp <

P
<xp <—g
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Figure 5: Solution of the auxiliary system for @5 < @ < @4 (¢;7)
For ¢ < ¢ < @ (solution ¢;y), the rarefaction wave ¢(6)=(5) interacts with the pH
waves. In this region part of that rarefaction is located at the left of the pH shock (constant
pH) and the other part at the right, a pH-concentration rarefaction wave. The characteristic

path of the rarefaction ¢ (6)-(5) changes along the interaction. The shock path of the family
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X after its first interaction is denoted as xx)(¢), and the rarefaction wave (X) — () after
its first interaction as x(_}((;‘r_)(y) (), in which x(_/,((;r _)(y)(go) is the first characteristic curve

and x(_)(()__)(y) (@) is the last characteristic curve of the rarefaction wave. From now on the

number of “—* in the wave superscript indicates its number of interactions. Equation (68)

details ¢;; and the concentration profile is shown in figure (6).

(2UD). xp < &2
VpH
5(7), P—PHS < xp < P—PHS
(2) %
pH (3)
> P—PHS P—PHs
o, Qo0nS oy < — O
V(3) D 0'(2)((4)(6),5(]1))

2(6)~(5) __9=%Hs 9
c (xD, (p)J 0(2)(8(6),5(11)) < xD < 1)

(pH)

- — - QP —(—
¢~ (x,, ), m <Xp < x(g,()_)(s)((/’)
P

2(5)-(3— ~) —
¢ )(xu,fp), x(6)_(5)((,0) <Xp < op(EM)

2(3-) % =

r =4 " (€0 < ¥ < X(1) () (68)
(3 - —(p
¢®, Xy (@) < Xp < TG

2(3)-(2) 4 N
c (XD, QO); o) @D D) <xp < (3 (@D £D)

@ W <xp < m
ED Wy, ), s <% < s
e m <xp < m
EV-Dp,0), o <% < sy
& @ <% <%0
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Figure 6: Concentration profile for the solution ¢;;,
In the solution cy;;; the interaction between rarefaction waves of the families k = 2

and k = 3 begins. This interaction region is bounded by the curves (J —L) =
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xoly@). K -M) =x30(0). U-K) =x3, @) ad (L-M) =
x(gfg)((p). In this part of the solution the region (3-) disappears. In equation (69) we

detail cy,;;, and its concentration profile is shown in figure (7).

(cU?), xp < %51 (@)
2(7)-(3——— - ¢

c ( )(XD, 90): po(QU) < Xp < O-pH(E(I))
>(3——— (] —

C( ), O'pH(E(I)_) < Xp < X(3)

o Ca Xz < xp < x(_f)()t)(s) (o)

EO- O (xp,0), x5 (@) <xp < x50, (@)
EB-O(xp, ), x5, (@) < xp < x5 75 (@)

o = 48D, 0), xS (@) < xp <255, 0 (@) (69)
¢@o), Xy o (@) < xp < x50 (@)
g@-- X3y (@) < xp < x5 2y (@)
¢, X2y (@) < xp < x5y (9)
¢, x@ (@) <xp < m

~(1)-(1) S ——
c (XD, (p); 0_(1)@(1)'5(1)) <xp < o_(l)@'(l)'f(l))

~(D e
e o@D D) <Xp <

L
—s(D
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Figure 7: Concentration profile of the solution cy;;;
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5. Solution of the lifting equation

The lifting equation (Equation 22) is solved after the auxiliary system, considering
the hydrodynamic and transport properties of the flow (relative permeability curves and
viscosities of the flowing phases). The solution of the lifting equation extends the solution
of the auxiliary system (analogous to a one-phase chromatography problem) to a two-

phase environment.

First, we introduce the following variables in equation (22):

1

U(s, ¢, &) = D (70)
- _ =S _ -
F(Ui Sr C: E) - f(S.E,f) - SU(SI CF E) (71)
to obtain the hyperbolic equation:
OF(U,s,C8) | 0U(s,Cé)
20 T oy 0 (72)
to find U.

The initial and boundary conditions for the lifting equation problem (Equations 25-

26) are:
U - 4o
Q= —s(’)xD, {F e (73)
U=
=0y _ _ 0 (74)

The water fractional flow is defined as:

krw(sc$)

= _ pw(©)
f(S' ¢ f) - krW(S,Z",f‘)”, kro(s,c.6) (75)
ww@8  Ho
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in which the oil viscosity p, is considered constant for this problem. The water viscosity

Uy was calculated using a correlation for brine fluids in reservoir conditions (McCain Jr.,

1991):
pug(T) = AT™P (76)
A =109.574 — 8.40564 S;; + 0.313314 SZ, + 8.72213.1073 S, (77)

B =1.12166 — 2.63951.1072 S, + 6.79461.107352, + 5.47119.107°53, —

1.55586.10765%, (78)
10,y (T, P) = up(T)(0.9994 + 4.0295.10 5p + 3.1062.10~%p?2) (79)

where T is the temperature (°F), S,; is the salinity (total dissolved solids), and p is the

pressure (psia).

Corey’s model (Corey, 1954) was used to calculate the relative permeabilities, and
the residual oil saturation (s,,-), Corey’s exponents (n,, and n,) and the permeability end
points (k,,, and k;,) are functions of the salinity and water pH. Thus, the permeability

curves are given by:

. . _ ny(6,6)
e (5,6,8) = ki @8 (- 55—w) (80)

1-547-(6,8)—sD

- 2 8)—s \Mo ()
kro(5,6,) = ki () (Fmiet=r)

1_50r(5§)—5(1)

(81)

Expressions for the parameters s, n,,, n,, ky, and ky, were obtained adjusting

experimental data from 47 coreflooding experiments (Table 6) and are given by:
Sor(C, &) = 107°S,, + 0.225 — 0.0978.pH (82)

ny (G, &) = —1075S,, + 2.8554 + 0.05214.pH (83)
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n, (&, &) = 10755, + 2.4258 — 0.4873.pH (84)

k;, (¢, &) =2.107°S, + 0.3311 — 0.00517.pH (85)
k;,(¢,&) = —2.107°S,, + 05913 + 0.0181.pH (86)
Salinity range pH range
Aladasani et al. (2014) 249-38522 ppm 6.5-7.2
Al-Shalabi et al. (2016) 600-60000 ppm 6.3-7.5
Etemadi et al. (2016) 1000-45000 ppm 7-7.6
Holter (2012) 0-45000 ppm 7.2-75
Lima et al. (2020) 6500-32000 ppm 4-7
Omekeh & Evje (2013) 450-45000 ppm 7
Rivet et al. (2010) 200-32000 ppm 6.2-7.1
Shojaei et al. (2015) 3500-714000 ppm 7-7.2
Tang & Morrow (1999) 151.5-35960 ppm 6.3-7.3

From equation (72), we find:

OF(U,C,E) 0U(s,C8) n oU(scé) _  OF(U.EE) Ac  OF(UGE) a8 (87)
U g axp ¢ 9 & dg

and the characteristic velocity of U-characteristics is given by:
_ de _ 0FWUEEH (88)

v~ dxp au
In regions where both concentration and pH are constant, equation (87) becomes:

dF(U,E,&) 0U(s,C.8) n oU(s,cé)
U g axp

0 (89)

and U is constant along the characteristic curves. However, in regions where the pH

and/or concentration change, we have:

dau _ 9F(U.cE) ac  9F(UGE) 88
dxp ¢ dg & dg (90)
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The shock condition for the lifting equation (Equation 72) is:

_de _IF]
VU—de—[ ] 91)

Note that the lifting equation solution depends on concentration and pH, however, the
auxiliary system solution does not depend on U, and therefore it is not affected by the
lifting equation solution. Thus, wave interactions between U-waves and ¢-waves changes
the paths of the U-waves. The characteristic diagram of the solution of the lifting equation
can be seen in figure (8). The thick dotted lines are the waves where only U changes (U

waves).
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Figure 8: Characteristic diagram of the solution of the lifting equation



The solution of the lifting equation is divided into the same 17 regions of the auxiliary
solution:

(U, ¢ < @Pys

U Pus < P < Py
Ui  9a<e <@
Uy, @p<¢<¢c
Uy, Pc <P <Pp
Uy, ¢p<@<o¢g
Ui 9 <@ <o@r
Urnin - @r <@ <@g
Ulxp, ) =Ux» @6 <@ <ou (92)
Ux, Py <@ <@
U, @1 <@ < @pu
Uxin ~ Ppu < @ < @y
Uxii, @5 <@ < ¢k
Uxrv, @k <@ <@y
Uy, @1<¢<¢un
Uxvi,  om <@ <@y
\Uxvi, on <@

For the lifting equation solution, we denote Uy (xp, ) the U-rarefaction in region X.
Along these waves only U changes, both concentration and pH are constant. For the U-
waves where concentration and/or pH change, the notation created for the auxiliary
system solution is followed: U (0= is a rarefaction wave from the region X to the region
Y,and U () is a constant state in region X.

Similar to the auxiliary system solution, we present regions U, U;;, Uy and Uy of
the lifting equation solution (Equation 91), the other parts are shown in the supplementary

material.
Each flow function F (U, ¢, & (X)) presented in figures (9)-(12) is built using the
constant concentration and pH of the region (X) of the characteristic diagram (Figure 8).
The continuous lines connecting two points of different curves F (U, E(X),E (X))
represent a rarefaction wave where U, concentration and/or pH change. The continuous

lines connecting two points on the same F (U, c® & (X)) curve represent a rarefaction
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wave where only U changes. The dashed lines denote shock waves, and X is the constant
state UX), When U — +o0, U = UD, thus the shock wave from U to UD is shown

as a dashed line that starting at /™.

®
(Uy(xp, ), Xp < e
pH
4)-3) 9 _ 9
U (xp, ), v <Xp < o)
Us(xp, @), (1)(p <xp < (fz) 0
apH(E(I)) 0(3)(@®),§0)
(3)-(2) A S
U (ny (P); 0'(3)(5(3),5(1)) < Xp < 0_(3)(6'(2)'5(1))
@) __ %9 __ 9
U, =+ U 0(3)(@@),ED) <A < 0(2) (@@ D) 93)
(2)-(1) N . —
U (xp, @), @D D) < XD < o
&Y} N ¢
U T @UED) < *D < G IGm )
(D-0+) S S CA—
U (XD, QO); o @D ED) <xp < o) @D D)
a+) %
U , 0(1)(6(1),5(1)) < xp <+
\U(I), Xp = +00
fo
Wy
=
Y

Figure 9: Solution path of U; in the F X U plane
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U =

(U2 (xp, @),
Uy (xp, @),
Us (xp, ¢),
U©=O(xy, ),
Us(xp, @),
Us(xp, @),

Us(xp, 9),
UB~@(xp, ),
U@,
UB~-W(xp, ),
U,

U(l)_(1+) (xD, (p),

U(H),

o,

P—PHS
(2)
Vo

<xp <

XD<

P—Pus
e

P—PHS <

P—PHs
oH V()
$—PHS

V(3) D 0(2)(w(6),€(]1))

P—PHS
0(2)(5(6),5(]1))
P—PHS
(,—(2)(5(5),5(11))
P—PHs

% <xp <
pH
— % cx. <
alp(em) ~ 7P
¢
0(3)(5)’(3),5(1))
¢
0(3)@’(2),5(1))
¢

o) @@ D) < Xp
¢
g(z)(a’(l),g(l))
%9
a(l)(a’(l),g(l))
¢
0(1)(5’(1),5(1))

Xp — +0o0
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Figure 10: Solution path of Uj; in the F X U plane

For o5 < ¢ < @ (solution U, ) we have:
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U1V=<

rsz (xp, ®),

U7 (xp, ¢),

Us (xp, ¢),
U©=-®(xp, p),
U©=~(xp, ),
U®=CI(xp, ),
Us—(xp, @),

Uz (xp, ¢),
U®=@(x, 0),
U(Z),
U@~D(xp, ),
U,

U(l)_(1+) (xD' 90);
uas),

kU(I),

P—PHS
(2)
Vor

<xp <

xp <

P—PHS
(2)
Vp H

©—PHs
V(3)
P—PHs
o) (@©,£UD)

®=PHs
V()
P—Pus
0()(@®,E0D)

<xp <
(pH)
@P —
s < Xp < X(6)-(5)(¢)
(pH)
- @
X6)-(9) < Xp <

_®
O'pH(E(I))

x@)(p) <xp < m
¢
o) @3 D)
¢
o) @D ED)
¢
o) @D Dy
N S
o) @D DY
R
(1) (@M,EM)
¢
o@D £D)

Xp = +®

<x

<xp < xy(®)
95)

P
< < 0(3)(@@,§D)

¢
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@
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Figure 11: Solution path of Uy, in the F X U plane
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Uxiir = o

(UJZ (xDr (P):
U(7)_(3___) (xD' (p)‘

Uz———(xp, @),
Us——(xp, 9),
U©==(xp, p),
U~ (xp, ),
US~D=(xy, ),
U(Z_),

y@-m-

y-),

v,

UD=UD (xp, ),
ua+),

\U D

xp < Xpy (@)

Xpu(@) < xp < -

opu (€ )

QP —
opr (M) < *p < X(3)

- —(+
X3) < Xp < x(e()—)(s) ()

—(+) ——(+)
X(6)—(5)(®) < %p < X(3)_(y ()

X3y (@) < xp < xS ) (@)
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XS (@) < xp < x50 (@)
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xq), (@) <xp < m

¢
o(1) (@1X10))
¢
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%
< 7 @D,ED)

F(U, &, c)
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Figure 12: Solution path of Uy in F X U plane
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6. Inverse mapping to xp X t, plane

In this section the solution in the auxiliary plane is mapped onto the xp X tp plane.
First the saturation and fractional flow solutions are calculated from the expressions (70)

and (71) and the waves are mapped using the potential function:

= ¢ + 2 dx
T f(sCxep,).€Gxp, @) E(xp,@)) | f(sCxp,),¢(xp,@)E(xp,@)) P

dtp O7)

The path of each rarefaction wave can be determined on the xp X tp plane by:

dtp

Ao = (§2) = UCeo9dog ~ FW.E,8) 98)

dxp

and the shock paths are mapped through the relation (Pires et al., 2006):

— (%) _ 1
D(X) - (de)(k) - Ui(XD,(P)V(k)—F(Ui,Bi,fi) (99)

In equations (98)-(99) X corresponds to the wave family (U, pH, k = 1,2,3). The U-

waves on the auxiliary plane will be named as s-waves on xp X tj, plane.

Note that all wave families interact with each other in xp X tp plane, including s-
waves with concentration and pH waves. Thus, the waves from the rear of the low salinity

slug are not straight lines.

The Buckley-Leverett shock velocity (water saturation shock at initial concentration

and pH) is given by:
A _ -
Dy = 5] ~ s—=s® — s——sD (100)

The characteristic diagram in xp X tp plane is presented in figure 13. We denote as
xzy(tp) and x&, (tp) the shock wave and the rarefaction wave between points (xy, ty)-
(xy, ty), respectively. The paths x&, (tp) and x5y (tp) are calculated integrating equations

(98) and (99) in the region between points (xy, tx)-(xy, ty).
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Figure 13: Characteristic diagram of the solution in xp X t, plane
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The solution in xp X tp plane is also divided in 17 regions:

(SI» tp <tps

s tus < tp <ty
S11n tA < tD < tB
Sy, tg <tp <tc
sy, te<tp <ty
sy, g <tp <tg
sy tg <tp < tp
Syup tr <tp <lg
s(xp, tp) =4S, te <tp <ty (101)
Sx, tH < tD < tI
sy b <tp <ty
Sxip ton <tp <t
Sx11D t] <tp <tg
Sxiy, tg <tp <t
Sxv» t, <tp <ty
Sxv, ty <tp <ty
\Sxvip tn <tp

The solutions sj,, Sy;,. Spy, and Sy are described in equations (102)-(105). Water
saturation profile and salinity profile are presented in figures (14)-(21). The complete

solution is detailed in the supplementary material.

The self-similar part of the solution takes place when t, < tyg, solution s; (Equation

102).
(54 (xp, tp), Xp < D((;L)tn
s@ O, ), Diinto < xp < Am (D)t
s3(Xp, tp), Apm) (SZ(I))tD <Xxp < /1(3)(5(3)15(1))%
s@-@(xp, tp), A (¢®, D)ty < xp < A5 (6@, D),
5 = | 5(2), /1(3)(5(2)’5(1))% < xp < 1(2)(5(2),5(1))% (102)
s@-D(xp, t),  Ay(¢PD, D)ty < xp < Ay (6D, ED)e,,
S(l), /1(2)(5’(1)’5(1))15[) <xp < /’1(1)(5’(1),5(1))%
sW=UD(xp,t5), Ay (6D, D)ty < xp < Ay (6D, ED)ey,
s, Ay (@D, D)ty < xp < Digtp
s®@, xp > Dsytp
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In figures (14)-(15) it is shown the saturation and salinity profiles. It is possible to

note that the pH change plays an important role in water saturation solution (saturation

jump between s, and sW~(3)). The solution path of s; is depicted in figure (16).
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Figure 15: Salinity profile for tp < tyg
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Solution s;; (Equation 103) starts at the injection of the seawater drive, while tys <
tp < t4. The water saturation profile is shown in figure (16) and the salinity profile in
figure (17). The pH and salinity waves centered in tys change the saturation behavior
(Figure 16). Note that the decreasing salinity followed by its increase in regions (7), (6)
and (6)-(5) (Figure 17) result in the creation of a small oil bank in saturation solution

(saturation s¢ in Figure 16).

(S52(Xp, tp), xp < Xjis pu(tp)
s7(xp, tp), Xiis pr(tp) < Xp < Xis a(tp)
Se(Xp, tp), Xps a(tp) < xp < xfis ¢ (tp)
s©O~Oxp,tp),  xfisc(tp) < xp < xfisp(tp)
Ss(xp, tp), xXfis(tp) < xp < xjjs a(tp)
S4(Xp, tp), Xizs a(tp) < xp < D((;I).I)tD
s@ G, tp),  Diinyto < xp < A (ED)tp

si =1 $3(Xp, tp), A (EP)tp < xp < A5(¢®, D)ty (103)
SO-D ey 00), Ay (€@, ED)ep < xp < Acsy (€@, D)
s@, ,1(3)(5(2)’5(1))% < xp < ,’1(2)(5(2)’5(1))%
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51



(+D-(1)
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Figure 17: Salinity profile for tys < tp < tu

Solution sy, (tg < tp < t.)is characterized by the interaction between the rarefaction
wave of family k = 2 and the pH waves from the front of the slug. The pH shock to a
more acidic media changes the adsorption parameters of the cations, and the salinity that
increased along xp for family k = 2 starts to decrease (Figure 19). This behavior impacts
water saturation solution: it increases along xp before the pH shock (saturation wave
s©=6) jn figure 18) and decreases after the pH shock (saturation wave s©-G)- i figure

21).
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Figure 18: Water saturation profile for s,
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Figure 19: Salinity profile for tz < tp < t,

In solution sy ;; (Equation 105) the rarefaction wave k = 2 from the rear and k = 3
from the front of the low salinity slug interact, which leads to the disappearance of region
(3-) (Figure 21) and rarefaction s3_ (Figure 20), and the appearance of the region where
these two waves interact: region (3)-(2)-- in salinity solution and rarefaction s®)-@--
in saturation solution. In the region where the two waves interact there is a slight salinity

increase, and a slight increase of water saturation.
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Figure 21: Salinity profile for t; < tp, < tg

Note that due to the low adsorption rate of sodium, the waves of the family k = 1
from the rear and from the front of the slug will never interact with each other. Moreover,
the rarefaction waves of the family k = 2 don’t interact either, given that the last
characteristic from the rear wave and the first characteristic from the front wave have the
same slope. Another useful insight is that the waves of different families are completely

separated from each other for tp > ty.
7. Summary and conclusions

We presented the complete analytical solution for the injection of a low salinity slug
driven by seawater in oil reservoirs. It was considered three dissolved cations in the
injection water and pH effects, which resulted in a system of (n + 2) X (n + 2) partial

differential equations, where n is the number of dissolved cations.
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The solution of this problem was built applying the splitting technique, which
decoupled the original system of partial differential equations into a pH equation, an
auxiliary system, and a lifting equation. Each problem was solved by the method of
characteristics, and the solution extended the multicomponent chromatography theory for
a two-phase flow in porous media considering non-constant adsorption coefficients and

a different adsorption isotherm for the ion H.

The high difference between the adsorption rate of H* and the other cations leads to
the appearance of small constant state regions in the space-time plane, which quickly

disappear over time.

The pH of the initial water in porous media has an important effect on cations
adsorption and water saturation solution, however, due to the high adsorption rates of H*
the pH effects take place close to injection point for most of the time. The pH effects will
be important only for a large number of pore volumes injected, which agrees with

experimental data (Austad et al., 2010; Aksulu et al., 2012).

Different wave interaction types occur in the solution of this problem, which lead to
several patterns in water saturation profiles. Moreover, the different salinity states
resulting from interactions result in the appearance of oil and water banks along the
porous media. This feature generates a large water bank when the k-waves from the rear
of the low salinity slug begin to interact with the waves from the front. The low salinity
effect (mobilization of residual oil) leads to the generation of an oil bank behind the large
water bank. This behavior of water saturation profile can give useful insights to better
understand and analyze recovery factor curves in reservoirs produced under low salinity

waterflooding.
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The solution procedure applied in this problem can be used in several other enhanced
oil recovery techniques, including non-isothermal chemical flooding, low-salinity-

polymer flooding, and others.
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Appendix A — Supplementary Material of the Paper “Oil Displacement by
Multicomponent Slug Injection: An Analytical Solution for Langmuir
Adsorption Isotherm



In this supplementary material we present the detailed solution of the
saturation in the auxiliary plane and saturation in physical plane.

The auxiliary problem for the injection of 3 polymers is given by:

_6a1 ©) + ﬂ

concentration and

do dxp =0
da;(¢) % _
0 Tomp 0 (1)
daz(c) | dcz _
k do + dxp =0
with the following initial and boundary conditions:
9=0, ¢(xp,0)=¢D=0,0< xp <o )
A
2D
— = _ c ) 0 < tD < 1
xp =0, ¢(0,9) = {0, £ > 1 3)
The i"™ Riemann invariant J; can be calculated from the relation (Rhee et al., 1970):
_Kiai(© . _
]l - Ki—a) , L= 112)3 (4)
where w 1s a parameter of the problem. Moreover, we know that (Rhee et al., 1970):
Yi)i=1 5)
Thus,
Kiai(©)
1 eg = 1 (6)

The parameter w can be calculated for any given concentration state solving equation (6), which

has three distinct and positive roots (Rhee et al., 2001). Thus, for each concentration state ¢ =

[c1, €5, 3], there is an equivalent @ = [wq, w,, W3] state, where the components of the @ vector

are the roots of the polynomial (Equation 6) for the respective concentration state (Rhee et al.,



1970). Along a ¢ wave, one or more concentrations can change. However, when this wave is
mapped on the w-space, only one coordinate of @ varies and the other remain constant.

We calculate the initial and boundary « from equation (6) for any initial and boundary
conditions (Equations 2 and 3), which will be denoted as @@ and @), respectively. In each
wave only one w; (i = 1,2,3) changes. So, to connect the injection condition (J) to the initial
condition (/), we must have three w waves for ¢ < 1. For ¢ > 1, interaction between waves
appear, thus there are at least six w waves to connect the boundary condition to the initial
condition of the problem (Rhee et al., 2001).

After computing all w waves, we can calculate the respective concentration waves from the

relation (Rhee et al., 1970):
K; wj
Kic; = (gi - 1) =Lje T (7)

We can also determine the characteristic slope o) of the k'™ family as a function of w using the
expression (Rhee et al., 1970):

a o
i

% k
W) = g — Wi TP (8)

(k+1)
k

Note that for w < w,({k), we have o(;41) > 0(y), and therefore there is a wy, rarefaction wave

defined by equation (8), where all terms in the product remain constant, and wj varies

() (k+1)

(k) ,({k“). If a),((kﬂ) > w,({k), there is a wy jump from w, "~ to wy

continuously from w, ™ to w

where all w; remaining constant. The k™ shock path is defined by the relation:

do\ () _ a)l(])
Voo = (32) = o T2 ©)

@),
Equation (9) is derived from Rankine-Hugoniot conditions (Rhee et al., 1970). Note that

equations (8)-(9) can be applied for any number of components.



When ¢ = 0, there is no polymer in the reservoir (Equation 2), therefore o)i(] ) < a)i(l) for all @

vector components, and the solution path in w-space for ¢ < 1 is composed by three shock
waves (Table 1).

Table 1: w-waves for ¢ < 1

Injection state ng ) w gl) w gj)
Intermediate state A wy ) w gf ) w gl )
Intermediate state B wy ) wg’ ) a)gl)
Initial state w o w gl)

The solution path in w-space for ¢ < 1 is given by (J) = (4) - (B) - (I), where “—* denotes
a shock wave (Figure 1). From equation (7) we can calculate the constant concentration states
associated to the w-waves described in table (1). In figure (1) the shock waves are presented as

continuous lines between two states.

Figure 1: Solution path for ¢ < 1 in w-space and in concentration space

The water drive composition is similar to the connate water, so, for ¢ > 1 the w injection state is

equal to the initial state, and wi(l) < wi(] ). Thus, after the beginning of the water drive, rarefaction



waves appear at the rear of the slug. The structure of the w-waves for ¢ > 1 at the beginning of
water drive are presented in table (2).

Table 2: w-waves for ¢ > 1

Injection state wgl) wé’ ) wgl)
Intermediate state C a)gl) wg’ ) w gl)
Intermediate state D a)gl) wg ) w gf )
Intermediate state J a)ij ) wg ) w é] )
Intermediate state A w? wy’ Wl
Intermediate state B wy ) wg’ ) wgl)
Initial state w® ol W

The solution path in w-space for ¢ > 1 is presented in figure (2), and its structural formula is
given by (I) — (C) — (D) — (J) » (A) » (B) » (I), where “—" denotes a rarefaction wave.
Analogously to the self-similar part of the solution, we can calculate the constant states of the
solution when ¢ > 1 applying equation (34). In figure (2), the shock waves are presented as

continuous lines between two points, and the rarefaction waves by dashed lines.

Figure 2: Solution path for ¢ > 1 in w-space and in concentration space



Note that in figures (1) and (2), the w-waves are straight lines parallel to one of the three axes,
showing that only one w; changes.

As the slug propagates along the xp X ¢ plane, interaction between waves may appear. Thus, the
paths of the waves will be changed and the structure of w waves solution also change. The
theory of waves interactions is discussed in chapter 4 of Rhee et al. (2001).

The solution of the auxiliary problem presents two types of wave interactions: interactions
between rarefaction and shock waves from different families and between rarefaction and shock
waves from the same family.

Along the interaction between a rarefaction and a shock wave of different families, the waves are
transmitted through each other and their paths change. The k™ family rarefaction slope after the

interaction with a w; shock wave is given by:

(f)- " (€9
- _ (e — O L k-1 @i
Oy = (de) = Wy K; Li=Li#) Tk (10)

where the superscript — denotes the value of w; and o) after the shock. A rarefaction wave can
cross more than one shock wave. In such cases, we denote the new rarefaction slope as o).

Note that for a multicomponent system there will be up to k — 1 rarefaction-shock interactions
for the k™ family.

The k'™ family shock path along the interaction with a wj rarefaction is:

() . )
_ (de _ w k-1 w;
Voo = (32) = wf (11)

de s i=1,i¢j Ki

where w; varies continuously along the interaction. Therefore, the shock path is no longer a
straight line.
When waves of the same family interact, the rarefaction is adsorbed by the shock wave, i.e. it is

not transmitted, and the new shock path can be obtained from the relation:



o

— (4e (k)_ + Wk TTh-190
V(k)—(de)S = Wit 5, izt = (12)

where the superscripts + and - denote the value of w at the right and at the left state of the shock
wave respectively, and w} changes continuously along the interaction. We denote the shock path
along an interaction region as X ,(¢), where the subscript s denotes the shock family, and the
subscript r denotes the rarefaction family. The shock path x,,(¢) can be calculated integrating
equation (12) along the interaction region.

We now present the complete description of the solution of the auxiliary system, which is
composed by 11 parts separated by the end of the chemical injection (¢ = 1) and by the crossing

points between the waves:

(Cr, p<l1

an 1<9 <@g
Ciip - Pa< @ < @p
Cvi P <@ <¢@c¢
Cy, Pc<P<Pp
c(xp, @) =1cv,  ¢p <@ <@g (13)
Cvin Q<@ < Qp
Cviir Pr < @ <@g
Cixr P <@ <@y
Cx, Py <@ <y
\Cx;, @1<@

The self-similar part of the solution c;(xp, ¢) is composed by four constant states:

(¢, = Ci]), c, = céj), 3 = Cé]), xp < 4
V(3
W (A _ . % 4
¢;(xp, ) = S ci=cB =D D @ P (1
1 1 062 253 37 vy P v
_ o _ M _ . o
LC'l—Cl , €2 =Cy7,C3 =C37, V(1)<xD

For 1 < ¢ < ¢, there is no wave interaction. Thus, c;;(xp, @) is composed by three rarefaction

waves and three shock waves, and is given by:



c(xp, @) = 3

Cq

(]

1

€1

(]

15)

!

C1: 0,C2 = 0,C3 =

rC1= O,C2 = O,C3 = O,

c1=0,c, =0,¢c5 = c3(xp, @),

o

)

c1 = 0,¢c; = c3(xp, @), c5 = c5(xp, ),

e gD) (D)

0,c, = ,C3 =C3

= Cl(xDJ (p), CZ = CZ(xDl <P); C3 = C3(xD; (P);

D ey = D,y = D,

eiey =i, c5 = cf,
CiB), C2 == Cgl), C3 == Cgl),

C:EI), CZ = Cél), C3 = Cgl),

_ -1
b < a3 (@)

p-1 p-1
oez)(@®) St <7 (@)
p—-1 p—-1
7@ @@) P = 56, @O)
_9-1 _ -1
0(2)(@©) << (2)(@P)
_ o1 _ -1
s @®) < < 5 Gm)
p-1 p-1
s @®) <0 S G0

-1 ®
—_— <Xy < —
0(1)(“’(])) b V)

@ oy <L
V3) V)

@ oy, <L
V) Vi
®

— <X

V) b

At @ = @4 the rarefaction wave with slope oy (a_)’(] )) crosses the shock wave with slope V3

and the first wave interaction appears. So, from now on, the constant state ¢ is no longer

present in the solution. Thus, the solution part ¢;;(xp, @) is:



cin(xp, @) =

-1
(¢c; =0,c, =0,c3=0, xD<m
_1 1
1 =0,c,=0,c53 = c3(xp, 9), m <xp < 0(3(),)(5’(0)
_1 1
¢;=0,c,=0,c3= Cgc), W <xp < a(z()p(w@)
¢1 = 0,6, = c2(xp, @), c3 = c3(xp, @), #—5’1@) <X*p < #;(D))
a=0c= CéD)’ €= CéD)' a(zzp(;fl(D)) <X < a(lgp(;fl(D))
. -1 (16)
c1 = ¢ (xp, @), c; = ¢35 (xp, @), c3 = c3 (xp, @), m < xp < X3,1)(®)
c1 = c1 (xp, @), c; = c; (xp, p), c3 = Cgl), x31) (@) < xp < % + x4
ci=c? ey =c®,cy=c, % +x, < xp < %
€1 = CiB)' G2 = Cél)' €3 = C;gl)' % <xp< %
Ch cil), cy = cgl), c3 = cgl), % < xp

For ¢y (xp, ¢), the rarefaction wave oy crosses the shock wave V() and the constant state (A)

no longer exists. Thus, we have:

cv(xp, ) =
(¢, =0,c,=0,c5 = _o1
Cl - 0, CZ - 0; C3 - OF xD < 0-(3)(5(1))
_ _ _ p-1 p-1
c;=0,¢c, =0,c3 = c3(xp, @), @) <xp < o @@)
— — = O _e-1 _ 91
1=06=0.6=¢5" 7@ =P < 50, @)
c1=0,¢c, = c,(xp, ®),c3 = c3(xp, P) L oy < —27L
1 €2 2Xp, 9),C3 3Xp, 9), 72 (@) DS Gy @®)
= — D — D) _ o1 _ o1
1 A=he = =a (2 (@) <% < (1) (@) (17)
p—1
c1 =¢f (xp, @), c2 = c3 (xp, @), c3 = ¢ (xp, 0), — =5 < %p < x3,0(®)
U(l)(w )
- - I
c1 = c1 (xp, @), c; = ¢; (xp, @), c3 = Cé )’ x(3,1) (@) < xp < x(2,1)(@)
. I I s
¢, =ci (xp, @), cy = cg ) ¢y = cs(, ), X2, (@) < xp < ———G + Xp
0(1) (w )
—.B® _ O __ D P—¢8 K
€1 =¢ ,€p=C,",C3=2C3", o @) +xp <xp < Y
_ . ) _ . P
kCl—cl ,C2—C2 ,C3—C3, _<xD



At ¢ = @ the interaction between the rarefaction wave o;y and the shock wave V(3 ends, and

from now on the components ¢; and c3 no longer coexist in any region. Thus, cy is given by:

CV(XD' (p) =
(C1:0,C2:0,C3:0, .X'D<(p—__:,L
0'(3)(&)(1))
-1 o-1
c1=0,c, =0,c3 = c3(xp, ), e <x, <
1 2 3 3\Xp, @ o) (@D) D NGO
_ _ _ (© p-1 p-1
@=06=06=c" o @@ =P < 50, @®)
-1 p—-1
c1=0,c, = c,(xp, ®),c3 = c3(xp, V), — < x, < —
1 2 2Xp,P),C3 3Xp, P o 2)(@0) DS 5o @D)
_ _ +(D) _ .+(D) p-1 P—¢c
C1—0,C2—C2 ,C3 =C3 77, W<XD<W+XC
\ ) 0 0-9c o-0 (18)
c1=0,c,=c5",c3=cs3", ——C oy <xp < ——<+ X
! 2Tz s Ve (@®) T 76 TP T en (@®) T
— = — = N 0))] P—¢c
c; = ¢y (xp, @), c; =c; (xp, ), c3 =c3", @) + xc < xp < x2,1)(@)
1
— _ D _ . P—¢p
c;=c1 (xp,@)c;=c,’,c3=c5", X2, (@) <xp < @) T B
)
(B) 0 0] ] @
ci=¢Cy; ,Cp=C,",C3=20Cy, — =t xg < xp < —
R oy @®) 1T TP Py,
1= C](_I), Cr = Cgl), C3 = C?()I), £ < Xp

V)
When ¢ = ¢p, the rarefaction o(;y meets the shock wave V), which is the first interaction
between waves of the same family, and the constant state ¢® no longer exists. Thus, the

solution cy;(xp, ) is:



cy1(xp, @) =

(C]_:O,Cz :0,63:0,

cL = 0, Cy = 0; C3 = C3(xD1 (p);

c1=0,c=0,c3= céc)

)

¢, =0,¢; = c3(xp, @), c3 = c3(xp, p),

e =0,c,=cf P, ¢y =P,
c1=0,cp = CéE),C:g = cs(,l),
c1 = ¢y (xp, @), c; = ¢; (xp,9),c5 = Cs(al),
c1 =ci (xp, @) cy = Cgl); C3 = Cs(al),
O (D (D

kCl=C1 ,C2:C2 ,C3:C3 B

_9-1
o3 (@D)

<xp <

o—-1
a(z)(@D)
-1
o(3)(@©)
p—-1
0(2)(@©) < Xp
p—1
o) (D)
P—¢c
V(g (@®)

P—9¢c
ooy @®) T ¥e < ¥ < X(2,1) (@)

p-1
(2)(@)
p-1
< _0(2) (@)
P—Pc
V) (@®)
P—Pc
7 (@ D)

<xp <

<xp < + x¢ (19)

+xc <xp < + xc

x2,0) (@) < xp < x(1,1)(@)
x(1,1)(<.0) < Xp

At @ = @g, the rarefaction g,y crosses the shock wave V{3, the constant state ¢® disappears

and a new rarefaction wave appears (o). Thus, the solution cy;;(Xp, @) is given by:

cyn(xp, @) =
(C]_ == 0,C2 = 0,C3 = 0,
Cl = 0, Cz = 0, C3 = C3(xD1 (P):
1= 0, Cy, = 0, C3 = C:gC)J
¢y =0,¢c; = ¢; (xp, 9), c3 = c5 (xp, @),
< 1= 0, C = CZ_(xD' (p)' C3 = Cgl)’
c1=0,cp = CéE),Cg = Cgl),
- - _ .0
c1 = c1 (xp, @), c; = c; (xp, @), c3 = €3
__ 1
¢, =c; (xp, @), cy = cg ), c3 = cs(,l),
ey =Py =P, cy =P,

-1
a(z)(@D)

<xp <

xp <
_e-1
03 (@)
et
o) (@©)

-1
a(z)(@D)
p—-1
a(3) (@)

p—-1
s (@) ¥ < X(3,2)()

<xD<

P—PE

X <xp<—=—+x
(3,2) (9) D o) (@B E
P—PE

9 (@®)

o-9c
oo@®) T X <¥p < X(2,1) (@)

(20)

P—@c

+XE<XD<W

+xC

x2,0) (@) < xp < x(1,1)(@)
x(1,1)(<ﬂ) < Xp

After ¢ = @p, component 1 is completely separated from the other chemicals and a region

without any chemicals appears. So, the solution cy;;;(xp, @) is:



cvin(Xp, )

\C1

:C1 ,C2:C2 ,C3:C3 )

(¢c; =0,c,=0,c3 =0, x0<#_51@)
c1=0,¢c, =0,c3 = c3(xp, @), #},’1(1))<xl> <#§w))
cl=0,cz=0,c3=céc), #;(C))<x0<#;@)
c1 =0,c; = c3 (xp, @), c3 = c3 (xp, @), #;(C)) < xp < x32) ()

{c1=0,¢; =c;(xp, @), c3 = Cé'), xX3,2)(@) < xp < % + Xg (21
61=0,c2=c;(E),c3=c§I), %+xE<xD<%+xF
cl=0,62=c§D,c3:c§D, %+xF<xD<%+xF
1 =c; (xp, @), cy = cél), c3 = cgl), % + xp < xp < x(1,1)(@)

0 0 0 xan(®) < %

For ¢ = ¢ the rarefaction g,y meets the shock V() and it is absorbed. Therefore, the constant

state ¢ is no longer present in the solution. So, ¢;x(xp, @) is:

cix(Xp, @) = 1

(22)

(¢,

=0,c,=0,c53=0,
=0,c; =0,c3 = c3(xp, ),
=0,c,=0,c5 = Céc),

=0,c, = cf (xp, ), c3 = ¢ (xp, ),
=0, = c5(xp, ), 5 = ),
=0,c,=c,cy =P,

=c1 (xp, @), cz = Cg)'% = Cél)'

= Cgl). C2 = Cg)'c3 = Cél)'

p—-1
o(z)(@D)

<XD<

xp <

_ 91
0(3)(@©)
p-1
<3 2(@©)

_e-1
a3 (@D)
p—-1
0(3)(w(c)) b

_e-1
o2y ([@O) <Xp < X@32) (¢)

X(3,2)(@0) < xp < x(22)()

-9
x(2,2) (@) < xp < WEE)) + Xp
P—9F

oo @Dy T XF < Xp < X1, (p)

x1,1) (@) < xp

After ¢ = @y, all the components are completely separated (chromatographic cycle) by two

regions where all concentrations are zero. Therefore, cx(xp, ) is:



( = = = ¢l
c,=0,¢c,=0,c53=0, Xp < o) @D)
= = — -1 _e-1
c1=0,c, =0,¢3 = c3(xp, @), GO <xp < o (GO)
= = () _e-1 _PPH
c1=0,c,=0,c3=¢5 7, 70y @) <xp < Ve @©) + Xy
_ _ _ (D P-¢ P—9
Cl—O,Cz—O,Cg—C3 , v (wg))+xH<xD <0_— (55))+XH
( ) = ®3) ©)
Cx\Xp, @ _ o () Y—9Hy
cL = 0, Cr =0y (xD; <,0); C3 =C37, 0_(—)(5(1)) +xy <xp < X(Z,Z)((p)
2
) n P—9F
ci=0,¢c,=c¢,",c3=c5", X <xp<—=—=+x
1 2 5 ,C3 3 (2,2) (p) D o @D) F
R _a _ . -9
¢, =c1 (xp, @), cy = cg )¢y = 3, —o(—;(w(pl)) + xp < xp < x(1,1)(¢)
1
1 I 1
\C1 = Ci ),Cz = c§ ).C3 = Cé ), x(1,1)((.0) <Xp
(23)

For ¢ > ¢, the rarefaction wave o(3) is absorbed by the shock of same family V(3). As a

consequence, the constant state ¢(©) disappears. We can write cy;(xp, @) as:

(. _ _ _e1
Cl — 0, CZ — O, C3 — O, xD < 0'(3)(8(1))
= = = ct _e-1
c1=0,c,=0,c3 =cF(xp, ), o GD) < xp < x(3.3) ()
] -
c1=0,c,=0,¢c3= C§ ), x3,3) (@) <xp < % + Xn
cxi(xp, @) ={¢1=0,¢; = c; (xp, ), c5 = Cgl), —J(i:)_(;z)) +xy <xp <X2)(@) (24)
1 1 -
c1=0,¢c,= cé ),03 = cg ), xX2,2)(¢) < xp < % + xp
— I 1 -
¢, =ci (xp, @), cy = cg ) cq = c§ ), J_(p_(g,f,)) + xp < xp < x(1.1)(@)
®
kCl = Cgl)y CZ = Cél)lc3 = Cél)l x(l,l)((p) < xD
From this point we present the solution of the lifting equation, given by:
3 F(U,®) n aU(s,) _ 0 (25)

do dxp
Applying the chain rule, we have:

9FOU L U _ _ OF 0cy _ OF dc, _ OF 0¢s 26)
dUdp  dxp = 0cy 8@ Bcy dp  dcz 0@

In regions where the concentrations are constant we find



2¢s

29 =V 27)
dcy
- g (28)
dcs _
20 0 (29)

In such regions, the lifting equation is a homogeneous hyperbolic PDE given by:

0F 0U ou
20ap T axy — 0 (30)

where each characteristic carries a constant value of U, and its velocity is defined by:

do oF(U,0)
de ou

(31

In rarefaction regions, where concentration changes continuously, along each characteristic

(Equation 26) we have:

4u _ _OF 9cy  OF 9c; _ OF 9cs (32)
dxp - dcq 0¢ dc, 0 dcz o

(UI, () <1

Un 1<¢<g,
Umm @a<eo<g@p
Uv, ¢p<¢<e¢c
Uy, @c<¢<op
Ulxp, @) =30y, ¢p <@ <@g (33)
Ui 9 <@ < or
Ui, ¢ < @ < @g
Ux, ¢¢<¢ <oy
Ux, Py <@ <@
\Ux;, @1 <¢

The solution U; (xp, @) is presented for ¢, where ¢; < 1:



) —r
(UY, Xp < WDy
U,(xp, @), —o—<x, <2
45 @) Gy S AP Sy o
U®, £ < xp < £
V(3) V(2)
UI(xD' (p) =< U(Z)’ #;) < xD < % (34)
(1) % —
U Vi <% < oy(UM,éM)
Upe(xp, ), — e < Xp < ————
\Xp, P), oy (UD,ED) b= Gy (), ey
\U(I), Xp = +oo

The structural formula of U;(xp, ) is (I) - -1 ->2)->0B)->®) - (), where “—”

(124
l

denotes a shock wave, and “—* a rarefaction wave (Figure 3). Note that the subscript in the

solution of U represents a U-rarefaction wave in a region i of figure (3), the superscript “(i)”

131442)

represents a constant state of U in a region i of figure (3), and the superscript in the structural

formula denotes the first point of a rarefaction wave in the region.

()
(C)
(B)
(D)
(4)
0)

Figure 3: Solution U; in F X U plane

For U;;(xp, @) we have:



( ) 1
e Xp < oy (UD,é=0)

p-1 p-1

Uro(*p, @), oy (U),¢=0) <% < (3 (@0)
-1 p-1
Ug(xD; (p); 0'(3)(6(1)) < xD < 0_(3)(6(6))
-1 -1
Ug(xp, ¢), 73 @©) <xp < o) (@©)
-1 p-1
U, (xp, 9), @O <0 < o =my)
p—-1 p-1
Us(xp, 9), 2 (@D) <Xp < o) ([@D)
Uy (xp, ) = 4 _o1l I (35)
U5 (xDr QD); 0(1)(5@)) <Xxp < 0(1)(3(]))
U,s(xp, ©), — <, <2
4( b (p) UU(U4(xD'(p)'C(])) b V(3)
U®d, L <xp <2
V(3) Vi2)
U®, £ < xp < 2
V@) V)
(1) £ - ¢
U, v P S e
S S
U+ (XD; (P)' oy (UD,D) <Xxp < aU(U(’+).E(’))
\ U(I)' xD — 400

The structural formula for U;;(xp, @) is (1) > IT" = (1) > (2) > 3) > (4)-5"-6"=-7" —

8" —9" — 10" — (J) (Figure 4).



Figure 4: Solution U;; in F X U plane

State (4) disappears in solution U;;. We must also calculate new curves F(UZ ,55+) and

F(US,Cs ) to compute the solution. Uy (xp, ¢):



( ) __ -1
bt Xp < oy (UD,=0)

p—1 ¢-1
Uro(xp, @), oy (UY),é=0) <% < o(3)(@®)

p—-1 p—-1

Us(xp, @), — < Xp < —
o(xp, ) o) @D) D™ 603 (@©)
p-1 -1
Ug(xp, p), 73 @©) <Xp < 62)([@©)
p-1 p-1
U7(XD, (,0); 0(2)(6»((;)) <xp < C,(2)(5@))
p—-1 p-1
U6(xD; (p); 0_(2)(5([))) < xD < 0_(1)(5([)))
= ¢-1
UI”(xD, (P) < U5+(xDl (p): W < Xp < x3'1((p) (36)
_ -
Us (xp, @), x31(p) <xp < Ua)(aél)) + Xy
u®, —LTPA_ e, < xp < -
oy@@) T A TP Ty
U@, L o <xp <2
V() V)
€)) 2 S
U Vo P S Gy
U+ (xp, @) — < —2
A SR UIOEO) b= ) cwy

L\ UD, xXp = +

The structural formula for Uy, is: () = 17" = (1) - (2) > (3) —-5" -5t —5" —¢" —
7" — 8" — 9" — 10" — (J). The superscript “"” in the structural formula denotes the last point of
a rarefaction wave in the region. The segments Us (xp, ) and Uz (xp, ) indicate the U states at
the right and left of the shock path x4, which is the region where shock V(3y interacts with

rarefaction o(qy. The Uy (xp, @) solution in F X U plane is presented in figure 5.



fw _____ (1)
(5(x,9))

Figure 5: Solution U;;; in F X U plane

Uy (xp, @) is defined by:



(U,
U1o(Xp, ),
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The solution path for U;; in F X U plane is presented in figure 6. For the sake of simplicity, from

now on the constant state curves of F (U, ¢) that are not part of the solution will not be shown in

the figures. The structural formula for U,y is: (I) - M -1)-Q2)-5"55"-5"5

5" _ 6" —

7" 8" — 9" _ 10" — U)
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Figure 6: Solution Uy, in F X U plane

The rarefaction region (5) no longer exists in the solution path Uy,. This solution is given by:



n o1
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In figure 7, we present the solution path for Uy in F X U plane. The structural formula is

composed by (I) » I = (1) » (2) =5 55" -5 6" —7"—-8"—9" —10" — ()).



Figure 7: Solution Uy in F X U plane

Solution Uy, (xp, ) is given by:
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In figure 8 we present the solution path for Uy; in F X U plane. The structural formula of the

solutionis: (I) » I = (1) > 5" =5~ 557" -5/ 56" = 7" —8" = 9" - 10" — ()).



For Uy (xp, @) we have:

Figure 8: Solution Uy; in F X U plane
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Uy (xp, @) =
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The solution path for Uy, in F X U plane is presented in figure 9. The structural formula of the

solution is:

@-

N->1"-1)->5""=-5"55"—(6)-7">7"-8"-9"—-10" —
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Figure 9: Solution Uy;; in F X U plane

Solution Uy (xp, ) is given by:
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e
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For this solution profile, the smallest adsorption chemical separates from the other two
components (region 6~7) at the jump from U®7) to U®~7) (Figure 10). The structural formula
for this part of the solution is: (I) — -1 ->5""- 67)>(67)=7">57"-8"—

9’/ _ 10” _ U)-

o (1)
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Figure 10: Solution Uy;;; in the F X U plane

The solution U;x (xp, @) is:
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The structural formula for Uy is: (I) > It = (1) > 57" —(677) > 7" 77" 57" -8" —

9" — 10" — (J). The solution path for U,y in F X U plane is presented in figure 11.
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Figure 11: Solution Uy in F X U plane

The three components are completely separated in solution Uy (xp, ¢). Thus, there is no longer a

region (7) in the solution profile and Uy (xp, ) is given by:
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p-1 p-1
Uyo(xp, @), oy (UD,é=0) < Xp < 03)(@D)
p-1 p-1
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The structural formula for Uy is: (I) » [T = (1) > 57"=(6"7)>7"—-(87)>8"-9" —

10" — (J). The solution in F X U plane is presented in figure 12.
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Figure 12: Solution Uy in F X U plane

Finally, for Uy;(xp, ¢) we have:



( ) __ -1
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The structural formula is given by: (I) > It —= (1) >57"—-(6"7)>7"—-(87)->9" -

10" — (J). Figure 13 presents the solution path of Uy, in F X U plane.
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Figure 13: Solution Uy; in F X U plane
We now present the exact expressions for each part of water saturation solution obtained from
the inverse mapping of the lifting equation solution. We also show water saturation profiles, the
solution path in the f X s plane and some comments regarding each part of the solution.

The saturation solution is divided in 11 parts and is given by:



(S1 tp <1

Sin 1< tD < t(A)
Sun -ty <tp < i
S, t(B) <tp < t(C)
Sy, t(C) < tD < t(IV)
s(xp, tp) ={Sv  tav) <tp <t (45)
Svin - L) < tp < t(F)
Sy tr) <tp <t
Six, t(G) <tp < t(H)
Sx, t(H) <tp < t(I)
\Sxp,  tay <tp

During polymer slug injection (tp < 1), the solution is self-similar and is equal to the solution of
the continuous polymer injection problem (Dahl et al., 1992) for Langmuir adsorption isotherm.

Thus, s;(xp, tp) is given by:

(<D b
$¥7 XD < 3 GUED)
tp tp
S4(xD; tD)r A(s)(sU),EU)) < Xp < D(3)
D(s) D(2)
(2) b o
si(xp, tp) =15 Dy %D <7} (46)
() (1)
€] b __tb
550 D¢y < *p < A(s)(sM,¢M)
tp tp
Sp+ (XD; tD)' /1(5)(5(1).5(1)) < Xp < /1(5)(5(1+),5(1))
tp
5O xp > —2
S D7 2 0D ,em)

The saturation profile for three different t,, where tpq < tp, < tpz < 1, is presented in figure

(14). The solution path of s; in f X s plane is shown in figure (15), and the structural formula is:

D-W-B)->@D->O)-1""> D).
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Figure 14: Saturation profiles of the solution s;(xp, tp)
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Figure 15: Solution path of s; in f X s plane

For tp > 1, the water drive begins and interactions between waves appear. Solution s;;(xp, tp)

is given by:
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We present the saturation profile of s;;(xp, tp) in figure (16). The solution path for s;;(xp, tp) in
f X s plane is shown in figure (17), and its structural formula is: (J/) — 10" — 9" —8" — 7" —

5" —-(4)->3) > 2)-> (1) -1 > (D).
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Figure 16: Saturation profile of the solution s;;(xp, tp)
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Figure 17: Solution path of s;; in f X s plane

In s;;(xp,tp) the rarefaction A(;y interacts with the shock wave D3y, which is the first

interaction between two concentration waves in the solution, and region (4) disappears. Thus, we

have:
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The saturation profile of s;;;(xp, tp) is presented in figure (18), and the solution path in the f X s
plane is shown in figure (19). The structural formula of s;;;(xp, tp) is: (J) — 10" — 9" — 8" —
7" —6" —5*" 557" 57" —(3) > (2) » (1) —I*" > (I). Observe that a water bank
created by two surrounding higher viscosity waves appears in the solution in region (57). This
phenomena will also take place in other parts of the solution where there is a lower viscosity

fluid surrounded by two higher viscosity fluids.

SI + (XD’ tD]

0

Figure 18: Saturation profile of the solution s;;;(xp, tp)
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Figure 19: Solution path of s;;; in f X s plane



The rarefaction A7y crosses the shock D) and the region (3) disappears in solution s,y (xp, tp).

Therefore,
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In figure (20) we present the saturation profile of solution s;,(xp,tp), and in figure (21) the
solution path of sy, (xp, tp) in f X s plane is shown, which structural formula is given by: (J) —

10" =9 —g" — 7" _g'" — 5+” N 5—’ _ 5—” N 5——’ _ (2) N (1) _ I+/' N (I)
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Figure 20: Saturation profile of solution s;, (xp, tp)
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Figure 21: Solution path of s;; in f X s plane

In s, (xp, tp) the constant state ¢ = ¢P) (region 67) appears in the solution and the region (5) no

longer exists. Thus,
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The saturation profile of sy (xp, tp) is shown in figure (22) and the solution path in f X s plane is

presented in figure (23). The structural formula of sy (xp, tp) is: (J) — 10" — 9" —8" — 7" —

6" > (6)—-5">55"-Q)-> 1) -1" > ().
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Figure 22: Saturation profile of the solution sy (xp, tp)
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Figure 23: Solution path of sy in f X s plane

In solution sy;(xp, tp) the rarefaction A4y is absorbed by shock D). Thus, the solution is:
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Next, we present the saturation profile (Figure 24) and the solution path in f X s plane (Figure
25) of the solution sy;(xp, ), which has the structural formula: (J) — 10" — 9" — 8" — 7" —
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Figure 24: Saturation profile of the solution sy; (xp, tp)
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Figure 25: Solution path of sy; in f X s plane

In the next part of the solution (sy;;(xp, tp)), the rarefaction A(z) crosses the shock wave D3y at

point E, and region (6) disappears. Therefore,
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The saturation profile of solution sy;;(xp,tp) is shown in figure (26), and the solution path in
f X s plane is presented in figure (27). The structural formula is given by: (J) — 10" — 9" —
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Figure 26: Saturation profile of the solution sy;;(xp, tp)
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Figure 27: Solution path of sy ; in f X s plane

In sy (xp,tp), the interaction between rarefaction A1y and the shock wave D(,) ends, and a

pure water bank appears in the solution (region 6~ ). Thus,
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We present the saturation profile of equation (53) in figure (28), and the solution path in f X s
plane in figure (29). The structural formula is given by: (J) — 10" —9" —8" —7" - 77" —

67)->(67)=5""->@) 1" > .
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Figure 28: Saturation profile of the solution sy;;;(xp, tp)
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Figure 29: Solution path of sy in the f X s plane

For tp > tg (solution s;x(xp,tp)), the rarefaction A,y is absorbed by the shock D(,). Therefore,

the solution for this region is given by:
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In figure (30) the saturation profile of solution s;x(xp,tp) is presented. In figure (31) we show
the solution path in f X s plane, which has structural formula (J) — 10" — 9" —8" —7" -
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Figure 30: Saturation profile of the solution s;x(xp, tp)
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Figure 31: Solution path of s;x in f X s plane
For tp > ty (solution sy(xp,tp)), the interaction between rarefaction A,y and the shock D3
ends, and region 7 is no longer present in the solution. Moreover, at this point the separation of
the chemical components is completed. Note that due to the separation of the chemicals, a new

pure water bank region appears (region 87). Thus, sy (xp, tp) is given by:
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Next, we present the saturation profile of sy(xp,tp) (Figure 32) and the solution path in f X s

plane (Figure 33). The structural formula of the solution is: (J) — 10" — 9" —8" — (87) —

77" 5 (67) = 57" = (1) = I*" — (D).
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Figure 32: Saturation profile of the solution sy(xp, tp)
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Figure 33: Solution path of sy in f X s plane

For tp = t,, the rarefaction wave A3y meets the shock wave D3y (solution sx;(xp, tp)). At this

part of the solution, the region (8) no longer exists and the constant concentration state is ¢ =

¢ = 0; sy (xp, tp) is given by:
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When t;, = +oo, the rarefaction waves are completely absorbed by the shock waves of the same
family (Rhee et al., 2001). Therefore, the chemicals concentration and water saturation along all

the reservoir are ¢ = 0 and s = s), respectively.



Appendix B — Supplementary material of the paper “Mathematical
Modeling of Low Salinity Waterflooding in Sandstone Reservoirs:
Enhanced Oil Recovery by Multicomponent Cation Exchange”



This supplementary material presents the complete solution description of the
auxiliary system (section A), lifting equation (section B) and xp X tp plane solution
(section C) for the paper “Mathematical Modeling of Low Salinity Waterflooding in

Sandstone Reservoirs: Enhanced Oil Recovery by Multicomponent Cation Exchange”.

A. Auxiliary system solution

The solution of the auxiliary system can be divided into 17 regions (see figure 3 in
the original paper) separated by the points (x4, ¢4)-(xy, @) and the point (po, (ppH)
that comes from the pH solution (Equation B.1).
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The self-similar part of the solution takes place when ¢ < @y (¢; in equation B.1).

The concentration profile is detailed in equation (B.2):
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A concentration profile of ¢; is presented in figure (B.1) emphasizing the effect of

pH waves on the solution.
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Figure B.1: Solution of the auxiliary system (c;)
The solution of the auxiliary system for this region is defined as c;; (Equation (B.3),

and it is given by:
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Figure (B.2) presents the concentration profile of the solution ¢;;.
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Figure B.2: Solution of the auxiliary system for @5 < @ < @4 (¢;))
Region (4) disappears in ¢;;;, and a new rarefaction wave (¢®~G7)) and the
constant state ¢ appear. The family k = 1 is separated from the pH wave.
Equation (B.4) presents the exact expression for the region ¢;; and the

concentration profile of each component is shown in figure (B.3).
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Figure B.3: Solution ¢;;; of the auxiliary system

For g < @ < @ (cjy), the rarefaction wave ¢©=0) jnteracts with the pH waves.
In this region part of that rarefaction is located at the left of the pH shock (constant pH)
and the other part at the right, a pH-concentration rarefaction wave. The characteristic
path of the rarefaction ¢©)-0) changes along the interaction, and the new paths are
denoted as X(4)_(s5)(¢). Equation (B.5) details ¢;v and the concentration profile is

shown in figure (B.4).
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Figure B.4: Concentration profile for the solution ¢,/
If o < ¢ < @p, there is an interaction between the pH rarefaction wave and the
k = 2 family rarefaction wave, and a new rarefaction region appears (GRS

solution part ¢,; (Equation B.6 and figure B.5).
In equation (B.6) we call x(_6()t)(5) the path of the first characteristic curve of the
wave (6) — (5) after it crosses the pH shock of the front of the low salinity slug. The

last rarefaction characteristic path will be denoted as x(_f,()__)(s).
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Figure B.5: Concentration profile for ¢,/
The solution ¢y; occurs when @p < @ < @, where the shock wave of the family
k = 3 from the rear of the low salinity slug reaches the pH waves of the front and
interacts with them. As a result, the shock path is modified, and it is no longer a straight
line. The region ¢(® disappears of the solution. The new shock path will be denoted as
X(3)- In equation (B.7) we present the mathematical description of this part of the
solution of the auxiliary system. In figure (B.6) the concentration profile for the solution

part ¢y is presented.
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Figure B.6: Solution ¢ of the auxiliary system
For @ < @ < @ (solution cyj;), the k-waves are separated from the pH waves,
and the region (6) and the rarefaction waves ¢©®~3~7) and ¢5)~3-) no longer appear
in the solution. In equation (B.8) we present the mathematical details of this part of the

solution and the concentration profile can be seen in figure (B.7).
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Figure B.7: Solution ¢y; of the auxiliary system
In solution ¢y (@F < @ < @), the shock wave of the family k = 1 interacts with
the rarefaction wave of the family k = 3, and region (3) disappears. The mathematical
description of ¢y is shown in equation (B.9). The concentration profile is presented in

figure (B.8).
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Figure B.8: Solution cy;; of the auxiliary system

For ¢; < ¢ < @y, which corresponds to solution ¢;x, the wave family k = 1 is

completely separated from the wave k = 3, and region (2-) appears. The exact solution

Crx is presented in equation (B.10) and its concentration profile is shown in figure (B.9).
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Figure B.9: Concentration profile of solution ¢
Solution ¢y occurs when @y < @ < @;, where the rarefaction wave ¢~(1-
appears, which is a result of an interaction between the waves k = 2 from the front of

the low salinity slug and k = 1 from the rear of the low salinity slug. In this part of the
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solution region (2) disappears. Equation (B.11) details ¢y, and figure (B.10) shows the

concentration profile when gy < ¢ < ¢;.
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Figure B.10: Solution ¢y

The concentration solution when ¢; < ¢ < @,y is defined as Cx;- The wave family

k =1 is completely separated from the wave family k = 2. Thus, constant state region
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(1-) appears. Equation (B.12) describes ¢y, and figure (B.11) presents the concentration

profile.
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Figure B.11: Concentration profile of the solution part Cx;

Solution Cy;; takes place when ¢,y < ¢ < ;. Here the pH wave from the rear of

the low salinity slug reaches the pH wave from the front, which leads to a wave

interaction of the same family (Rhee et al., 2001). The result is a shock wave that
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continuously absorb the pH rarefaction wave, and region (7) is no longer present in the
solution of the auxiliary system. In equation (B.13) we present this part of the solution

and the concentration profile is shown in figure (B.12).
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Figure B.12: Solution part cy;; of the auxiliary system
In the solution cy;;; the interaction between rarefaction waves of the families k = 2

and k = 3 begins. This interaction region is bounded by the curves (J—L) =

x(_?s 4(-2)((P) (K—-M) = x(3) 2) ((P) (J—-K)= X{GSEEQ)((P) and (L—-M)=
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x(gfg)((p). In this part of the solution the region (3-) disappears. In equation (B.14) we

detail cy,;;, and its concentration profile is shown in figure (B.13).
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Figure B.13: Concentration profile of the solution cx;;;

LD

In the next part of the solution of the auxiliary system (solution cyjy), part of the

rarefaction wave k = 2 from the rear of the low salinity slug is separated from the

rarefaction wave k = 3 from the front. Thus, we have:
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The concentration profile for the solution ¢y is shown in figure (B.14). Note that

the difference from the solution cy;;; lies on the region where the rarefaction waves

interact.
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Figure B.14: Concentration profile of the solution cx;y

The solution ¢y, which occurs when @, < @ < @y, is the last part of the solution

of the auxiliary system where there is interaction between rarefaction waves. In this
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solution, part of the rarefaction wave k = 3 from the front of the low salinity slug is

separated from the rarefaction wave k = 2 from the rear of the slug. Equation (B.16)

presents the mathematical details for this part of the solution, and its concentration

profile is shown in figure (B.15).
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Figure B.15: Concentration profile of the solution ¢y,
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For ¢y < @ < @y, € = Cxy;. In this part, the wave families k = 2 and k = 3 are
fully separated, and the new region (2--) appears. In equation (B.17) it is possible to
find the mathematical details regarding this part of the solution, and in figure (B.16) we
present its concentration profile. As the concentration waves after ¢@-- appear for

large xp they are not shown in figure (B.16).
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Figure B.16: Concentration profile of the solution cxy;
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In solution cyy;; (for @ > @y), the waves from the family k = 3 of the rear of the
slug catch up the waves of the same family of the front of the slug, an interaction
between waves of the same family. The shock path of this interaction is denoted as x3y .
Furthermore, the region (3--) disappears. In equation (B.18) we present the

mathematical expression for cyy;; and in figure (B.17) we present its concentration

profile.
rc-:(]Z)’ Xp < xp_H((p)
(e _ e
7Gxy, 0), xpu(@) < xp < TGD)
- 3_—— (p (2)
¢B==), n @Dy XD < X@)
ED-D===(xp, ), x5 < xp < Xy (@)
=), Xe (@) < xp < x5 (3 (9)
¢©=-Gr=(x,, ), x@}fg)(w) <xp < x(_e}EE;)(ﬁ")
Cxvil = 3 o

7@

(=) —(+)
X(6)-5) (@) < Xp < X(5)"(1y (@)

F@-(- x50 (@) < xp < 25521 (@)
g1, X)) < o < x5 (9)
20 X (@) <%0 < o—=try
¢O~O (xp, @), m <% < m
LE(I)' m <Xp < %

B.23



(12)!
C,
BE ¢ Ll T
Cé
(J2)
C,
C,T (3—) (‘ )
2
‘(.12)
(4;}
Lc =) (e
~_ G

C ‘lrf )
-~
f——
T
— Clj
(3-)
C‘2

Figure B.17: Concentration profile of the solution cxy;

B. Lifting equation solution

The solution of the lifting equation is divided into the same 17 regions of the

auxiliary solution:

U(xD,(p) = <

¢ < @Pys

Pus < P < Py
Pa< @ <@g
P <P < Pc
Pc <P <Pp
¢p <@ < Yg
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Pr <@ < Qg
Y <P <@y
Py <@ <@
Q1 <P < Ppu
P < P <@y
Q<@ <@g
Pk <P <@g
PL<P <Py
Py <P <@y
Py <@

(B.1)

Each solution part of equation (B.1) is presented in equations (B.2)-(B.18) and each

solution path in F X U plane is shown in figures (B.1)-(B.17).
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Figure B.1: Solution path of U; in the F X U plane
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Figure B.17: Solution path of Uxy; in F X U plane

C. Solution in xj X t; plane

The solution in xp X tp plane is also divided in 17 regions:
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ty <tp <t
t, <tp <ty
ty < tp <ty
ty < tp

(C.1)

The exact expression for each part of the solution is shown in equations (C.2)-

(C.18). Water saturation profile, salinity profile, and solution path in f X s plane are

presented in figures (C.1)-(C.51).

The self-similar part of the solution takes place when tp < tyg, solution s;

(Equation C.2).

(54 (xp,
s3(xp,
5(2)’
5(1)’

s+

s,

tp),

tD)l

5(3)_(2) (xDr tD)P
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A (@D, M)ty < xp < Ay (8D, D)ty
A (€W, D), < xp < Digytp
Xp > D(s)tp

(C.2)

In figures (C.1)-(C.2) it is shown the saturation and salinity profiles. It is possible to

note that the pH change plays an important role in water saturation solution. The

solution path of s; is depicted in figure (C.3).
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Figure C.2: Salinity profile for tp < tys
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Figure C.3: Solution path of s; in f X s plane

Solution s;; (Equation C.3) starts at the injection of the seawater drive, when tyg <
tp < t4. The water saturation profile is shown in figure (C.4) and the salinity profile is
in figure (C.5). The pH and salinity waves centered in tys change the saturation (Figure
C.4). Note that the decreasing salinity followed by its increase in regions (7), (6) and
(6)-(5) (Figure C.5) result in the creation of a small oil bank in saturation solution

(saturation s¢ in Figure C.4). The solution path of s;; is presented in Figure (C.6).
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Figure C.4: Water saturation profile for s;;
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Figure C.5: Salinity profile for tys < tp < ty4
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In solution s;;; (Equation C.4), when t, < tp < tg, the wave k = 1 crosses the pH
shock from the front of the low salinity slug, and the region of salinity (4) disappears
(Figure C.8). Moreover, a new salinity region appears: region (5)-(3-), located between
the shock wave k = 1 and the last rarefaction wave k = 2. The water saturation peak
from rarefaction s, (see Figure C.4) is no longer present in the solution and a new wave

(s)=(3)=) appears (Figure C.7).
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Figure C.7: Water saturation profile for s;;;
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Figure C.9: Solution path of s;;; in f X s plane

Solution sy, (tg < tp < tc) is characterized by the interaction between the family
k = 2 rarefaction wave and the pH waves from the front of the slug. The pH shock to a
more acidic media changes the adsorption parameters of the cations, and the salinity that
increased along xj for family k = 2 starts to decrease (Figure C.11). This behavior
impacts water saturation solution: it increases along xj before the pH shock (saturation
wave s©=5) i figure C.10), and decreases after the pH shock (saturation wave

s©-0G)=jp figure C.10). The solution path is presented in figure (C.12).
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Figure C.10: Water saturation profile for sy,
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Figure C.12: Solution path of sy, in f X s plane

In solution sy (t¢ < tp < ty) family wave k = 2 from the rear of the slug interacted
with the pH shock from the front and the rarefaction s®~®)~ no longer exists in the
solution. Besides that, a new salinity rarefaction appears (region (6)-(3--) in figure
C.14). In this region the water saturation rarefaction decreases along xp (s©=G=jp

figure C.13). The solution path in f X s plane is presented in figure (C.15).
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(S72(Xp, tp),
s7(Xp, tp),

S6(Xp, tp),
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Xiis pr(tp) < Xp < X5 a(tp)

x5 a(tp) < xp < x2 p(tp)
x¢p(tp) < xp < x&,(tp)
xg.(tp) < xp < xf ;(tp)
x§ 1 (tp) < xp < x§e(tp)
x5 g (tp) < xp < x4 p(tp)

x5 p(tp) < xp < Az (6@, D)1,
A3 (@@, D)ty < xp < A5 (2@, D)ty
A3 (@@, D)ty < xp < A (2@, D)ty
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Figure C.13: Water saturation profile for sy,
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Figure C.14: Salinity profile for t, < tp < t
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Figure C.15: Solution path of s, in f X s plane

Two new features appear in solution sy; (t; < tp < tg). The first one is that the
family k = 3 shock wave crosses the pH shock wave from the front of the slug. As a
consequence there is a new pH rarefaction region (7)-(3---) and another rarefaction
wave (5(7)"(3"")). Moreover, family k = 2 rarefaction the located at the rear of the
low salinity slug fully interacted with the pH waves from the front and it is located in a
region of constant pH = pH®. The solution path of sy; in f X s plane is shown in

figure (C.18).
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Syr =

fS]z (XD’ tD),

s7(xp, tp),

sP=6="I (xp, tp),
s(©=C=(xy, t),

5(6)_(5)_(xD; t),
$3-(xp, tp),
s3(xp, tp),
5(3)_(2)(%, tp),
s@,

S(Z)_(l)(xD; tp),

s,

S(l)_(1+) (XD, tD)’
s+

LS(I),

xp < Xjzs pr(tp)

xEISpH(tD) <xp < xng(tD)

x5 pu(tp) < xp < xp g(tp)

xp p(tp) < xp < x&,(tp)

x8 1 (tp) < xp < x5 ;(tp)

xg](tu) < xp < x5 7(tp)

x5 r(tp) < xp < A5 (E®,ED)t,

A (E®,ED)tp < xp < A5 (@, D)t
A (6@, D)ty < xp < Ay (E@,ED)t,
A2 (€@, D)t < xpy < Ay (6D, €Dt
Ay (ED,EM)t ), < xp < Ay (8D, ED),,
A (ED,E0)ty < xp < Ay (D, ED)ty
A (@D, €M)ty < xp < Digytp

Xp > Dstp

(C.7)

Figure C.16: Water saturation profile for sy;
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Figure C.18: Solution path of sy; in f X s plane

Solution sy;; (Equation C.8) occurs when tg < tp < tg. In this part of the solution
the shock wave k =3 from the rear of the low salinity slug has completed its
interaction with the pH waves of the front. As a result, two new constant salinity regions
(3---) and (3--) appear. Thus, the subsequent saturation rarefactions s3___ and s3___
take place at constant salinity (see figures C.19 and C.20). Note that the concentration
shock from (3---) to (3--) generates a new water bank in saturation solution. In this part
of the solution the pH and saturation rarefaction s©=G=)(xp, tp) no longer exist. The

solution path of sy is presented in figure (C.21).
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(S;2(xp, tp),

S7(xp,tp),

s3-(xp, tp),
sy = 3 S3(Xp, tp),

RONG.
<@

)

e

xp < Xijs pu(tp)

x1§SpH(tD) <Xxp < xng(tD)

s=6G="(xp, tp), x5 pu (tp) < Xp < XE o (tp)
S3-——(Xp, tp), XE w(tp) < Xp < x5 n(tp)
S3--(Xp, tp), xg n(tp) < xp < x&1(tp)
s~ (xp, tp), x8(tp) < xp < x§ ;(tp)

xg](tn) <xp < ij(tD)
x5 (tp) < xp < A5 (@, €M)ty
), A (E®,E0)ty < xp < Ag)(E®,ED)t,
Ay (8@, ED)tp < xp < Ay (6@, D)y,
tp),  Aw(E@,ED)ty < xp < Ay (8D, D)ty
A2 (8D, €M)ty < xp < Ay (€D, €M)ty

S(l)_(1+) (xDl tD)l /1(1) (6(1)' 5(1))tD < Xp < A(l) (6(1)' E(I))tD

(C.8)

\\.. JZ S

S(I+), /1(1)(5(1), f(l))tD < xD < D(S)tD
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_7§3_ (2)
4 B (BN S8

(+D-(1)

Figure C.19: Water saturation profile for sy;;
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Figure C.21: Solution path of sy; in f X s plane

Equation (C.9) describes solution sy (tp < tp < tg), where the first interaction
between k-waves starts. The shock k = 1 from the rear of the slug is interacting with
the rarefaction wave k = 3 from the front of the slug. As a result, the constant salinity
region (3) no longer appears in the solution, and there is a new salinity region (region
(3)-(2)- in figure C.23). Moreover, an oil bank followed by a water bank are created in
the central part of the saturation solution (Figure C.22). This feature is a result of the
approximation of the waves from the rear and from the front of the low salinity slug.

The solution path of sy in f X s plane is presented in figure (C.24).
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(S;2(xp, tp), xp < Xiis pu (tp)
s7(xp, tp), Xiis pu(tp) < xp < X3 o (tp)
s=C==D(xp, tp), x§ pir(tp) < Xp < XE o (tp)
S3-——(xp, tp), XF o (tp) < Xp < x5 n(tp)
S3--(xp, tp), xpn(tp) < xp < x&1(tp)
s©O==(x, tp), x8,(tp) < xp < x§](tD)
S3—(Xp, tp), xg](tD) <xp < xﬁ](tD)

Sy = 3 sG=@=(xp, tp), g j(tp) < xp < xZ6(tp) (C.9)
s®=@(xp, tp), xf a(tp) < xp < Az)(E@, D)t
S(Z)’ 1(3)(5’(2),5(1))1&) < xp < 1(2)(8(2)’5(1))15[)
s(z)‘(l)(xD, tD), /1(2)(6(2),5(1))t[) <xp < A(Z)(E(l),f(”)tD
S(l), 2(2)(8(1),6(1))1513 <xp < /1(1)(8(1),5(1))1'1)
sW=UD(xptp), A (@D, D)ty < xp < Ay (6D, D),
S(H), /’1(1)(6(’), f(l))tD <xp < D(s)tD
\S(I), Xp > Dgtp
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Figure C.22: Water saturation profile for sy;;;
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Figure C.23: Salinity profile for ty < tp < t;
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Figure C.24: Solution path of sy in f X s plane

For t; < tp < ty (solution s;yx), the interaction between the waves k = 3 from the
rear and k = 1 from the front of the slug is completed. Thus, the salinity region (3)-(2)
and its subsequent wave in water saturation solution (s®-@) disappear and a new
constant state appears: (2-). As a result, salinity increases in region (3)-(2)- (Figure
C.26). The effect in the water saturation solution is the appearance of a small oil bank
(in s3_) and a small water bank (in s27) (Figure C.25). The solution path of s;x is

depicted in figure (C.27).
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Figure C.25: Water saturation profile for s;x
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Figure C.27: Solution path of s;x in f X s plane

In solution sy (ty < tp < t;), the shock wave k = 1 from the rear interacts with the
rarefaction wave k = 2 from the front of the low salinity slug. Therefore, the constant
state (2) no longer appears in salinity and saturation solutions. Note that the increase in
salinity in this region results in the appearance of a new small water bank in saturation

solution. The solution path of sy in the f X s plane is presented in figure (C.30).
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Figure C.28: Water saturation profile for sy
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Figure C.30: Solution path of sy in f X s plane

In solution sy; (¢; < tp < tyy) the interaction between the waves k = 1 from the
rear and k = 2 from the front ends and the salinity region (2)-(1) (Figure C.32) and its
equivalent in saturation solution s@-M (Figure C.31) no longer exist. On the other
hand, the constant state (1-) (and s(*™) in saturation solution) appears in the solution.

The solution path of sy; in f X s plane is shown in figure (C.33).
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(572(Xp, tp),

s7(xp, tp),
s~ (xp, tp),
S3-—-(xp,tp),
S3--(Xp, tp),
5(6)_(5)_(xD: tD)’
S3_(xp,tp),
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x8 1 (tp) < xp < x5 ;(tp)
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xf (tp) < xp < x§ k(tp)
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Figure C.31: Water saturation profile for sy;
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Figure C.32: Salinity profile for t; < tp < t,y
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Figure C.33: Solution path of sy; in f X s plane

The pH waves from the front and from the rear of the slug interact with each other
in solution sy;; (Equation C.13). The effect of this interaction is the disappearance of
region (7) in salinity and saturation solutions (Figures C.34and C.35). The generated

wave does not carry the pH effects in the reservoir.
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(S;2(xp, tp), Xp < XSH o (tp)
s=G==(xp, tp), xgH w(tp) < xp < X o (p)

S3-——(xp, tp), XF o(tp) < xp < X3 n(tp)
s3--(xp, tp), xp n(tp) < xp < x&1(tp)
s~ (xp, 1), x8 1 (tp) < xp < x§ ;(tp)
s3-(xp, tp), xg ;(tp) < xp < xf;(tp)
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s@O-W-(x, t0), xR (tp) < xp < xR, (tp)

(C.13)
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Figure C.34: Water saturation profile for sy,
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Figure C.36: Solution path of sx;; in f X s plane

In solution sy;;; (Equation C.14) the rarefaction wave k = 2 from the rear and k =
3 from the front of the low salinity slug interact, which leads to the disappearance of
region (3-) (Figure C.38) and rarefaction s3_ (Figure C.37), and the appearance of the
region where these two waves interact: region (3)-(2)— in salinity solution and
rarefaction s~~~ in saturation solution. In the region where the two waves interact
there is a slight salinity increase in salinity and thus, a slight increase in water

saturation. The solution path of sy;;; is displayed in figure (C.39).
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Figure C.37: Water saturation profile for sy;;;
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B.94



Figure C.39: Solution path of sy in f X s plane

Solution sy, occurs when tx < tp < t;, and its main feature is that part of the
rarefaction wave k = 2 from the rear of the slug have crossed all the rarefaction k = 3
from the front (salinity wave (6)-(5)-- and saturation 5(6)"(5)“). Moreover, in this
solution all characteristics of the rarefaction k = 3 are interacting with the wave k = 2.
As a result, the region (3)-(2)- no longer exists in salinity solution, and the rarefaction
s®-@- disappears in saturation solution. Note that the salinity increase in region (6)-
(5)-- resulted in water saturation increase, and the water bank in the central part of
saturation solution also increased. The solution path of sy, in f X s plane is presented
in figure (C.42).

B.95



(S;2(xp, tp),
sM=G==(xp, tp),
S3-——(xp, tp),
S3--(xp, tp),
0=~ (x,, tp),

5(3)_(2)__(950. tp),
5(6)_(5)__(950; tp),

Xp < Xpp oo (tp)

Xpr 0(tp) < Xp < XF o (tp)
XE o (tp) < xp < Xi y(tp)
xg n(tp) < xp < X1 (tp)
x8 1 (tp) < xp < xf(tp)
xf(tp) < xp < xg w(tp)
X m(tp) < xp < XK oo (tp)

Sxiv = 3
X = g@-) xR o (tp) < xp < xR o (tn)
5(2)_(1)_(xD1 tD)I xf}oo(t[)) < xD < xIROO(tD)
e xR0 (tp) < xp < xfoo (tp)
s XPoo(tp) < xp < A()(EW,ED)¢),
s(l)_(H)(xD, tp), Aq) (5(1)»5(1))% <xp < A(l)(E(I)'f(I))tD
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.
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w

Figure C.40: Water saturation profile for sy,
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Figure C.41: Salinity profile for ty < tp < ¢,
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Figure C.42: Solution path of sy, in f X s plane

For t; < tp <ty (solution sy, equation C.16), part of the rarefaction k = 3 is
separated from the rarefaction k = 2, however there is still an interaction region
between these two waves. The separated part of the rarefaction k = 2 creates a new
salinity and water saturation region: (3)-(2)--- and s®~@=== 11 this region the salinity
increases (Figure C.44), as well as the water saturation and a the water bank size. The

solution path of sy, in f X s plane is presented in figure (C.44).
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Sxy = 1

(S72(%p, tp),
sM=C="I(xp, 1p),
S3-——(xp, tp),
S3——(xp, tp),
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e
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xfm(tp) < xp < xg y(tp)
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Figure C.43: Water saturation profile for sy,
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Figure C.45: Solution path of sy in f X s plane

Solution syy; (Equation C.17) takes place in the region ty < tp < ty. In this
solution, the waves k = 2 from the rear and k = 3 from the front are completely
separated, and therefore the region (3)-(2)-- disappears. Moreover, there is a new

constant state (2--) in the solution. The solution path of sy in f X s plane is presented

in figure (C.48).
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Sxvi = 9

(S72(Xp, tp),
sP=6G==2(xp, tp),
S3-——(Xp, tp),
s3-—(Xp, tp),
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X1 oo (tp) < Xp < X[ (tp)
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Figure C.46: Water saturation profile for sxy;
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Figure C.47: Salinity profile for t,; < tp < ty
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Figure C.48: Solution path of syy; in f X s plane

The last solution part is syy;; (Equation C.18), when tp > ty. In this region the
waves k = 3 from the front and from the rear of the low salinity slug interact and there
is a cancelation between them (waves of the same family). Therefore, both region (3--)
(Figure C.50) and rarefaction s3;__ (Figure C.49) disappear. The solution path of sxy;

in f X s plane is presented in figure (C.51).
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Sxvil =

(S;2(xp, tp),
5(7)_(3___)(950; tp),
S3———(xp, tp),
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Figure C.49: Water saturation profile for sy,
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Figure C.50: Salinity profile for tp > ty
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Figure C.51: Solution path of sy in f X s plane
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Appendix C — Admissibility and Existence of the Shock Waves of the
Low Salinity Problem (Chapter 4)



In this appendix we derive the admissibility and existence of discontinuities in the
solution of the low salinity problem. This analysis is divided into two main steps: first we
check the discontinuities of the pH problem and auxiliary system, followed by the

discontinuities of the original system of conservation laws.

The first step is the evaluation of Lax conditions (Lax, 1975), Oleinik conditions
(Oleinik, 1957) and vanishing viscosity (Liu, 1981). Later, we will discuss Oleinik
conditions for the original problem of the low salinity waterflooding. Lax condition can

be found in Pires et al. (2006).

a. Admissibility and existence of discontinuities in the pH problem and auxiliary

system

The auxiliary system associated with the problem of low salinity injection is given

by:
9a;(¢§) | dci _ .
20 + oy 0,i=12,..,n (C.1H

where n is the number of dissolved cations in water.

The pH partial differential equation is:

day(§) |, 9§ _
e + oxg 0 (C.2)
where,
Ky
f=CH_C0H=CH_C_ (C.3)
H

in which K, 1s water ionization constant. Cations adsorption isotherm a; is given by:

= _ ai(§)c;
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where a; and f3; are adsorption parameters that depend on fluid pH.

Hydrogen adsorption isotherm is written as a function of ¢:

2

my
&+ /€2+4K
1+ﬁy<7w>

2

ny
&+ |E2+4K

ay(§) = (C.5)

where ay, Sy, ny and my are constants. Moreover, we consider that ay >>> «a; and

By >>> p;.

In equation (C.4) the adsorption parameters are ordered as:

a < ay, < <ay (C.6)

Br <Pp < <Py (C.7)

The adsorption order in equations (C.6)-(C.7) results in the following root sequence

in the solution of w™ (Equation 51 in Chapter 4):

OSwlsa1Sw2S(X2<“‘Swn<an (CS)

The slopes of the characteristics of a k-wave family of the auxiliary system (Equation

C.1) is given by:

d w;(§)
a(k)(wk,f) = ﬁ = wi (&) H?=1 a;(f) (C.9
Due to equation (C.8), the characteristics slopes of the k™ family will follow:
0<o0n) S0p) < <0m (C.10)
The shock wave of the k"-family is given by:
R 3 @@ _ 3 Wl (©)
V(k)(a)k, E) - a)k (E) l_[]=1 aj(&') - wk (E) H]:l zx](f) (Cll)
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where the superscripts + and - represent the right and left states of the shock.

Analogously to the slopes of the characteristics, it follows for the shock waves:
0V sV = =Vy (C.12)

For the pH problem (Equation C.2) the slope of the characteristics waves is given by:

“T';,nH(wm)”H‘l(H ; )
_ dan _ ()

o. = =
pH ds my
&+ /§2+4K
1+BH<—W>

2

NG R e
z E2+44Kyy
(C.13)

my 2
2
1+ﬁH<€+ & +4Kw) \

2

Figure (C.1) presents the slopes of the characteristics as a function of ¢. Note that
when & = 0, the derivative reaches a maximum (which is equivalent to pH = 7).

Moreover, when ¢ < 0, o,y > 0, and when > 0, o, < 0.
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da gy
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=
|
|

1000
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e
e

Figure (C.1): Slopes of the characteristics of the pH problem
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The characteristic diagram for the solution of the auxiliary system (Equation C.1) for
n = 3 and containing only shock waves is presented in figure (C.2). It is important to

emphasize that ay >>> a;, By >>> B, and Vg >>> V).

V( 1)

Xp

Figure (C.2): Solution of the auxiliary system for n = 3 containing only shock

waves
i. Lax Condition

The generalized Lax condition for hyperbolic systems of partial differential equations

is given by (Lax, 1957):

20 (03) 2 Dipy = A (0))

(C.14)
Ay-1) (w&)) < Dgy) < A+ (w((;)))

d . ) .
where A,y = f are the eigenvalues of the system of conservation laws following
D

A <A < <Am (C.15)
and D) = % is the shock slope of family y.
D

Lax conditions for the low salinity problem are given by:
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700 (0()) < Voo < 00 (()) (C.16)
) (+) '
O(k+1) (w(k)) = Vi 2 0k-1) (w(k))

where k is the cation family.

First, we will verify the first condition of equation (C.16) for the discontinuities of the

auxiliary system (Equation C.1) and pH problem (Equation C.2).

For the shock V(;y we have:

o (05) < Ve < 0y (0) (C.17)

From equations (C.9) and (C.11), we obtain:

O “G o+ 13 “D_ -3 o O “0
D) fﬂ% < w(y) H}':l% = Wiy Hj=1% = Wy Hj=1% (C.18)
which leads to:
0l 2 o) (C.19)
for both sides of equation (C.19). Moreover, in region (C) of figure (C.2), a)glc)) = wgg,
a)((zc)) = a)((?) and w((_f)) = w((;))

So, equation (C.19) becomes:

0 = ol (C.20)

Now shock V(3 is analyzed. For the first condition of (C.16) we find:

0(2) (w((f)’) < V) =0 (wfzc)) ) (C.21)

Applying equations (C.9) and (C.11) in equation (C.21), we obtain:
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Ww® w©
(B) @iy + 3 (J) (J) © 0}
Py =1, < 0@ [l 0@ ITj- Lag < o Ij- Lag (€.22)

After some manipulation, both sides of equation (C.22) become

Wiy = w0 (C.23)

In region (B) (Figure C.2), @®) = [w((g, ((g, ((;))] thus

=0l 2%

The first condition of equation (C.16) for the shock V3, is:

o) (0% < Vi) < o) (05) (C.25)

Applying equations (C.9) and (C.11) in equation (C.25), we obtain:

@ 0 ®
(A) )} ‘“(1) (1) B) Dy
Dy =17, < oy ITj- Lag 0@ I Lag, = 0 Lag (C.26)

In region (A) of the solution of the auxiliary system (Figure C.2) @™ =

[ gg, ((g' gg] Thus, equation (C.26) results in:

0@ > D
Wiy = 0F) (C.27)

From equations (C.20), (C.24) and (C.27), the first Lax admissibility condition for the

auxiliary system is given by:

w® )
Wy = Wi (C.28)
Finally, first equation (C.16) for shock V5 leads to:
o) (§P) < Vo < 9o (§©) (C.29)
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The locus of the shock for the cases pH?) < pH® < 7 and pH® > pHD) > 7, as
well as the waves speed at injection and initial conditions, is presented in figures (C.3)

and (C.4), respectively. Dashed lines connecting (I) and (J) are the shock V.

()

§

Figure C.3: Lax Condition of the pH problem for pHY) < pH® < 7
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Figure C.4: Lax Condition of the pH problem for pH® > pHU) > 7

Comparing the slopes Vyy, apH(E(D) and ap,.,(f(])) in figures (C.3) and (C.4), Lax

first condition for pH problem holds if

0o (ED) < Vo < 0o (§P) (C.30)

For shock V{4, the second Lax condition for systems is given by:

©
o) (09) = Ve (C.31)

which leads to:

©mn G- O ©
n
Weoy Hj=1 ?1) = wey) =1 ?1) (C.32)

From (C.31) it is possible to find:
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w® > D
W3y = W) (C.33)

For shock V() the second condition is given by,

9(3) (wéé?) = Viz) (C.34)
Vi) 2 o(1) (wgch ) (C.35)
Therefore,
o) 1T % > wig) [Ty a(z? (C.36)
(B) E;) > o © EJC)) (C.37)
Py =17, = Yo =1,
Then:
W = 0 (C.38)
W@ = o) (C.39)

Shock relations of the problem for V3 are:

oo (D) >>> V3 (C.40)

B
Vis) 2 0(2) (wég)) ) (C.41)

Equation (C.40) always holds because g,y >>> V(). From equation (C.41) we

obtain:
(]) @)
W(3) > W) (C.42)

Finally, for the shock V,,; we must have:
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A
Vort = 00 (%) (C.43)
which is always true because Vi >>> o(yy.

Therefore, the second condition of equation (C.16) holds if:

) )
Wir1) = Dy (C.44)
w((ljc)-l-l) = w(%% (C.45)

together with equations (C.40) and (C.43).
ii.  Oleinik condition
Oleinik condition for a convex flux f(u) is given by:

fO)-ra@ _ f@O)-fw®) _ re-rat)

u)—u - u) - u—-u®

(C.46)

foru®™ <u<u™.

Figure (C.5) presents the hydrogen adsorption isotherm as a function of ¢. The
inflexion point (¢ = 0) divides the adsorption curve into an acidic (¢ > 0), and an
alkaline media (¢ < 0), and the acidic region is presented in Figure (C.6). It will be

considered the case where 7 > pH® > pHU) (Figure C.6).

A shock wave will follow Oleinik condition if

an(ED)-ay(¢)
£D_¢)

ag(§H))—ay(¢M)
£ gD

< Vpy <

(C.47)

for all €D < &) < £U) where the shock Vy, is given by Rankine-Hugoniot condition:

Voo = ag(EM)—ay(E0))

PH =" ¢ (C.43)
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Figure C.5: Hydrogen adsorption isotherm

)

Figure C.6: Hydrogen adsorption isotherm for 7 > pH® > pH)

In figure (C.7) we present the locus of the shock for §(D < & < €U)| where each

dashed line is a shock connecting the left state (J) to a right state &),
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am(§)

§

Figure C.7: Shock locus for 7 > pH®D > pHU)

The shock with the greatest slope is the one connecting the states (J) and (I) (Figure

C.7), which is the shock that satisfies Oleinik condition (Equation C.47).

We now test Oleinik condition for each shock of the auxiliary system (Equation C.1).

The shock velocity Vi, in space w™ is:

_ 3 Y

which can be rewritten as

), (=) =
w w Wy -
— (k) 1713 6))]
Viy =———Ilj=1—- (C.50)
G PLE)

Oleinik condition for equation (C.50) is given by:

), 1 ) ), (=) ) "o )
Y “0 13 ) 20 < L@ %0 3 ) o < LRP%w 3 ) () (C.51)
]= L= J= N J= . :
g YO Wik O W YO
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Thus,
WOl Z O = GG (€.52)
For the first inequality we have:
Wiy = 0 (C.53)
and for the second one

Wi = Wi (C.54)

From equations (C.53) and (C.54) a shock of the auxiliary system is admissible if and

only if it connects initial and injection conditions.

ili.  Vanishing viscosity criteria for shock stability

In this subsection we apply the vanishing viscosity criteria (Liu, 1981) to analyze the
stability of the pH and concentration shock waves of the low salinity waterflooding
problem in the auxiliary plane for a two cations system. For this case, the auxiliary system

and the pH problem are given by:

0a1(EH) | dey

o 59
g dxp
0%5) + % =0 (C.56)
Rewriting equations (C.55) and (C.56) in matrix form:
Ay + V2, =0 (C.57)
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a; (Er f)

;=5 a6 (C.58)
ay(§)
€1

Vey = 50 [C;] (C.59)

A viscous system related to equation (C.57) is:

@y + Ve, = (BB, €)yxy) (C.60)

XD
in which € is a viscous dissipation parameter, such that B (y,e=0) =0.

Considering the case where B =T, in which T'is the (n+ 1) x (n + 1) identity

matrix, we have
B(#,e) =el,e >0,e e R (C.61)

Thus, we can rewrite the matrix system in its viscous form as

aal(a,f) aCl _ 62C1
1) axp  9x}
6a2(5,f) 662 _ 6262
2D 4= e (C.61)

dap(§) , 9§ _ 0%
k 1) + dxp € ax3
The solution for the system (C.61) is given by a travelling wave type of solution with

velocity n = %D. The travelling wave is defined as:

g = Xp=1% (C.62)

€

We assume that the solution can be written as y = [¢;(60),c,(0),é(0)]. Thus,

rewriting equation (C.61) we find:

da;(c&) da;dc, 00 = 0a;dc, 00 = da; d& 90
(68) _ 005dcy 99 | 96 de; 99 0dids 99 (C.63)
dp dcy dB 0¢p  0c, dO d¢ 0¢ d dgp
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aaH(E,f) _ 6aHd_E
dp  9¢ db

From the traveling wave definition, we have

Therefore, we can rewrite equations (C.63) and (C.64) as:

9ai(6d) _ _z(%ﬁ da;dcy %ﬁ)
dp dc, d® ' dcy, dO | 9F db
day(§) _ ndayd§
dp € 0¢ dé

For the flux and viscous terms, we find:

Oyi _ 14y
dxp € do

Py _ (1)2 a2y

ax3 ~ \e/ ae2

Applying equations (C.66)-(C.69) in equation (C.61), we obtain:

__(0a1dcl+%&+%§)+lﬂ_(lZdzcl
dc, d0 ' dc, dO = 9 dO €do

g (dazde; | dazde, | daydf) | 1de, _ (1)2d’cy

N (ac1 e ' dc, d8 ' 93¢ de) € do ()
ogdagdd | 1d§ _ azg

k_ € 05 dO ' edd (e) 62

From system (C.70) we find:

1 [dzcl dcy (6a1 dc; | dagdec, 6(11 df)]
ez  do dc, d  dcy, w0 " 9¢ do
_1 [dZCz _de (@& dazde; | 9az df)]
ez  de dc, dO  dcy, w0+ 9¢ db
1[d?¢ dé& day df] _
[d62 d6+n 9& do =0

Rewriting equation (C.71) in matrix form:

C.15

(C.64)

(C.65)

(C.66)

(C.67)

(C.68)

(C.69)

(C.70)
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d?c, dcy da; da; 04y dcy
d92 E acl aCZ 66 E
1| a%c, | | de2 +n 9a; 9da, %/\dﬁ/zo (C.72)

€| dez? do dcy Ocy a¢&
2 / af / \ day
\@ a0 0 0 3

da; da; 0ay dcy da,
dc, dc, O¢ Pr) a9
da, da, 9a || dep | _ | dap (C.73)

6(,‘1 662 af
\ 0 0 dan

Thus,
&ey dey day
daegz daeo ae
1| d?c, dc; da, | _ R
| 202 70 +n 0 | = 0 (C.74)
da*¢ a day
deZ daoe de

Integration of equation (C.74) with respect to 9:

dcq
/E\‘ 1 a, 74
L Ry <Cz) +7 <a2> + <W2> =0 (C.75)
¢

el a6
de
where W;, W, and W; are integration constants. The conditions to solve the ordinary

differential equation (ODE) (C.75) are:

i (4oL dez ) _
91_@00 (de ' do 'd9) = (0,0,0) (C.76)

; — (& )
61_13100(01, Cp, &) (c1 ,C5 ¢ ) (C.77)
Jim (e, 6,9 = (¢7,¢7,60) (C.78)

Replacing equations (C.76) and (C.78) in equation (C.75), we obtain:

C.16



_ ) g(-
Ci ) ( (c§ ) ) ,§¢ ))\‘ w;
- Cg_) + n aZ(C](__)) Cé_)' E(_)) + <W2> =0 (C79)
=) _
d ay (§)
Therefore, the integration constants are:
W, ( 7 ma(a” g_)'f())\
<W2> o naz( e ,C§—>,5<—)) (C.80)
5( ) —_ naH(f(_))
Replacing equation (C.80) in equation (C.75), we find the following system of ODE’s:
dcy ( ) _na ( ) C(—) Sc(—))
do C1 aq —nai\&
dCz =
(o) ool o[ o0 -mfe ) | =0 s
a& H
\E/ \ £ —nay(§9)
leading to
do G —c; ay _a1(C1 »02 $ )
d —
% ~ ey =i |+ az—az(c1 ) e )) =0 (C.76)
dg§ — & _
\&) \es0) e

and finally
2= (- c?) = n (@ - a(cd.e,60)) =0 €77
= (2= ) = m(as = ay(c,cf69)) = 0 (C78)
L= (6-¢) —n(an—au(§D)) =0 (C.79)

Equations (C.77)-(C.79) are used to find orbits for the stable shock waves of ¢4, ¢,

and ¢ following the vanishing viscosity method.
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From equation (C.77), we define a function H;(cq, ¢z, §) such that
a - ) () (-
ﬁ = (C1 - C§ )) -n (a1 - a1(01( )» C; ):S(( ))) = Hy(c1,¢2,¢) (C.80)

For both C§+) > ci_) and C1(+) < cf_), a necessary and sufficient condition for a stable

orbit is H;(cq, ¢, &) = 0. Thus:

(cl - ci_)) -1 (al —a, (cf_), cg_)f("))) >0,Vc, € (ci_), c1(+)) (C.81)

The velocity of the travelling wave is given by:

=_.
— de — C1 C1 (C 82)
do al(cg_),cé_),g(—))—al(ciﬂ,cg”,{(ﬂ) ’
Thus, from equation (C.81), we find:
=) () £\ ) () £(+) ) ) £\
al(c1 5 & ) a1(01 €5 € ) al(C1 €3 8 ) ay =) .
=5=® > S5 v € (f V) (C.83)
1 1 1 1

The same procedure is done for the other two ODEs. Thus, shock waves that follow
Oleinik condition are shock waves that jump to stable orbits following the vanishing

viscosity criteria.

b. Oleinik condition for the original system of conservation laws of low salinity

waterflooding problem

In this section we evaluate Oleinik condition for discontinuities in the solution of the
system of partial differential equations that model low salinity waterflooding in oil
reservoirs for two dissolved cations in injection water (n = 2). The system of

conservation laws is given by:

C.18



aS_W afW(SIEIE) N

atD t BxD - O

d(cisw+ ai(G8)) n acify(s,c.€) =0, i=12 (C.84)
atD 6JCD

0(Eswt an(®) | 08fw(sEd) _
atD 6xD

The shock waves from the auxiliary system are mapped onto xp X tp plane through

the relations (Pires et al., 2006):

fi
DpH = m (CSS)
fir
b= (C.86)
fir
b ==, (C.87)

where Vy,, V1 and V; are the pH, k = 1 family and k = 2 family shock slopes in xp X ¢
plane. In figure (C.8) we present the characteristic diagram of the auxiliary system

solution and the velocities of each shock wave.
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Figure C.8: Characteristic diagram of the auxiliary system solution

For the relative permeability curves, we use Corey’s model, which is given by:
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rw (Sw, €,8) = ki (8, ) (%)nw(aa (C.88)
kro (5w, €,6) = k7o (6, €) (%m)%(m (C.89)
where the parameters k., k;,, Sor, Ny, and n, are determined through:

Sor(6,€) = 107°S,, + 0.225 — 0.0978.pH (C.90)
ny, (G, &) = —1075S,, + 2.8554 + 0.05214.pH (C.91)
ny(¢, &) = 1075S,, + 2.4258 — 0.4873.pH (C.92)
k;, (¢, &) =2.107°S, + 0.3311 — 0.00517.pH (C.93)
k;,(¢,&) = —2.107°S,, + 05913 + 0.0181.pH (C.94)

Water viscosity p,, is calculated using the properties of brine in reservoir conditions

(McCain Jr., 1991):
ug(T) = AT B (C.95)
A =109.574 — 8.40564 S,; + 0.313314 S(fl +8.72213.1073 Sfu (C.96)

B = 1.12166 — 2.63951.1072 S, + 6.79461.107352, + 5.47119.107553, —

1.55586.10765%, (C.97)
10, (T, P) = up(T)(0.9994 + 4.0295.1075p + 3.1062.10~%p?2) (C.98)

where pp is the viscosity (cP) at atmospheric pressure, T is the temperature (°F), S,; is

the salinity (TDS).

Water fractional flow curves for the constant concentration states in the solution and

the solution path is presented in figure (C.9).
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Figure C.9: Water fractional flow curves and solution path for n = 2
From now on we analyze Oleinik condition for each shock wave, defined as:

fFO)-f _ fD)-fu®)
u—u = uG)—y@® (C.99)

For the pH shock of the auxiliary system solution, Oleinik condition is:

fw o £
5w+Vz;H - S\Ev_)'H/pH

(C.100)

in which Vy is the shock slope in figure C.7. Each shock Vy results in a different right

state [cq,Cy, €], and therefore, a different fractional flow curve. To verify Oleinik

condition, we map all possible Vy, shocks onto f,, X s, plane, determining the shocks
Dpy in xp X tp plane. Locus of the pH shock in f,, X s, plane is presented in figure
(C.10), the green points are the s, shock condition for the shock D, and in figure (C.11)

we show the velocities D,y as a function of the saturation shock condition.
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Figure C.10: Locus of pH shock in f;, X s,, plane
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Figure C.11: Velocities of the pH shock

In figure (C.11) the blue point is the velocity of the shock wave that satisfies Oleinik
condition in the auxiliary system solution. This is the smallest shock speed, and therefore

satisfies Oleinik condition in xp X tp plane.

A similar analysis for the other two shock waves of the auxiliary system was

U] 0))

<w, < wy’, w, =w; and £D. The concentration

developed. For the shock V5, ng )

locus of the shock is calculated changing w, from the condition (J) to condition (I) and

the relation:
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1 (or@lE®) o Oloma )

R T O RTCD (10D
The shock velocity V, for each point can be determined through the expression:
N P R W () WSO BN (>
V; = wy [T ey | @2 <w, < w, (C.102)

After the concentration shock condition is calculated, the water fractional flow curves
may be determined (Figure C.12). The saturation shock locus is found following the same

procedure described for the pH shock (Figure C.12).
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Figure C.12: Locus of w, shock mapped into f,, X s,, plane

The red point is the saturation shock condition that satisfies Oleinik condition in the

auxiliary system solution, also the smallest shock velocity in xp X tp plane.

C.23



D,

1.55 .

15 1 1 1 1 1 1
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
w

Figure C.13: Velocities of the w, shock locus

fj) <w; < wil), Wy = a)él) and

Following the same steps for the shock V;, where w
&M The fractional flow curves calculated from the concentration locus of shock V; are

presented in figure (C.14).
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Figure C.14: Locus of w; shock
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Figure (C.15) shows the shock velocities for the saturation condition of w; shock. The
shock that satisfies Oleinik condition in the auxiliary plane xp X @ has the lowest velocity

in xp X tp plane (red point). Therefore, this shock also satisfies Oleinik condition.
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Figure C.15: Velocities of the w; shock
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