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Abstract

The use of Water Alternating Gas (WAG) recovery technique has recently increased

in the Brazilian pre-salt discoveries. This method is useful in oil fields containing large

CO2 amounts, where the produced gas must be re-injected into the reservoir, achieving

higher recovery factors when compared to traditional gasflooding. The alternated injec-

tion of water and gas slugs allies the good microscopic displacement efficiency of the

gas phase with the mobility control provided by the water phase increasing the overall

efficiency factor. Mathematical solutions are very important in the understanding of the

WAG process because it brings a complete perspective of the physical phenomenon

that cannot be obtained by numerical simulation only.

This document presents the development made in four years of doctoral research

that improves the mathematical comprehension of the WAG recovery process. First it

is discussed the immiscible simultaneous three-phase flow problem, where analytical

solutions were developed using the method of characteristics considering concave rela-

tive permeability curves, common in high heterogeneous scenarios. Then the problem

of step-variable boundary conditions is presented including an application to injectivity

well test analysis. Finally, the mathematical solution for both immiscible and misci-

ble WAG problem is built, where the interactions between different characteristics in

the solution domain are treated by the wave interaction theory. Several examples are

given throughout the thesis showing that all proposed mathematical solutions show

good agreement when compared to numerical simulation results. Examples are fully

discussed with a detailed explanation about the physical phenomena involved in each

case.

Keywords: Water Alternating Gas, Method of Characteristics, Enhanced Oil

Recovery, Miscible Displacement, Injectivity Test.
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Resumo

Com as recentes descobertas brasileiras do pré-sal ocorreu um aumento signifi-

cativo na utilização do método de injeção alternada de água e gás (do inglês Water

Alternating Gas - WAG). Esse processo é útil em campos com altos teores de CO2

onde o gás produzido precisa ser reinjetado no reservatório, aumentando significati-

vamente os fatores de recuperação quando comparado com a injeção tradicional de

gás (gasflooding). A injeção alternada de bancos de água e gás combina a boa efi-

ciência microscópica de deslocamento do gás com o controle de mobilidade devido à

água, aumentando a eficiência de recuperação média do campo. Soluções matemáti-

cas possuem grande importância no entendimento do método WAG pois são capazes

de mostrar aspectos relevantes que não poderiam ser observados a partir do uso de

simulação numérica apenas.

Esse documento apresenta os resultados obtidos ao longo de quatro anos de uma

pesquisa de doutorado que resultou na melhoria da compreensão física e matemática

a respeito do método WAG. Primeiramente é discutido o problema do fluxo trifásico

imiscível em meios porosos, onde soluções analíticas são desenvolvidas a partir do

método das características considerando curvas de permeabilidade relativa côncavas,

comuns em meios altamente heterogêneos. Na sequência é apresentado o problema

de condições de contorno variáveis, incluindo uma aplicação em testes de injetividade.

Finalmente, a solução matemática dos problemas WAG miscível e imiscível são discu-

tidas, onde as interações entre as diferentes características no domínio são tratadas a

partir da teoria da interação de ondas. Vários exemplos são apresentados ao longo da

tese, mostrando uma boa concordância entre as soluções analíticas e numéricas. Os

fenômenos físicos envolvidos em cada um desses exemplos são analisados em cada

caso estudado.

Palavras Chave: Injeção Alternada de Água e Gás, Método das Caracterís-

ticas, Recuperação Avançada de Petróleo, Deslocamento Miscível, Teste de Injetivi-

dade.
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1 Introduction

The Water Alternating Gas (WAG) method consists of the alternated injection of

water and gas slugs in an oil reservoir in order to increase the recovery efficiency.

This scheme is an Enhanced Oil Recovery (EOR) method that combines the high dis-

placement efficiency of the gas injection and the mobility control provided by the water

injection, increasing both vertical and horizontal sweep efficiency and stabilizing the

gas injection front (CHRISTENSEN et al., 2001).

The WAG scheme was first applied in the North Pembina field in Canada, oper-

ated by Mobil in 1957 (CHRISTENSEN et al., 2001). Many projects are reported in

literature showing an increment in oil recovery between 2 and 20% (CHRISTENSEN

et al., 2001). For immiscible WAG applications, the incremental recovery efficiency

varies between 1 to 13% of original oil in place (OOIP), depending mainly on the oil

API (HOLTZ, 2016). Recent developments are based on the combination of WAG with

other recovery methods as Foam Assisted WAG (FAWAG), Polymer Alternating Gas

(PAG) or Water Alternating High-Pressure Air Injection (WAHPAI), are the most com-

mon applications of CO2 and brine as injected gas and water, due to its high miscibility

with oil and economical aspects (AFZALI et al., 2018).

A WAG project can be divided in two main phases: screening and implementation.

During the screening phase, laboratory, mathematical modeling and simulation stud-

ies are performed to evaluate rock and fluid interaction and estimating the additional

oil recovery. The implementation usually starts with a pilot project, usually with a well

located in a relatively isolated part of reservoir for performance evaluation (NADESON

et al., 2004). Awan et al. (2008) reviewed 19 EOR projects in the North Sea, including

7 WAG, 1 SWAG and 2 FAWAG, between 1975 and 2005 concluding that some tech-

nological restrictions such as hydrate formation, injectivity loss, availability of CO2, high

well spacing due to offshore costs; and reservoirs characteristics such as heterogene-

ity, thickness and anisotropy may impact the expected oil recovery.

Besides geological and fluid limitations, some operational issues can lead the

project to fail during the implementation phase. Apart from equipment failured, the
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main issue is the injectivity reduction after fluid cycling, controlled mainly by the rock

wettability (ROGERS; GRIGG, 2001). Wettability is a parameter so important in WAG

design that, for example, Zahoor et al. (2011) concluded that a proper WAG project

requires not only a good understanding of initial rock wettability but also its variation

with the injected fluid, considering adsorption phenomena and deposition of organic

and inorganic components present in crude oil.

During WAG design, some uncertainty factors like heterogeneity can lead to per-

fomance forecast deviations, thus after project implementation, surveillance is the only

way to determine where the techniqie is efficient and additional recovery will be ob-

tained. One of the most used techniques is tracer injection, in which different molecules

that are not present in reservoir fluids are injected with gas and water, and analyzed in

the producer wells (YANG et al., 2000). Tracer injection, combined with fluid sampling

and production well logging were successful applied in the Prudhoe Bay field, Alaska,

allowing comparisons between the effects in different regions of the drainage pattern,

that led to infill drilling projects to improve oil recovery in poorly swept zones (PANDA

et al., 2010).

1.1 WAG Method Classification

The WAG method can be classified according to two main attributes, fluid charac-

teristics and injection technique (SHAHVERDI, 2012). Related to the fluid characteris-

tics, it can be classified into one of the following groups:

1. Miscible WAG (MWAG):

The injected gas is miscible with the original oil in reservoir, where the decrease of

interfacial tension between phases increases the displacement efficiency (SHAHVERDI,

2012; MAMANI, 2016; AFZALI et al., 2018). Generation and maintenance of an

stable miscible front between injected gas and reservoir oil depends mainly on

four factors: oil composition, temperature, pressure and gas composition. Among

them, only pressure and gas composition can be controlled for production opti-

mization (CHRISTENSEN et al., 2001);

2. Immiscible WAG (IWAG):

When the miscibility effect at reservoir pressure and temperature is not achieved,

simultaneous flow of oil, gas and water in reservoir will take place. The surface

tension between fluids decreases the displacement efficiency when compared to
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the MWAG, however, this method still reaches higher recovery factors than pure

gas or water injection (CHRISTENSEN et al., 2001);

3. Water Alternating Steam Process (WASP):

This processes was originally developed to overcome steam injection problems,

such as channeling, segregation, and fingering (AFZALI et al., 2018). This method

is recommended for heavy oil reservoirs in which the steam thermal energy de-

creases the oil viscosity and improves oil production. The WASP has advantages

over the continuous steam injection due to the enhancement of both areal and

vertical injection front conformance;

4. Foam Assistant WAG (FAWAG):

The main problem of the gas injection in reservoir is the mobility control, because

of early breakthrough cauded by gas mobility. Even though the water controls

the gas mobility in traditional WAG, in scenarios with high rock heterogeneity an

additional mobility control method should be employed. The foam injection can

be used in those cases, increasing the gas viscosity and improving the recovery

factors when compared to traditional IWAG (AFZALI et al., 2018);

5. Polymer Alternating Gas (PAG):

The addition of polymer to the water can be employed to increase its viscosity and

consequently delays the water breakthrough in heavy oil reservoirs. The main

advantage of PAG compared to the traditional WAG is that the same recovery

factor is obtained using less gas (AFZALI et al., 2018);

6. Chemically Enhanced WAG (CWAG):

This is a general term used for any chemical component added to the water

phase to control the mobility, to reduce the interfacial tension between fluids and

to modify the rock wettability. The most used components in industry are alkalys,

surfactants and emulsifiers (AFZALI et al., 2018).

Related to the injection technique, three can be cited:

1. Conventional WAG:

Alternated slugs of water an gas are injected in the reservoir, where the slug ratio

and cycling frequency can be optimized to increase the oil recovery (SHAHVERDI,

2012). Usually, the most used WAG ratio is 1:1, but this parameter has low in-

fluence in oil recovery factor when compared to other, specially in mixed-wet

formations (CHRISTENSEN et al., 2001; AFZALI et al., 2018);
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2. Simultaneous WAG (SWAG):

In order to minimize fingering or fluid segregation in reservoirs, it has been de-

veloped the SWAG method. It consists of injecting gas and water together in the

same well, maximizing the contact between phases (SHAHVERDI, 2012). The

method was first tested in field scale in 1963 in Texas, during an injection project

of water enriched with gas at high pressures (AFZALI et al., 2018);

3. Hybrid WAG (HWAG):

This method is also known as Denver Unit WAG (DUWAG) due to the pilot test

performed in Wasson field in Texas that started in 1983 and consists of a massive

injection of CO2 (sometimes around 40% of porous volume) followed by small 1:1

cycles of gas and water (SHAHVERDI, 2012; AFZALI et al., 2018). The main

advantage of this technique is the increase of reservoir pressure and reduction

of surface tension provided by the initial CO2 injection, followed by the increase of

sweep efficiency achieved by the small WAG cycles.

1.2 Mathematical Modeling and Analytical Solutions

Buckley e Leverett (1942) published one of the first solutions for the two-phse flow

problem in porous media. It was assumed one-dimensional transient oil displacement

by an immiscible fluid (water or gas) in an homogeneous reservoir, neglecting gravita-

tional and capillary effects. Three-phase flow solutions are more complicated, because

some standard assumptions of the Buckley-Leverett equation can lead to mathemat-

ically ill-posed problems (BELL et al., 1986; HOLDEN, 1990; MARCHESIN; PLOHR,

2001). Nevertheless, comparing the most common three-phase relative permeability

models (STONE, 1970; BAKER, 1988; COREY et al., 1956; DELSHAD; POPE, 1989)

such elliptical regions are usually small and do not cause numerical instabilities dur-

ing numerical simulations (SHEARER; TRANGENSTEIN, 1989) nor create physically

inadmissible solutions (GUZMÁN; FAYERS, 1997a; GUZMÁN; FAYERS, 1997b).

There is no agreement in literature if the existence of elliptical regions in three-

phase solutions is caused by physical reasons or is a direct consequence of the simpli-

fied relative permeability models (JUANES; PATZEK, 2003; JUANES; PATZEK, 2004a;

JUANES; PATZEK, 2004b; JUANES; PATZEK, 2004c; JUANES, 2005). Jackson e

Blunt (2002) investigated if elliptical regions can appear in a theoretical pore-scale

model made from a bundle of cylindrical pores of different sizes, if it obeys the Darcy’s

law and if the relative permeability is a function of the saturations only. When gravita-
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tional effects are included in this model, elliptical regions appear in a large area of the

ternary saturation diagram, concluding that elliptical regions may not be created by the

relative permeability models.

Another effect that impacts WAG modeling is the mass exchange between injected

and displaced phases. Using a tie line construction to model miscible effects, Dindoruk

(1992) solved the one-dimensional two-phase miscible case, considering up to four

components system. Solutions considering the displacement of oil by a single com-

ponent gas was tested experimentally using a slim-tube CO2 injection (JOHNS; ORR,

1996). Even though the minimum miscibility pressure results are consistent, the pro-

duced oil composition suggests that the dispersion free hypothesis may not be correct.

The one-dimensional multi-component miscible solution was obtained by Bedrikovet-

sky et al. (2004) using a lifting technique, where the equations are divided in a new

auxiliary system containing only thermodynamic variables and a single independent

lifting equation that depends on both hydrodynamic and thermodynamic variables.

The hysteresis effect can be modeled creating a new variable related to the stu-

rayion point in the relative permeability curve (BEDRIKOVETSKY et al., 1996; BEDRIKOVET-

SKY, 1997). For three-phase solutions, it was included the effect of molecular discon-

tinuity of the oil phase (ganglionar trapping), causing an increment of injected phase

velocity, decreasing the miscible WAG recovery factor. The hysteresis due to oil ganglia

effects can be evaluated for two-phase flow of oil and water, creating different solutions

for imbibition and drainage processes (KATS; DUIJN, 2001). The relative permeability

hysteresis of gas phase can also be modeled by this model, achieving a good agree-

ment when compared to numerical solutions (PLOHR et al., 2002).

1.3 Thesis Organization

The main objective of this thesis is the development of a mathematical solution for

the WAG injection scheme that considers both immiscible and miscible effects. The so-

lution is built using the method of characteristics, in which the interactions between the

characteristics caused by a variable boundary condition, inherent of the WAG method,

are treated using the wave interaction theory. This doctoral research resulted in six

different publications, each one is a chapter of this volume.

In the next chapter we discuss the analytical solutions for one-dimensional, three-

phase, incompressible flow in porous media. The next two chapters present a new

method to approximate the solution of step-rate injectivity tests. The related papers
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show how a variable boundary condition affects the analytical solution of oil displace-

ment problems and how it can be applied in injectivity test analysis. The fifth chap-

ter presents our very first results regarding the WAG method, where an approximate

method is discussed for large injection cycles cases, when the breakthrough shock

front has already reached the outlet of the domain.

Chapters six and seven are the main core of this thesis. First we adapt the wave

interaction theory to immiscible WAG problems, where each wave interaction is treated

as a Riemann problem. Then, we formulate and solve the miscible WAG scheme where

the injected gas and the original oil fluid exchange mass during the flow. Examples are

given throughout the thesis that show that all proposed mathematical solutions show

good agreement to numerical simulation results. The examples are discussed and the

physical phenomena involved in each case are analyzed.
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A R T I C L E I N F O

Keywords:
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Immiscible flow

A B S T R A C T

Three-phase flow in porous media may appear in different scenarios during the production life of a hydrocarbon
reservoir. The simultaneous flow of different phases is modeled by relative permeability curves which are
fundamental to petroleum production analysis and forecast. Laboratory experiments are the main source of
data for relative permeability curves. Mathematical solutions for multiphase flow in porous medium are key for
determining relative permeability curves from laboratory data, to check numerical reservoir simulation results
and for screening an enhanced oil recovery technique. The complexity of reservoir modeling and the use of
numerical optimization to history match the laboratory data have shown the importance of concave relative
permeability curves. In this paper we present the analytical solution for one-dimensional incompressible
immiscible three-phase flow in porous media, where the relative permeability functions are described by
concave curves. The hyperbolic system of equations that results from mass conservation is solved by the method
of characteristics. The results show close agreement to numerical solutions.

1. Introduction

Multi-phase flow in porous medium is an important research area
in the petroleum industry. Waterflooding is the most used recovery
technique, and a third hydrocarbon phase can exist through a gas cap or
it can be created during field production if it is depleted below bubble
point. Darcy’s law models the simultaneous flow of two or three phases,
and the relative permeabilities relate the mobility of the phases. These
curves are obtained using coreflood experiments, where one or two
phases are injected in a core while the pressure and the effluent rates
are measured. There are two kinds of experiments based in the flow
regime: steady-state and transient.

For steady-state experiments, two or three phases are injected si-
multaneously in a core until a steady-state condition is achieved. The
relationship among the phase rates creates a particular saturation in
the core, and the relative permeability of each phase can be directly
obtained using the Darcy’s law. Details of experimental apparatus and
results for different rocks are largely reported in literature [1–9].

In the transient approach, pressure and cumulative production are
measured since the beginning of the experiment and the relative per-
meability curves are obtained through the solution of an inverse prob-
lem [10–15]. The main advantage of this method is that the permeabil-
ity curves are obtained in a single experimental running, making this
method faster and simpler. The main problem is that the experimental

∗ Corresponding author.
E-mail addresses: wagnerqb@gmail.com (W.Q. Barros), puime@lenep.uenf.br (A.P. Pires), alvaroperes@lenep.uenf.br (A.M.M. Peres).

curves depend on the hypothesis adopted for the inverse problem
solution.

The inverse problem can be solved by two different ways: using
analytical solutions of governing equations [10–13,16–19] and using
numerical optimization techniques [20–29]. The first method is pre-
ferred because it is faster and free of numerical errors. However, for
complex scenarios like miscible flooding, thermal effects and heavy oils;
analytical solutions may not be available [28,29]. Thus, the develop-
ment of new mathematical models and solutions considering different
scenarios are fundamental.

Concave relative permeability curves are not as common as the
convex ones, but it may appear in different conditions:

1. Steady-state experiments [13];
2. Transient experiments in which the original reservoir wettability

is preserved [30];
3. Use of numerical optimization to solve the transient coreflood

experiments [21,25,29,31];
4. History matching full-field production data changing not only

geological parameters, but also the relative permeability curves
used in reservoir simulators [32–35].

Thus, the analysis of the mathematical aspects of three-phase flow using
concave relative permeability curves is important to better understand
its recovery factor impact in reservoir simulation.

https://doi.org/10.1016/j.ijnonlinmec.2021.103792
Received 19 April 2021; Received in revised form 14 July 2021; Accepted 28 July 2021
Available online 14 August 2021
0020-7462/© 2021 Elsevier Ltd. All rights reserved.
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Analytical solutions for two-phase flow [36] considers one-
dimensional transient oil displacement by an immiscible fluid (water or
gas) in an homogeneous reservoir. Capillary and gravitational effects
were further included by Sheldon and Cardwell [37], Fayers and
Sheldon [38]. Two-phase solutions considering mass exchange between
phases were built using tie-lines [39–42].

Analytical solutions for three-phase immiscible flow in horizontal
and homogeneous porous medium, neglecting capillary, dispersion and
gravitational forces, are classified in three main groups [43]: hyperbolic
with a single umbilic point [44–49], hyperbolic with multiple umbilic
points [43,45] and mixed hyperbolic and elliptic [45,50,51]. The exis-
tence of these regions creates new waves that are not fully described
using the classical Riemann problem theory. For example, transitional
shocks appears in problems with an unique umbilic point, in which
the traditional Rankine–Hugoniot and Lax equations are insufficient to
determine the solution stability [44,52,53].

Traditionally, all hypothesis with respect to Darcy’s law validity
are assumed during construction of three-phase immiscible equations.
However, both Darcy’s law and Buckley–Leverett equations can be
obtained by modeling the microscopic creeping flow through proper
upscaling by homogenization techniques [54] or using the mixture
theory [55]. Relaxing the assumption that viscous friction within the
fluid can be neglected it is possible to deduce the Brinkman and the
Forchheimer’s terms creating more realistic models for flow in porous
media [55,56]. Considering a pressure dependent viscosity model, it
is possible to show a dependence of the relative permeability curve
on the fluid pressure, even for rigid solid matrices, when considering
the linear flow in thin channels [57,58]. If this dependence of viscosity
on pressure is strong and the exponential viscosity model is used, the
traditional Darcy’s approach may under-predict the pressure gradient
field [56,59,60].

Understanding the mathematical structure of three-phase solutions
can give us insights of how is the most efficient way to explore a
petroleum reservoir. The final oil recovery is strongly affected by
the reservoir characteristics (permeability, fluid viscosities, relative
permeability curves), by the proportion of water and gas flowing
simultaneously in the porous medium [47,61,62] and by the in-place
oil saturation condition [63]. However, all of the solutions already pub-
lished in literature considers only convex relative permeability curves.
To the best of our knowledge, there are no published solutions for
three-phase flow using concave relative permeability functions, typical
of Corey’s exponents less than one.

In this work, we present the analytical solution for the displacement
of oil by water and gas in one-dimensional porous media using concave
relative permeability functions. In Section 2 we show the mathemat-
ical development and the general solution of the Riemann problem,
including the stability conditions. Next section presents the general
solution considering different injection conditions (Section 3). Then,
some conclusions are addressed.

2. Mathematical model of three-phase immiscible flow

We consider the linear displacement of oil by a mixture of gas and
water in a homogeneous and isotropic reservoir initially saturated with
oil at irreducible water saturation. Additional hypothesis are:

1. Immiscible and isothermal flow;
2. Negligible dispersion, gravitational and capillary effects;
3. Incompressible fluids and porous media;
4. Constant viscosity;
5. Darcy’s law is valid;
6. Constant cross sectional area.

Under these assumptions, the transport equation for each phase is given
by:
𝜕𝑆𝜋
𝜕𝑡

+ 1
𝜙
𝜕𝑣𝜋
𝜕𝑥

= 0, for 𝜋 = 𝑤, 𝑜, 𝑔 (1)

in which 𝜙 is the rock porosity, and 𝑆𝜋 and 𝑣𝜋 are the saturation and
velocity of phase 𝜋. In this work, the aqueous, oleic and gaseous phase
are denoted by 𝑤, 𝑜, 𝑔, respectively. Using Darcy’s equation, the velocity
of each phase can be calculated by:

𝑣𝜋 = −
𝐾𝑘𝑟𝜋
𝜇𝜋

𝜕𝑃
𝜕𝑥

(2)

where 𝐾 and 𝑘𝑟𝜋 are the absolute and relative permeabilities, 𝜇𝜋 the
phase viscosity and 𝑃 the fluid pressure. Phase normalized saturations
are defined by:

⎧⎪⎪⎨⎪⎪⎩

𝑆𝑛𝑤 = 𝑆𝑤−𝑆𝑤𝑖
1−𝑆𝑤𝑖−𝑆𝑜𝑟

, 𝑆𝑤 ∈
[
𝑆𝑤𝑖, 1 − 𝑆𝑜𝑟

]

𝑆𝑛𝑜 =
𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑤𝑖−𝑆𝑜𝑟
, 𝑆𝑜 ∈

[
𝑆𝑜𝑟, 1 − 𝑆𝑤𝑖

]

𝑆𝑛𝑔 = 𝑆𝑔
1−𝑆𝑤𝑖−𝑆𝑜𝑟

, 𝑆𝑔 ∈
[
0, 1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟

]
(3)

where 𝑆𝑤𝑖 is the irreducible water saturation and 𝑆𝑜𝑟 the residual
oil saturation. We define the following dimensionless time and space
coordinates:

𝑥𝐷 = 𝑥
𝐿

(4)

𝑡𝐷 =
∫ 𝑡
0 𝑞 (𝜏) 𝑑𝜏(

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟
)
𝐴𝐿𝜙

(5)

where 𝐿 is the porous media length, 𝐴 is the cross sectional area, and
𝑞 is the total injected flow rate measured at the inlet point (𝑥𝐷 = 0).
Thus, Eq. (1) can be written in its dimensionless form as:
𝜕𝑆𝑛𝜋
𝜕𝑡𝐷

+
𝜕𝑓𝜋
𝜕𝑥𝐷

= 0, for 𝜋 = 𝑤, 𝑜, 𝑔 (6)

in which 𝑓𝜋 is the fractional flow of phase 𝜋:

𝑓𝜋 =
𝜆𝜋
𝜆𝑇

=
𝑘𝑟𝜋
𝜇𝜋

𝑘𝑟𝑤
𝜇𝑤

+ 𝑘𝑟𝑜
𝜇𝑜

+ 𝑘𝑟𝑔
𝜇𝑔

(7)

where 𝜆𝜋 is the mobility for phase 𝜋 and 𝜆𝑇 is the total system mobility.
The three-phase relative permeability curves are given by the power-
law model (Corey’s model [4]). We also follow Sarem’s approach [12,
16], where the relative permeability of each phase is a function of its
own saturation. Under these considerations, the relative permeability
of each phase is given by:

⎧⎪⎪⎨⎪⎪⎩

𝑘𝑟𝑤 = 𝑘𝑆𝑜𝑟
𝑟𝑤

(
𝑆𝑛𝑤

)𝑛𝑤
𝑘𝑟𝑜 = 𝑘𝑆𝑤𝑖

𝑟𝑜
(
𝑆𝑛𝑜

)𝑛𝑜
𝑘𝑟𝑔 = 𝑘𝑆𝑜𝑟

𝑟𝑔
(
𝑆𝑛𝑔

)𝑛𝑔
(8)

in which 𝑘𝑆𝑤𝑖
𝑟𝑜 is the relative permeability of oil at 𝑆𝑤𝑖 and 𝑘𝑆𝑜𝑟

𝑟𝑤 and 𝑘𝑆𝑜𝑟
𝑟𝑔

are the relative permeability of water and gas phases at 𝑆𝑜𝑟. The terms
𝑛𝑤, 𝑛𝑜, and 𝑛𝑔 are the Corey’s exponents for each phase.

For three-phase conservation laws, the 2 × 2 system hyperbolicity
depends on the eigenvalues of the Jacobian matrix of the flux vector
and it is linked to the relative permeability curves model. When the
eigenvalues are real and different, the problem is called strictly hy-
perbolic and the solutions are well known. However, depending on
the relative permeability curves, there are umbilic points where two
or more eigenvalues are real and equal, leading to issues regarding
uniqueness and existence of solutions. Eventually there are regions in
the domain in which the eigenvalues are complex, generating elliptic
ill-posed problems [43,46,50,64,65].

In this work, we consider the problem for concave relative perme-
ability curves, obtained when 𝑛 ∈ (0, 1). Fig. 1 compares the relative
permeability and the water fractional flow for 𝑛𝑤 = 𝑛𝑜 = 0.5 and for
𝑛𝑤 = 𝑛𝑜 = 2.0. Note that the relative permeability function concavity
leads to different behavior of the fractional flow curve. For the concave
case the 𝑓𝑤 derivative tends to infinity when one phase saturation goes
to zero. This behavior changes the saturation profile solution when
compared to convex relative permeability curves problems.

2
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Fig. 1. Comparison between convex and concave relative permeability and water fractional flow curves using Corey’s model (𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 2. Eigenvalues (log (𝜆−) and log
(
𝜆+

)
) for

(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3) and

(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4) (𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

2.1. Solution in the saturation triangle

The saturations are limited by 𝑆𝑛𝜋 ∈ [0, 1] and by 𝑆𝑛𝑤+𝑆𝑛𝑜+𝑆𝑛𝑔 = 1.
As a consequence, we need to solve only two saturations. In this work
we choose water and oil phases:
(

1 0
0 1

)⎛⎜⎜⎝

𝜕𝑆𝑛𝑤
𝜕𝑡𝐷
𝜕𝑆𝑛𝑜
𝜕𝑡𝐷

⎞
⎟⎟⎠
+
⎛
⎜⎜⎝

𝜕𝑓𝑤
𝜕𝑆𝑛𝑤

𝜕𝑓𝑤
𝜕𝑆𝑛𝑜

𝜕𝑓𝑜
𝜕𝑆𝑛𝑤

𝜕𝑓𝑜
𝜕𝑆𝑛𝑜

⎞
⎟⎟⎠

⎛
⎜⎜⎝

𝜕𝑆𝑛𝑤
𝜕𝑥𝐷
𝜕𝑆𝑛𝑜
𝜕𝑥𝐷

⎞
⎟⎟⎠
=

(
0
0

)
(9)

Using Corey’s model for relative permeabilities, the flux function is

given by (Eq. (8)):

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝑓𝑤 =
𝑘𝑆𝑜𝑟𝑟𝑤
𝜇𝑤

𝑆𝑛𝑤
𝑛𝑤

𝑘𝑆𝑜𝑟𝑟𝑤
𝜇𝑤

𝑆𝑛𝑤
𝑛𝑤 + 𝑘𝑆𝑤𝑖

𝑟𝑜
𝜇𝑜

𝑆𝑛𝑜
𝑛𝑜 +

𝑘𝑆𝑜𝑟𝑟𝑔
𝜇𝑔

(1−𝑆𝑛𝑤−𝑆𝑛𝑜)𝑛𝑔

𝑓𝑜 =
𝑘𝑆𝑤𝑖
𝑟𝑜
𝜇𝑜

𝑆𝑛𝑜
𝑛𝑜

𝑘𝑆𝑜𝑟𝑟𝑤
𝜇𝑤

𝑆𝑛𝑤
𝑛𝑤 + 𝑘𝑆𝑤𝑖

𝑟𝑜
𝜇𝑜

𝑆𝑛𝑜
𝑛𝑜 +

𝑘𝑆𝑜𝑟𝑟𝑔
𝜇𝑔

(1−𝑆𝑛𝑤−𝑆𝑛𝑜)𝑛𝑔

(10)

3
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Fig. 3. Stability criteria (log (𝛥)) for
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3) and

(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4) (𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 4. Integral curves for
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3) and

(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4) (𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 5. Hugoniot locus for different 𝐽 points along the 𝑆𝑛𝑤𝑆𝑛𝑔 edge (𝑛 = 𝑛𝑤 = 𝑛𝑜 = 𝑛𝑔 = 0.5, 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

The eigenvalues of the Jacobian of flux vector (System (9)) are:

𝜆± = 1
2

(
𝜕𝑓𝑤
𝜕𝑆𝑛𝑤

+
𝜕𝑓𝑜
𝜕𝑆𝑛𝑜

)
± 1
2

√(
𝜕𝑓𝑤
𝜕𝑆𝑛𝑤

−
𝜕𝑓𝑜
𝜕𝑆𝑛𝑜

)2
+ 4

(
𝜕𝑓𝑤
𝜕𝑆𝑛𝑜

𝜕𝑓𝑜
𝜕𝑆𝑛𝑤

)
(11)

and the system is strictly hyperbolic if:

𝛥 ≡
(

𝜕𝑓𝑤
𝜕𝑆𝑛𝑤

−
𝜕𝑓𝑜
𝜕𝑆𝑛𝑜

)2
+ 4

(
𝜕𝑓𝑤
𝜕𝑆𝑛𝑜

𝜕𝑓𝑜
𝜕𝑆𝑛𝑤

)
> 0 (12)

4
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Fig. 6. Hugoniot locus and eigenvalues along 𝑟1 curve for
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3) and

(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4) (𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Table 1
General solution of System (9) for concave relative permeability curves.

Case 𝑓 ′

𝑤𝑔

(
𝑟∗1
) ≤ 𝜎

(
𝑟∗1 , 𝑓

∗
𝑟1

)
Injection condition Solution profile

3.1-a True 𝐽 = 𝑆𝑛𝑤
(
𝐽 = 𝑆𝑛𝑤

)
→ 𝑓 ∗

𝑤 − 𝐼
3.1-b True 𝑟∗1 < 𝐽 < 𝑆𝑛𝑤 (𝐽 ) →

(
𝑟∗1
)
→ 𝑓 ∗

𝑟1
− 𝐼

3.1-c True min 𝑓 ′

𝑔𝑤 < 𝐽 < 𝑟∗1 (𝐽 ) → 𝑇 −
(
𝑟∗1
)
→ 𝑓 ∗

𝑟1
− 𝐼

3.1-d True 𝑟∗1 < 𝐽 < min 𝑓 ′

𝑔𝑤 (𝐽 ) −
(
𝑟∗1
)
→ 𝑓 ∗

𝑟1
− 𝐼

3.1-e True 𝐽 = 𝑟∗1
(
𝐽 = 𝑟∗1

)
→ 𝑓 ∗

𝑟1
− 𝐼

3.1-f True 𝑆𝑛𝑔 < 𝐽 < 𝑟∗1 (𝐽 ) →
(
𝑟∗1
)
→ 𝑓 ∗

𝑟1
− 𝐼

3.1-g True 𝐽 = 𝑆𝑛𝑔
(
𝐽 = 𝑆𝑛𝑔

)
→ 𝑓 ∗

𝑔 − 𝐼

3.2-a False 𝐽 = 𝑆𝑛𝑤
(
𝐽 = 𝑆𝑛𝑤

)
→ 𝑓 ∗

𝑤 − 𝐼
3.2-b False 𝐽 ∈

(
𝑆𝑛𝑤 , 𝑆𝑛𝑔

)
(𝐽 ) → 𝑇 − 𝐼

3.2-c False 𝐽 = 𝑆𝑛𝑔
(
𝐽 = 𝑆𝑛𝑔

)
→ 𝑓 ∗

𝑔 − 𝐼

For all points inside the ternary triangle 𝜆− < 𝜆+ (slow and fast
eigenvalues), except at the umbilic points where eigenvalues are equal.
System (9) is solved by the method of characteristics [66–68].

2.1.1. Rarefaction waves
The rarefaction part of the solution is found by solving the following

ODE system:

𝑑 ⃖⃖⃖⃗𝑆𝑛
𝑑𝜉

= ⃖⃖⃖⃗𝑟±
(
⃖⃖⃖⃗𝑆𝑛

)
(13)

where 𝜉 = 𝑥𝐷∕𝑡𝐷 is the self-similar variable and ⃖⃖⃖⃗𝑟± are the fast and
slow right eigenvectors of the Jacobian. The rarefaction waves follow
a continuous path in the ternary triangle for each eigenvalue, written
as:
(
𝑑𝑆𝑛𝑤
𝑑𝑆𝑛𝑜

)±
= −

𝜕𝑓𝑤
𝜕𝑆𝑛𝑜(

𝜕𝑓𝑤
𝜕𝑆𝑛𝑤

− 𝜆±
) (14)

Note that along each rarefaction curve, the solution is valid if
the associated eigenvalue increases monotonically along the integral
path [69], condition called geometrical compatibility criteria.

2.1.2. Shock waves
This problem also admits weak solutions, called shock waves. A

valid shock must conserve the mass of all phases across a discontinuity,
where each side is denoted by 𝐿 (left) and 𝑅 (right). This restriction
is known as Rankine–Hugoniot condition and is used to calculate the
shock speed 𝜎 = 𝜎 (𝐿,𝑅):

⎧⎪⎨⎪⎩

𝜎
(
𝑆𝐿
𝑛𝑤 − 𝑆𝑅

𝑛𝑤
)
=
(
𝑓𝐿
𝑤 − 𝑓𝑅

𝑤
)

𝜎
(
𝑆𝐿
𝑛𝑜 − 𝑆𝑅

𝑛𝑜
)
=
(
𝑓𝐿
𝑜 − 𝑓𝑅

𝑜
) (15)

Fixing the 𝐿 point in the domain it is possible to define the Hugoniot
locus,  (𝐿), as the geometrical place of all possible 𝑅 points inside the
ternary triangle, in which the Rankine–Hugoniot is satisfied. All points
in  (𝐿) are possible weak solutions of System (9). To determine which
one is the admissible, we are using both stability criteria defined by
Liu [67,68] and Lax [66].

2.2. Numerical solution method

In order to check the analytical solutions, the saturation profiles are
compared with a numerical first order explicit upwind method [70].
This scheme was chosen over other methods because, besides its sim-
plicity, it does not generate numerical oscillation, allowing a com-
parison even at small shock regions. To minimize numerical diffusion
effects the spatial domain is discretized with 100,000 cells in all cases
shown in this work.

5



W.Q. Barros, A.P. Pires and A.M.M. Peres International Journal of Non-Linear Mechanics 137 (2021) 103792

Fig. 7. Water–oil fractional flow and its tangent at 𝑓 ∗
𝑤 (𝑛 = 𝑛𝑤 = 𝑛𝑜 = 𝑛𝑔 = 0.25,

𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

3. System solution

In this section we discuss the general solution of System (9) for
the case of different Corey’s exponent (𝑛𝑤, 𝑛𝑜, 𝑛𝑔 ∈ (0, 1)), considering
the displacement of oil by a gas-water mixture. The initial condition,
defined by 𝑆𝐼 or 𝐼 , is the oil saturation at irreducible water (𝑆𝑛𝑜 = 1).
The boundary condition, defined by 𝑆𝐽 or 𝐽 , is the injection of a gas-
water mixture, and lies on the 𝑆𝑛𝑤𝑆𝑛𝑔 edge. Mathematically, these
conditions are given by:

𝑆𝐼
(
𝑥𝐷, 0

)
= (0, 1, 0) (16)

𝑆𝐽
(
0, 𝑡𝐷

)
= (𝐽 , 0, 1 − 𝐽 ) , for 𝐽 ∈ [0, 1] (17)

Figs. 2 and 3 show the eigenvalues and the hyperbolicity (log (𝛥))
condition for

(
𝑛𝑤, 𝑛𝑜, 𝑛𝑔

)
= (0.2, 0.1, 0.3) and

(
𝑛𝑤, 𝑛𝑜, 𝑛𝑔

)
= (0.7, 0.5, 0.4).

All figures in this section were generated using the following phase
mobilities 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0. For the
cases analyzed, there is an unique umbilic point inside the saturation
triangle, where 𝛥 = 0 and both eigenvalues are equal. This hypothesis
is consistent with the topological arguments presented in [49].

The integral curves describe the rarefaction paths inside the domain.
In Fig. 4 the arrows point toward increasing eigenvalues. For concave
relative permeability curves, the slow rarefaction waves move to the
triangle vertices while the fast waves move to the edges. In both cases,
the associated eigenvalues approach infinity, meaning that for initial
conditions located at any triangle vertices, the solutions will always be
associated with an infinity speed rarefaction wave. Note that both slow
and fast rarefaction curves collapses at the umbilic point, as expected.

The dotted line in Figs. 2–4 defines the 𝑟1 separatrix, the curve that
separates two different topologies of Hugoniot locus constructed for
points in 𝑆𝑛𝑤𝑆𝑛𝑔 edge (Fig. 5) in saturation domain. Defining the point
𝑟∗1 as the intersection of 𝑟1 curve and the 𝑆𝑛𝑤𝑆𝑛𝑔 edge, if 𝐽 ∈

(
𝑆𝑛𝑤, 𝑟∗1

)
the Hugoniot locus has three branches, two locals and one non-local.
The non-local branch starts and finishes at the 𝑆𝑛𝑜𝑆𝑛𝑔 edge. As 𝑆𝑛𝑤
approaches 𝑟∗1 the distance between local and the non-local branches
decreases until they collapse at 𝑟∗1. For 𝐽 ∈

(
𝑆𝑛𝑔 , 𝑟∗1

)
the non-local

branch starts and finishes at the opposite 𝑆𝑛𝑜𝑆𝑛𝑤 edge. The dotted is
the 𝜆− extension of 𝑆𝑛𝑤𝑆𝑛𝑔 edge, 𝐸−

(
𝑆𝑛𝑤𝑆𝑛𝑔

)
, where for each point

𝑇 there is a point 𝐽 in 𝑆𝑛𝑤𝑆𝑛𝑔 where the shock speed 𝜎 (𝐽 , 𝑇 ) has the
same value of the slow eigenvalue 𝜆− (𝑇 ). Mathematically, this curve is
expressed by:

𝐸−
(
𝑆𝑛𝑤𝑆𝑛𝑔

)
=
{
𝑇 ∶ ∃ 𝐽 ∈ 𝑆𝑛𝑤𝑆𝑛𝑔 , with 𝐽 ≠ 𝑇 ,

in which 𝑇 ∈  (𝐽 ) and 𝜎 (𝐽 , 𝑇 ) = 𝜆− (𝑇 )} (18)

Fig. 8. Saturation profile for different injection times for Case 3.1-a (𝑛 = 𝑛𝑤 = 𝑛𝑜 =
𝑛𝑔 = 0.25, 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0), compared with numerical solution.

where for each 𝐽 plotted in Fig. 5 there is a corresponding 𝑇 . It is
possible to note that 𝐽 = 𝑟∗1 implies in 𝑇 = 𝑓 ∗

𝑟1
.

For the general case where each phase has it own 𝑛 exponent, the
𝑟1 curve is constructed analyzing the Hugoniot locus along 𝑆𝑛𝑤𝑆𝑛𝑔 .
For the special case when all phases have the same Corey’s exponent
(𝑛 = 𝑛𝑤 = 𝑛𝑜 = 𝑛𝑔), it is possible to define an explicit equation for 𝑟1:

𝑟1 ∶ 𝑆𝑛𝑤 =

(
𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔
𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤

) 1
𝑛−1

𝑆𝑛𝑔 (19)

The analysis of 𝑟1 is important because the general solution is built
based on the behavior of the shock speed and eigenvalues along this
curve (Fig. 6), in which the shock curve was built fixing the 𝑟∗1 as
the left condition of the shock. At point 𝑓 ∗

𝑟1
, the slow eigenvalue and

the shock speed are equal (𝜎
(
𝑓 ∗
𝑟1
, 𝑟∗1

)
= 𝜆−

(
𝑓 ∗
𝑟1

)
) and, according to

6
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Fig. 9. Limit conditions on 𝑆𝑛𝑤𝑆𝑛𝑔 edge. Continuous curve is 𝑓𝑤𝑔 , dashed line is its
derivative and dotted line is the tangent at 𝑟∗1 (

(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3), 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0,

𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 10. Solution path in the ternary diagram for Case 3.1-d (
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3),

𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 11. Characteristic diagram for Case 3.1-d (
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.2, 0.1, 0.3), 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0,

𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 12. Saturation profile for different injection times for Case 3.1-d (
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
=

(0.2, 0.1, 0.3), 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0), compared with numerical

solution.

the Liu’s stability criteria, this point is the most stable shock solution
along the 𝑟1 curve. Note that at this point the shock speed is a local
minimum, respecting the Bethe-Wendroff theorem [71,72]. The point
𝑟+1 is a bifurcation manifold, in which two branches of 𝑟∗1 Hugoniot locus
cross each other. At this point the shock curve changes its topology and
the theorem of Bethe-Wendroff is not satisfied anymore (note that the
shock speed is not at a critical point), implying that this point is not a
stable solution [44].

Even though point 𝑓 ∗
𝑟1

obeys Liu’s stability criteria, it may or may
not satisfy the geometrical compatibility criteria. This compatibility
is obtained when the characteristics increase their velocities in the
physical 𝑥𝐷 − 𝑡𝐷 plane, and it can be described by:

𝑓 ′
𝑤𝑔

(
𝑟∗1
) ≤ 𝜎

(
𝑟∗1 , 𝑓

∗
𝑟1

)
(20)

7
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Fig. 13. Hugoniot locus of 𝐽 in ternary diagram. Dotted curve is the extension
𝐸−

(
𝑆𝑛𝑤𝑆𝑛𝑔

)
(
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4), 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖

𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Fig. 14. Solution path in the ternary diagram for Case 3.2-b (
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4),

𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Observes that for concave relative permeability curves, 𝜆−
(
𝑟∗1
)

=
𝑓 ′
𝑤𝑔

(
𝑟∗1
)
, and

(
𝑛𝑤, 𝑛𝑜, 𝑛𝑔

)
= (0.2, 0.1, 0.3) follows this condition, while(

𝑛𝑤, 𝑛𝑜, 𝑛𝑔
)
= (0.7, 0.5, 0.4) does not (Fig. 6).

The general solution of System (9) is presented in Table 1 for
different injection conditions. The following notation is used to describe
the solution waves: → denotes a shock, − represents a rarefaction and
a point in parenthesis indicates a constant state. Note that the solutions
are divided in two major groups defined by Condition (20).

3.1. Solution for 𝑓 ′
𝑤𝑔

(
𝑟∗1
) ≤ 𝜎

(
𝑟∗1 , 𝑓

∗
𝑟1

)

The Cases 3.1-a and 3.1-g represent pure water and pure gas in-
jection, respectively. Both solutions start with a shock from 𝐽 to 𝑓 ∗

𝑤
or 𝑓 ∗

𝑔 and finish with a rarefaction wave to the initial point, where
𝑓 ∗
𝑤 and 𝑓 ∗

𝑔 are the tangent points of the water and gas fractional flow,
depicted in Fig. 7 for the water case and 𝑛 = 𝑛𝑤 = 𝑛𝑜 = 𝑛𝑔 = 0.25.

Fig. 15. Characteristic diagram for Case 3.2-b (
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
= (0.7, 0.5, 0.4), 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0,

𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0).

Comparing the saturation profile for this case with numerical solution,
it can be observed that the breakthrough velocity is infinity and appears
when injection begins, and the water saturation behind the shock is
100% (Fig. 8). This scenario is typical of highly heterogeneous low
permeability rocks, where the presence of fractures creates a path for
water phase, leading to an early breakthrough and recovery of almost
all oil in the fracture system. After the production of the large channels,
the low permeability matrix does not improve the oil recovery.

For Cases 3.1-b until 3.1-f, the shock from 𝑟∗1 to 𝑓 ∗
𝑟1

is calculated
using the geometrical compatibility criteria and all cases finish with
the wave path

(
𝑟∗1
)
→ 𝑓 ∗

𝑟1
−𝐼 . However, there are five different ways to

reach the 𝑟∗1 point, depending on the structure of fractional flow curve
in 𝑆𝑛𝑤𝑆𝑛𝑔 edge (Fig. 9). The point 𝑟∗1 is the intersection between curve
𝑓𝑤𝑔 and its tangent at 𝑟∗1, and it can be noted that every straight line
connecting 𝑟∗1 and 𝐽 ∈

(
𝑟∗1 , 𝑆𝑛𝑤

)
is above the water-gas fractional flow

curve 𝑓𝑤𝑔 . So, the solution for Case 3.1-b starts with a direct shock from
𝐽 to 𝑟∗1.

Due to the concave relative permeability functions, the derivative
of 𝑓𝑤𝑔 with respect to the water saturation is strictly convex. So, the
following relationship is valid:

min 𝑓 ′
𝑤𝑔 ∈

(
𝑟∗1 , 𝑟

∗
1

)
(21)

where min 𝑓 ′
𝑤𝑔 is the minimum of 𝑓𝑤𝑔 derivative. This mathematical

property allows us to build the solution for Case 3.1-c, in which, for
every point 𝑇 ∈

[
𝑟∗1 ,min 𝑓 ′

𝑤𝑔

]
, the tangent line of 𝑓𝑤𝑔 will cross a

point 𝐽 ∈
(
min 𝑓 ′

𝑤𝑔 , 𝑟
∗
1

)
. Thus, the solution for this case starts with

a shock from 𝐽 to 𝑇 followed by a rarefaction to 𝑟∗1. Finally, the
Cases 3.1-d and 3.1-e are part of Case 3.1-c, while Case 3.1-f has the
same structure of Case 3.1-b. It must be stressed that all solutions
in this section must follow the geometrical compatibility criteria, and
exceptions are calculated following the same structure of cases where
𝑓 ′
𝑔𝑤

(
𝑟∗1
)
> 𝜎

(
𝑟∗1 , 𝑓

∗
𝑟1

)
in Section 3.2.

The solution for the Case 3.1-d, when Condition (20) is satisfied,
is presented in Figs. 10–12. Fig. 10 shows the solution path in the
saturation triangle, and Figs. 11 and 12 show the characteristics and
saturation profile, respectively. The solution starts with a rarefaction
up to 𝑟∗1, then a shock to 𝑓 ∗

𝑟1
, followed by a rarefaction to the initial

condition 𝑆𝑛𝑜. A low mobility fluid (oil) is replaced by a higher mobility
mixture (gas + water), where the gas phase moves faster than water. It
creates a gas slug in porous media, in which the gas saturation is higher

8
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Fig. 16. Saturation profile for different injection times for Case 3.2-b (
(
𝑛𝑤 , 𝑛𝑜 , 𝑛𝑔

)
=

(0.7, 0.5, 0.4), 𝑘𝑆𝑜𝑟𝑟𝑤 ∕𝜇𝑤 = 1.0, 𝑘𝑆𝑤𝑖
𝑟𝑜 ∕𝜇𝑜 = 0.5 and 𝑘𝑆𝑜𝑟𝑟𝑔 ∕𝜇𝑔 = 2.0), compared with numerical

solution.

than the injected saturation. Note that for Cases 3.1-b to 3.1-d the gas
saturation in 𝑟∗1 is greater than injected saturation and a gas slug will
be formed, while for Case 3.1-f a water slug will appear.

3.2. Solution for 𝑓 ′
𝑤𝑔

(
𝑟∗1
)
> 𝜎

(
𝑟∗1 , 𝑓

∗
𝑟1

)

When Condition (20) is not satisfied or the geometrical compati-
bility criteria fails at any point along the solutions presented in Sec-
tion 3.1, the real solution must follow an integral curve outside the
𝑆𝑛𝑤𝑆𝑛𝑔 edge. For each 𝐽 on 𝑆𝑛𝑤𝑆𝑛𝑔 there is an associated point 𝑇 ∈
𝐸−

(
𝑆𝑛𝑤𝑆𝑛𝑔

)
in the 𝜆− extension curve (Eq. (18)). Except when 𝐽 = 𝑟∗1,

𝑇 always belongs to the non-local branch, thus a direct rarefaction
solution is impossible. For the Case 𝐽 = 𝑟∗1 the rarefaction is not possible
due to the geometrical compatibility (𝑓 ′

𝑤𝑔
(
𝑟∗1
)
> 𝜎

(
𝑟∗1 , 𝑓

∗
𝑟1

)
). The cases

when 𝐽 = 𝑆𝑛𝑤 and 𝐽 = 𝑆𝑛𝑔 (Cases 3.2-a and 3.2-c in Table 1) present
the same solution structure of Cases 3.1-a and 3.1-g. For Case 3.2-b, the
solution will consist of a shock from 𝐽 to 𝑇 , which obeys Liu’s stability
criteria, followed by a rarefaction to the initial condition 𝐼 .

Fig. 13 shows the Hugoniot locus for a particular case when 𝐽 ∈(
𝑆𝑛𝑤, 𝑆𝑛𝑔

)
and

(
𝑛𝑤, 𝑛𝑜, 𝑛𝑔

)
= (0.7, 0.5, 0.4), in which the dotted line is the

extension 𝐸−
(
𝑆𝑛𝑤𝑆𝑛𝑔

)
. The solution is given by Case 3.2-b, consisting

of a shock from 𝐽 to 𝑇 followed by a rarefaction to the initial condition
(Figs. 14–16). Note that all solutions when the Criteria (20) is not
satisfied are composed by a shock followed by a rarefaction, so, no slugs
appear in porous media.

4. Conclusions

This work presents a general analytical solutions for three-phase
immiscible flow in an one-dimensional porous media with concave
relative permeability curves. The mathematical key-points of the solu-
tion procedure by the method of characteristics are fully discussed for
different scenarios and boundary conditions.

The saturation profiles are presented for the displacement of reser-
voir oil by a mixture of gas and water. The analytical solutions were
compared with the results obtained by an explicit first-order upwind
numerical method showing an excellent agreement. The solutions con-
structed in this paper can be used to validate numerical reservoir simu-
lations or in inverse problems to compute concave relative permeability
curves from core flood data.
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Chapter 1
Approximate Solution for
One-Dimensional Compressible
Two-Phase Immiscible Flow in Porous
Media for Variable Boundary Conditions

W. Q. Barros, A. P. Pires, and Á. M. M. Peres

1.1 Introduction

In most petroleum reservoirs, there are at least two phases: oil and connate
water. Usually, water is also injected to increase oil production and keep the
reservoir pressure at some desired level. Oil displacement by injected water can
be modeled by a system of two partial differential equations representing the mass
conservation of each component and Darcy’s law replacing momentum balance.
For one-dimensional incompressible systems without mass transfer, the problem
can be solved by the method of characteristics [BL42]. If the relative permeability
curves are convex, the solution is given by a continuous two-phase saturation zone
(rarefaction wave) followed by a discontinuity (shock). This solution was further
expanded to include gravitational and capillary effects [SC59, FS59], to evaluate
the pressure drop along porous medium [W52, JBN59], and for three-phase flow
[IMPT92, GF97, AS09, CAFM16]. Analytical solutions for compressible two-phase
problems are more difficult to develop because both pressure and saturation fields
must be solved simultaneously. Approximate solutions were obtained for a two-zone
system with constant saturation in each zone [HRM58, KMJ72]. Splitting the two-
phase region in more segments improves the accuracy of the solution. The water
saturation in each zone of this multi-region system is constant, and thus the velocity
of water saturation front in the pressure solution can be neglected and a quasi-
static approach can be used [AK89]. The authors of [BH90] proposed a different
approximate solution superposing pressure transient effects on a previous saturation
profile obtained by Buckley–Leverett solution. The authors of [TR97] generalized
the theory for multiphase flow in a heterogeneous reservoir. In this approach, the
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Fig. 1.1 Typical water
saturation and dimensionless
flow rate profiles for constant
injection rate for a fixed time

pressure and saturation zones move with different velocities, in which the saturation
front is always within a steady-state flow-rate zone (Fig. 1.1). It is a simplified
method to calculate the pressure profile for the problem of constant fluid injection,
in which the saturation is obtained by the immiscible Buckley–Leverett problem
and the flow rate by the single-phase compressible solution. The pressure solution
is calculated integrating Darcy’s equation [BTR98, PR03, PBR04, PBR06].

For constant boundary conditions, the Thompson–Reynolds conjecture provides
good results when compared to numerical experiments. However, for non-constant
boundary conditions, a new pressure perturbation along the reservoir appears and the
conjecture cannot be applied. In this work, we present a new procedure to generalize
the solution for non-constant boundary conditions. In Sect. 1.2, we derive the
mathematical formulation and present an approximate solution. Next, we compare
the solution with numerical results under different injection schedules and system
compressibility (1.3). Finally, some conclusions are addressed (1.4).

1.2 Mathematical Model

In this work, it is considered a one-dimensional oil displacement by water in a
homogeneous porous medium (Fig. 1.2). Additional hypothesis are:

• Immiscible and isothermal linear flow
• Constant cross-sectional area
• Negligible dispersion, gravitational and capillary effects
• Constant viscosity phases
• Constant phases and rock compressibility
• Darcy’s law is valid
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Fig. 1.2 Representation of
1D water flooding

The velocity of each phase can be calculated using Darcy’s law,

vπ = −Kkrπ
μπ

∂P

∂x
, (1.1)

where K and krπ are the absolute and phase relative permeabilities, μπ the phase
viscosity, and ∂P

∂x
the linear pressure gradient; the subscript π denotes water w or

oil o phase. Summing up the velocity for all phases and neglecting capillary effects,
one gets

qT (x, t) = −AKλT (x, t) ∂P (x, t)

∂x
, (1.2)

where A is the cross-sectional area, qT represents the total volumetric flow rate, and
λT is the total mobility of the phases (λT = krw

μw
+ kro

μo
).

To determine the pressure profile along the porous medium length, we integrate
Eq. 1.2 using a constant pressure external boundary condition

P (x = L, t) = Pi ,

in which Pi denotes the initial pressure and L is the core length, resulting in

P (x, t)− Pi = 1

AK

∫ L

x

qT
(
x′, t

)
λT (x′, t)

dx′.

Now, we introduce dimensionless time and space coordinates,

xD = x

L
, (1.3)

tD = qref t

(1 − Swi − Sor) ALφ
, (1.4)

where qref is a reference flow rate, adopted as the first injection value, and φ is
the rock porosity. The irreducible water saturation and residual oil saturation are
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denoted by Swi and Sor , respectively. Thus, the pressure drop can be written in
dimensionless variables as

PD (xD, tD) =
∫ 1

xD

qD
(
x′D, tD

)
λTD

(
x′D, tD

)dx′D , (1.5)

where

PD (xD, tD) = KAλ̂o

qref L
(P (x, t)− Pi) , (1.6)

λTD (xD, tD) = λT (x, t)

λ̂o
, (1.7)

qD (xD, tD) = qT (x, t)

qref
, (1.8)

in which λ̂o is oil mobility at water irreducible saturation. Equation 1.5 relates the
flow rate and mobility profiles to the pressure drop change at a given position xD .
In this work, we solve this problem for the case of step-change internal boundary
condition. Thus, an approximation can be obtained based on two key hypotheses:

1. The mobility profile can be obtained by the incompressible problem solution.
2. The total flow rate can be calculated considering two regions with fixed interface

position for compressible flow.

The total flow rate is obtained from a linear partial differential equation. Thus,
Eq. 1.5 applied for the internal boundary condition PD (xD = 0, tD) = PwD (tD) is
written as

PwD (tD) =
∫ 1

0

qD
(
x′D, tD

)
λTD

(
x′D, tD

)dx′D , (1.9)

where

qD (xD, tD) =
Nsteps∑
j=1

[
q
Inj
Dj

− q
Inj
Dj−1

]
qDC

(
xD, tD − tDj−1

)
.

The last equation is the flow-rate superposition, in which Nsteps is the number of
flow-rate steps until tD , qInjDj

is the injection flow rate in step j , and tDj
is the time

when qInjDj
started. The terms inside parenthesis are the (xD, tD) coordinates where

qDC and λTD are evaluated. The function qDC is the mathematical solution for the
two-region problem under constant injection rate.
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1.2.1 Approximation for λT D (xD, tD)

The mass conservation for simultaneous flow of oil and water in a linear porous
media is modeled by the equations

∂ (φSπρπ)

∂t
+ ∂ (ρπvπ)

∂x
= 0, π = w, o , (1.10)

where ρπ is the phase density. Considering an incompressible system, we find

∂Sπ

∂t
+ 1

φ

∂vπ

∂x
= 0, π = w, o .

Defining the normalized water saturation as

Snw = Sw − Swi

1 − Swi − Sor
, Sw ∈ [Swi, 1 − Sor ]

and applying the definitions of dimensionless variables (Eqs. 1.3, 1.4, and 1.8)
together with Darcy’s law (Eq. 1.1), we find [BL42]

∂Snw

∂tD
+ qD (xD = 0, tD)

∂fw

∂xD
= 0 ,

in which fw defines the water fractional flow

fw =
krw
μw

krw
μw

+ kro
μo

.

For convex relative permeability curves, the derivative dfw
dSnw

is not monotonic and
the solution is not unique. To determine the most admissible solution, we apply the
Lax [L57] and Oleinik [O57] stability criteria, and the solution is composed of a
rarefaction wave followed by a shock. The shock must be a zero-diffusion limit of
the solution given by traveling waves [L07]. The solution is given by

Snw =
⎧⎨
⎩

dfw
dSnw

−1 ( 1
qD(xD=0,tD)

xD
tD

)
, xD ∈ (

0, xBLD
)
,

0, xD ∈ (
xBLD , 1

)
,

(1.11)

where
(

1
qD(xD=0,tD)

xD
tD

)
is the self-similar variable where the inverse of dfw

dSnw
is

evaluated. The shock position is denoted by xBLD (Fig. 1.2) and is calculated solving
the Rankine–Hugoniot ODE condition.

dxBLD

dtD
= qD (xD = 0, tD)

f BLw

SBLnw
.
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1.2.2 Approximation for qDC (xD, tD)

Applying Darcy’s law (Eq. 1.1) in the mass conservation (Eq. 1.10), we find

Sπ

(
φ
∂ρπ

∂P
+ ρπ

∂φ

∂P

)
∂P

∂t
+ (φρπ)

∂Sπ

∂t

−
⎛
⎝ρπ

∂
(
Kkrπ
μπ

∂P
∂x

)

∂x
+ Kkrπ

μπ

∂ρπ

∂P

(
∂P

∂x

)2
⎞
⎠ = 0, π = w, o (1.12)

Using the rock and fluid compressibility definitions (cφ = 1
φ
∂φ
∂P

and cπ = 1
ρπ

∂ρπ
∂P

)
and summing for both phases, it is possible to derive

∂
(
λT

∂P
∂x

)
∂x

+ (cwλw + coλo)

(
∂P

∂x

)2

= φct

K

∂P

∂t
,

where ct is the total compressibility, given by

ct (x, t) = cφ + co (1 − Sw (x, t))+ cwSw (x, t) .

For small pressure gradients and slightly compressible fluids, the quadratic term can
be neglected. Thus, applying the dimensionless definitions (Eqs. 1.3, 1.4, and 1.5),
we find the dimensionless PDE for the pressure in a compressible two-phase system,

1

λTD

∂
(
λTD

(
∂PD
∂xD

))

∂xD
= γL

∂PD

∂tD
,

where the term γL is given by

γL (xD, tD) = qref L

(1 − Swi − Sor)KA

ct

λT
.

The terms γL and λTD depend on the saturation profile. To solve this equation, the
domain is divided into two regions based on the shock position, and the saturation
profile is considered constant in both zones

⎧⎪⎨
⎪⎩
∂2P ′

D

∂x2
D

= γ INL
∂P ′

D

∂tD
, xD ∈ (

0, xBLD
)
,

∂2P ′
D

∂x2
D

= γ̂L
∂P ′

D

∂tD
, xD ∈ (

xBLD , 1
)
,
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where γ INL is the average gamma in the region behind the shock, and γ̂L is the
gamma in the original oil condition. Note that P ′ indicates the pressure for the two-
zone problem. The internal boundary condition (I.B.C.) in dimensionless variables
is given by

limxD→0

(
∂P ′

D

∂xD

)
= − 1

λINTD

(I.B.C.) .

The initial condition (I.C.) and external boundary condition (E.B.C.) are

P ′
D (xD = 1, tD) = 0 (E.B.C.) ,

P ′
D (xD, tD = 0) = 0 (I.C) .

Thus, the equations that model the pressure in the inner zone are given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2P ′
D

∂x2
D

= γ INL
∂P ′

D

∂tD
, xD ∈ (

0, xBLD
)
,

P ′
D (xD, tD = 0) = 0 (I.C.) ,

limxD→0

(
∂P ′

D

∂xD

)
= − 1

λINTD
(I.B.C.) .

The equations for the outer region are

⎧⎪⎪⎨
⎪⎪⎩

∂2P ′
D

∂x2
D

= γ̂L
∂P ′

D

∂tD
, xD ∈ (

xBLD , 1
)
,

P ′
D (xD, tD = 0) = 0 (I.C.) ,

P ′
D (xD = 1, tD) = 0 (E.B.C.) .

The continuity of pressure and total flow rate at the interface of the two regions are
used to close the problem.

lim
xD→xBL−D

P ′
D (xD, tD) = lim

xD→xBL+D
P ′
D (xD, tD)(

λINTD
∂PD(xD,tD)

∂xD

)
xBL−D

=
(
∂PD(xD,tD)

∂xD

)
xBL+D

.

The shock position xBLD = xBLD (tD) characterizes a moving internal condition.
However, as the speed of this boundary is small, we may use a quasi-stationary
assumption, in which the effect of a moving interface is neglected in the solution.
However, the interface position is updated every time tD in order to evaluate the
dimensionless pressure PD (xD, tD).
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1.2.2.1 Solution by the Laplace Transform

The quasi-stationary hypothesis allows one to solve the two-region problem by
the Laplace transform. Applying the transform in the PDE and in both boundary
conditions and using the initial condition, the system can be written for the inner
zone as

⎧⎨
⎩
∂2P̄ ′

D

∂x2
D

= γ INL uP̄ ′
D, xD ∈ (

0, xBLD
)
,

limxD→0

(
∂P̄ ′

D

∂xD

)
= − 1

uλINTD
(I.B.C.)

and for the outer zone as
⎧⎨
⎩
∂2P̄ ′

D

∂x2
D

= γ̂LuP̄ ′
D, xD ∈ (

xBLD , 1
)
,

P̄ ′
D (xD = xDs, u) = 0 (E.B.C.) .

The coupling condition in Laplace’s domain is given by

lim
xD→xBL−D

P̄ ′
D (xD, u) = lim

xD→xBL+D
P̄ ′

D (xD, u)(
λINTD

∂P̄ ′
D(xD,u)
∂xD

)
xBL−D

=
(
∂P̄ ′

D(xD,u)
∂xD

)
xBL+D

.

The general solution is

P̄ ′
D (xD, u) = A0e

√
γ INL uxD + A1e

−
√
γ INL uxD , for xD ∈ (

0, xBLD
)
,

P̄ ′
D (xD, u) = A2e

√
γ̂LuxD + A3e

−
√
γ̂LuxD , for xD ∈ (

xBLD , 1
)
.

Applying the boundary and coupling conditions, it is possible to write the
following system of equations:

⎛
⎜⎜⎜⎝

1 −1 0 0
0 0 eα̂LxDs e−α̂LxDs

eα
IN
L xBLD e−αINL xBLD −eα̂LxBLD −e−α̂LxBLD

λINTDα
IN
L eα

IN
L xBLD −λINTDαINL e−αINL xBLD −α̂oeα̂LxBLD α̂oe

−α̂LxBLD

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝
A0

A1

A2

A3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

− 1
λINTD

1
uαINL

0
0
0

⎞
⎟⎟⎟⎠ ,
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with αINL =
√
γ INL u and α̂L = √

γ̂Lu. The coefficients A0, A1, A2, and A3 are
calculated through

A0 = 1

λINTDα
IN
L u

⎛
⎝2λINTDα

IN
L

(
e−α̂LxBLD − eα̂L

(
xBLD −2

))
− e−αINL xBLD ΩL

2cosh
(
αINL xBLD

)
ΩL

⎞
⎠ ,

A1 = 1

λINTDα
IN
L u

⎛
⎝eα

IN
L xBLD ΩL + 2λINTDα

IN
L

(
e−α̂LxBLD − eα̂L

(
xBLD −2

))

2cosh
(
αINL xBLD

)
ΩL

⎞
⎠ ,

A2 = −2e−2α̂L

uΩL

,

A3 = 2

uΩL

,

in which

ΩL =
(
α̂L + λINTDα

IN
L

) (
e
(
αINL −α̂o

)
xBLD + eα̂L

(
xBLD −2

)−αINL xBLD

)
,

+
(
α̂L − λINTDα

IN
L

) (
e−

(
αINL +α̂L

)
xBLD + eα̂L

(
xBLD −2

)+αINL xBLD

)
.

The coefficients A0, A1, A2, and A3 are time dependent because the interface
position between the regions moves. Finally, we can apply Darcy’s law (Eq. 1.2)
in the two-zone pressure solution and obtain the approximated flow-rate profile

q̄DC (xD, u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−λINTD
√
γ INL ue

√
γ INL uxDA0 + λINTD

√
γ INL ue

−
√
γ INL uxDA1

for xD < xBLD ,

−√
γ̂Lue

√
γ̂LuxDA2 +

√
γ̂Lue

−
√
γ̂LuxDA3

for xD > xBLD .

(1.13)

These equations are inverted to real space using Stehfest’s algorithm [GS70]. When
the water front position reaches the external core face, Eq. 1.13 for xD < xBLD is still
valid; however, the terms γ INL and λINTD must be averaged inside the core domain
(xD ∈ (0, 1)).
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1.3 Model Validation

In this section, we apply the developed solution for a set of typical laboratory core
flood experiment parameter sets (Table 1.1). The relative permeability curves were
generated using the Corey model [C56],

{
krw = k

Swor
rw (Snw)

nw ,

kro = k
Swi
ro (Sno)

nwo ,

using properties shown in Table 1.2 and Fig. 1.3. The mobility ratio is given by

M = λ̂w

λ̂o
, where λ̂w and λ̂o denote the water mobility at residual oil saturation and

the oil mobility at irreducible water saturation. For the data shown in Table 1.2, we
have M = 1.875.

All solutions discussed in this section are compared to numerical results.

1.3.1 Injection Schedule 1

The first case analyzed is an isochronal schedule composed of three increasing
injection flow rates followed by a falloff (Table 1.3). To generate the approximate
solution, the first step is solving the incompressible problem (Eq. 1.11) using the
fractional flow shown in Fig. 1.3. Comparing the incompressible solution with the

Table 1.1 Typical rock and
fluid properties for core flood
experiments

Core length L = 15 [cm]
Cross-sectional area A = 11.4 [cm2]
Porosity φ = 0.1 [-]
Absolute permeability K = 200 [mD]
Initial injection rate q0

T = 0.54 [cm3/min]
Water viscosity μw = 1.0 [cp]
Oil viscosity μo = 5.0 [cp]
Rock compressibility cr = 9.8E − 6 [1/Kgf/cm2]
Water compressibility cw = 1.0E − 6 [1/Kgf/cm2]
Oil compressibility co = 4.0E − 5 [1/Kgf/cm2]

Table 1.2 Relative
permeability curves
parameters

Swi = 0.20

k
Swi
ro = 0.80

Swor = 0.20

k
Swor
rw = 0.30

nw = 2.2

nwo = 2.0
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Fig. 1.3 Relative permeability curves (left) and water fraction flow curve (right) for data shown
in Tables 1.1 and 1.2

Table 1.3 Injection
schedule 1

tD qINJD

0.00–0.05 1.0

0.05–0.10 2.0

0.10–0.15 3.0

0.15–0.20 0.0

Fig. 1.4 Analytical and numerical saturation profiles for schedule 1

numerical compressible solution (Fig. 1.4), it can be observed that the saturation
profile matches for different injection times.

Once we have the saturation profile, we can solve Eq. 1.13 and obtain an
approximate flow rate. In Fig. 1.5, three differentΔtD after the first flow-rate change
(tD = 0.05) are compared. Note that the greatest difference between solutions
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Fig. 1.5 Analytical and
numerical flow-rate profile
for different ΔtD after
tD = 0.05

Fig. 1.6 Analytical and
numerical PwD solution for
schedule 1

appears at small times (ΔtD = 1e−8). AfterΔtD = 1e−7, the solutions present close
agreement. Using the calculated λTD and qD , it is possible to integrate Equation 1.9
and obtain the final solution (Fig. 1.6).

1.3.2 Injection Schedule 2

The second case changes the injection flow rate schedule (Table 1.4) using the
same reservoir properties (Tables 1.1 and 1.2). Schedule 2 is composed of three
isochronal decreasing flow rates, followed by a falloff. Figures 1.7 and 1.8 present
the saturation and flow-rate profiles compared with the compressible numerical
solutions. The presented profiles are calculated at three differentΔtD after the falloff
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Table 1.4 Injection
schedule 2

tD qDi

0.00–0.05 1.0

0.05–0.10 2/3

0.10–0.15 1/3

0.15–0.20 0.0

Fig. 1.7 Analytical and
numerical saturation profiles
for different tD for schedule 2

Fig. 1.8 Analytical and
numerical flow-rate profile
for different ΔtD after
tD = 0.15

(tD = 0.15). It can be noted that both solutions agree and can be used to build the
pressure solution of the original problem (Fig. 1.9). Note that our approximation of
PwD agrees with numerical simulation for all flow-rate steps.
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Fig. 1.9 Analytical and
numerical PwD solution for
schedule 2

Fig. 1.10 Analytical and
numerical saturation profile
for different tD for a more
compressible system

1.3.3 Compressibility Effect

Schedule 1 (Table 1.3) was used to analyze the compressibility effects in the
results (cr = 1.0E − 2 1/MPa and co = 4.0E − 3 1/Kgf/cm2 keeping all other
properties constant. Even increasing the compressibility by a factor of 100, the
incompressible and compressible saturation profiles still match (Fig. 1.10). As this
system is much more compressible, it is expected that the flow rate propagates
slower in the reservoir (Fig. 1.11). It can be noted that both solutions agree after
ΔtD = 1e−6. The pressure solution is presented in Fig. 1.12 showing the excellent
agreement with numerical compressible simulation.
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Fig. 1.11 Analytical and
numerical flow-rate profile
for different ΔtD after
tD = 0.10

Fig. 1.12 Analytical and
numerical PwD solution for a
more compressible system

1.4 Conclusion

This work presents a new solution for the pressure drop along a linear porous
medium considering immiscible two-phase oil displacement and a step-rate variable
boundary condition. The solution is calculated based on two main hypothesis:

1. The mobility profile can be determined by the incompressible problem solution.
2. The total flow rate can be calculated by a dual-zone compressible problem.

The model was tested for two different flow rate schedules, and the results were
compared to numerical solutions with excellent agreement. The analytical solution
built in this work can be used to model laboratory core flood experiments.

Acknowledgments The authors acknowledge Universidade Estadual do Norte Fluminense
(UENF) for financial support. This study was also financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.



16 W. Q. Barros et al.

References

[AK89] Abbaszadeh, M., & Kamal, M.: Pressure-transient testing of water-injection wells. SPE
Reserv. Eng. 4(01), 115–124 (1989). Society of Petroleum Engineers (SPE). https://doi.
org/10.2118/16744-pa

[AS09] Azevedo, A.V., Souza, A.J., Furtado, F., Marchesin, D., Plohr, B.: The solution by
the wave curve method of three-phase flow in virgin reservoirs. Trans. Porous Media
83(01), 99–125 (2009). Springer Science and Business Media LLC. https://doi.org/10.
1007/s11242-009-9508-9

[BH90] Bratvold, R.B., Horne, R.N.: Analysis of pressure-falloff tests following cold-water
injection. SPE Form. Evaluation 5(03), 293–302 (1990). Society of Petroleum Engineers
(SPE). https://doi.org/10.2118/18111-pa

[BL42] Buckley, S., Leverett, M.: Mechanism of fluid displacement in sands. Trans. AIME
146(01), 107–116 (1942). Society of Petroleum Engineers (SPE). https://doi.org/10.
2118/942107-g

[BTR98] Banerjee, R., Thompson, L.G., Reynolds, A.C.: Injection/falloff testing in heterogeneous
reservoirs. SPE Reser. Evaluation Eng. 1(06), 519–527 (1998). Society of Petroleum
Engineers (SPE). https://doi.org/10.2118/52670-pa

[CAFM16] Castañeda P., Abreu, E., Furtado, F., Marchesin, D.: On a universal structure for
immiscible three-phase flow in virgin reservoirs, Comput. Geosci. 20(01), 171–185
(2016). Springer Science and Business Media LLC. https://doi.org/10.1007/s10596-016-
9556-5

[C56] Corey, A.T., Rathjens, C.H., Henderson, J.H., Wyllie, M.R.J.: Three-phase relative per-
meability. J. Petroleum Technol. 8(11), 63–65 (1956). Society of Petroleum Engineers
(SPE). https://doi.org/10.2118/737-g

[FS59] Fayers, F.J., Sheldon, J.W.: The effect of capillary pressure and gravity on two-phase
fluid flow in a porous medium. Trans. AIME 216(01), 147–155 (1959). Society of
Petroleum Engineers (SPE). https://doi.org/10.2118/1089-g

[GF97] Guzmán, R.E., Fayers, F.J.: Mathematical properties of three-phase flow equations. SPE
J. 2(03), 291–300 (1997). Society of Petroleum Engineers (SPE). https://doi.org/10.
2118/35154-pa

[GS70] Stehfest, H.: Algorithm 368: numerical inversion of laplace transforms. Commun. ACM
13, 47–49 (1970)

[HRM58] Hazebroek, P., Rainbow, H., Matthews, C.S.: Pressure fall-off in water injection wells.
Trans. AIME 213(01), 250–260 (1958). Society of Petroleum Engineers (SPE). https://
doi.org/10.2118/925-g

[IMPT92] Isaacson, E.L., Marchesin, D., Plohr, B.J., Temple, J.B.: Multiphase flow models with
singular Riemann problems. Mat. Apl. Comput. 11(02), 147–166 (1992). Sociedade
Brasileira de Matemática Aplicada e Computacional

[JBN59] Johnson, E.F., Bossler, D.P., Neumann, V.O.: Calculation of relative permeability from
displacement experiments. Trans. AIME 216, 370–372 (1959). Society of Petroleum
Engineers (SPE), SPE-1023G

[KMJ72] Kazemi, H., Merrill, L.S., Jargon, J.R.: Problems in interpretation of pressure fall-off
tests in reservoirs with and without fluid banks. J. Petrol. Technol. 24(09), 1147–1156
(1972). Society of Petroleum Engineers (SPE). https://doi.org/10.2118/3696-pa

[L07] Liu, T.: Hyperbolic and Viscous Conservation Laws. CBMS-NSF Regional Conference
Series in Applied Mathematics, vol. 01. SIAM, Philadelphia (2007)

[L57] Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math.
10(04), 537–566 (1957). Wiley. https://doi.org/10.1002/cpa.3160100406

[O57] Oleinik, O.A.: On the uniqueness of the generalized solution of the Cauchy problem for a
non-linear system of equations occurring in mechanics. Uspekhi Mat. Nauk 12, 169–176
(1957)



1 Solution for Two-Phase Flow for Step Variable Inner Boundary Conditions 17

[PBR04] Peres, A.M.M., Boughrara, A.A., Reynolds, A.C.: Rate superposition for generating
pressure falloff solutions for vertical and horizontal wells. SPE Annual Technical
Conference and Exhibition, Society of Petroleum Engineers (SPE) (2004). https://doi.
org/10.2118/90907-ms

[PBR06] Peres, A.M.M., Boughrara, A.A., Reynolds, A.C.: Rate superposition for generating
pressure falloff solutions. SPE J. 11(03), 364–374 (2006). Society of Petroleum Engi-
neers (SPE). https://doi.org/10.2118/90907-pa

[PR03] Peres, A.M.M., Reynolds, A.C.: Theory and analysis of injectivity tests on horizontal
wells. SPE J. 8(02), 147–159 (2003). Society of Petroleum Engineers (SPE). https://doi.
org/10.2118/84957-pa

[SC59] Sheldon, J.W., Cardwell, W.T.: One-dimensional, incompressible, noncapillary, two-
phase fluid flow in a porous medium. Trans. AIME 216(01), 290–296 (1959). Society
of Petroleum Engineers (SPE). https://doi.org/10.2118/978-g

[TR97] Thompson, L., Reynolds, A.C.: Well testing for radially heterogeneous reservoirs under
single and multiphase flow conditions. SPE Format. Evaluation 12(01), 57–64 (1997).
Society of Petroleum Engineers (SPE). https://doi.org/10.2118/30577-pa

[W52] Welge, H.J.: A simplified method for computing oil recovery by gas or water drive. J.
Petrol. Technol. 4(04), 91–98 (1952). Society of Petroleum Engineers (SPE). https://doi.
org/10.2118/124-g



37

4 Article: Approximated Solution
for Linear Step-Rate Water
Injectivity Test



Approximated Solution for Linear Step-Rate Water
Injectivity Test

Wagner Q. Barrosa, Adolfo P. Piresa,∗, Alvaro M. M. Peresa
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Abstract

Water injectivity test is an important method used in petroleum engineering to

get dynamical reservoir data. It consists of a controlled flow-rate water injection

followed by a falloff period (stop of injection), while the bottom hole pressure

is measured during all process. To interpret such test, an inverse problem must

be constructed using an analytical solution of the pressure equation.

For the water injection in oil reservoirs, the pressure and saturation fields

must be solved together, creating mathematical difficulties to obtain a complete

solution. At the moment, only approximated solutions for the continuous injec-

tion problem with a single falloff were obtained. In this article, we present a new

approximated solution considering a step variable flow-rate injection, typical of

step-rate tests. This solution is useful not only to interpret step-rate tests, but

also for cases where for operational problems issues the injection flow-rate was

not well controlled during the test.
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1. Introduction

Injectivity and falloff tests in vertical wells are an useful tool to obtain dy-

namic reservoir data. The injected fluid has distinct properties when compared

with original oil in place, creating a moving internal boundary. The inner zone

is highly saturated with the injected phase having a different transmissibility of5

the outer oil zone, saturated with original oil.

The pressure solution for a dual-zone medium with compressible fluids is a

well known problem, as well as the saturation solution considering immiscible

and incompressible flow (knowing by Buckley-Leverett solution). However, de-

riving an analytical solution for the compressible injectivity test is a much more10

difficulty task because both pressure and saturation fields are coupled, creating

a system of non-linear partial differential equations (PDE).

The first attempt to solve this coupled problem is divide the medium in

two constant saturation zones, and treat the flow as a piston-like displacement

(Hazebroek et al. (1958); Kazemi et al. (1972)). The more the two-phase zone15

is divided, better is the quality of such approach, however, this method does

not consider the effect of compressibility in the saturations profile. For practical

water injectivity tests, the water front is much slower than the pressure profile,

and the saturation and pressure fields can be decoupled, known as a quasi-static

approximation (Abbaszadeh and Kamal (1989)). Using this hypothesis, it is20

possible to superimpose the pressure-transient effects in the Buckley-Leverett

saturation profile, producing satisfactory results for the continuous injectivity

tests (Bratvold and Horne (1990)).

Thompson and Reynolds (1997) generalized the theory for compressible

multi-phase flow in heterogeneous reservoirs. The problem was rewritten using25

spatial averages, where a moving weighting kernel determines the regions that

has higher impacts in the solution. This process gives high weights for regions

where the total mobility and the flow-rate are varying more rapidly with time.

Considering the continuous injectivity test for traditional reservoir properties,

the flow-rate changing zone is much faster than the saturation advancing front,30

2



causing that the two-phase zone is always within a steady-state region, affirma-

tion further known by Thompson Reynolds conjecture (Figure 1). As a direct

consequence of this affirmation is that the saturation and flow-rate profiles can

be decoupled and the final pressure solution is constructing simply integrating

the multiphase Darcy’s law (Banerjee et al. (1998); Peres and Reynolds (2003);35

Peres et al. (2004)).

Figure 1: Illustration of the Thompson Reynolds conjecture for the linear waterflooding in-

jection

The Thompson Reynolds conjecture gives excellent results for continuous

water injection, in which an explicit criteria was derived to test its validity

considering different coordinate systems (Peres and Reynolds (2003)). However

its application for injectivity tests is based in the constant flow-rate injection40

hypothesis, in which due to operational issues is difficulty to obtain in practical

field applications. Every time the flow-rate injection changes, a new transient

is generating in the two-phase zone, invalidating completely the conjecture.

In this work we present an approximate solution for the linear step-rate injec-

tivity tests, where we decoupled the saturation and pressure solutions using the45

3



quasi-static approach. In Section 2 the mathematical formulation is discussed

considering two different external boundary conditions: finite and infinity reser-

voir. The approximated solution was compared with numerical simulation in

Sections 4 and 3 for both boundary conditions, respectively. Then we per-

formed a sensitivity analysis over the dimensionless groups that impacts the50

approximation quality (Section 5) and we discussed some criterias for the solu-

tion validity. Some conclusions are then addressed in sequence. In Appendix

A, a mathematical proof of the coupling condition, discussed in the mathemat-

ical formulation, is formulated. The pressure solution in Laplace’s field is then

presented in Appendix B.55
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2. Mathematical Model

A water injectivity test is defined by the controlled injection of water in a

reservoir initially saturated with oil at irreducible water saturation (Figure 2).

Additional hypothesis are:

• Reservoir is linear, homogeneous and with constant cross sectional area;60

• Immiscible and isothermal flow;

• Dispersion, gravitational and capillary effects are neglected;

• Fluids having constant viscosity;

• Slightly compressible fluids and rock;

• Darcy’s law hypothesis are valid.65

Oil

Water

Oil

Figure 2: Linear water step-rate injection

The velocity of each phase can be calculated by the Darcy’s law:

vπ = −Kkrπ
µπ

∂P

∂x
, π = w, o (1)

where K and krπ are the absolute and relative permeabilities, µπ the phase

viscosity and ∂P
∂x the linear pressure gradient. Subscripts w and o are related

5



to water and oil phases, respectively. Summing both phases and neglecting the

capillary effects:70

qT (x, t) = −AKλT (x, t)
∂P (x, t)

∂x
(2)

where A is the cross sectional area, qT is the total flow rate and λT is the total

mobility of the system (λT = krw
µw

+ kro
µo

). The pressure profile can be obtained

integrating this equation:

P (x, t)− Pi =
1

AK

∫ xs

x

qT (x′, t)
λT (x′, t)

dx′ (3)

where xs is the position of the external reservoir boundary:




xs →∞, Infinity

xs = L, Finite

(4)

and Pi is the initial reservoir pressure (P (xs, t) = Pi).75

For this problem, we are defining the following dimensionless time and space

coordinates:

xD =
x

LC
(5)

tD =
qref t

(1− Swi − Sor)ALCφ
(6)

where LC is a characteristic length (LC = L for the finite case and any other

characteristic dimension for infinity solution) and qref is a reference flow rate

value, usually the first injection step. Swi is the irreducible water saturation80

and Sor is the residual oil saturation. The pressure is then written by:

PD (xD, tD) =

∫ xDS

xD

qD

(
x
′
D, tD

)

λTD
(
x
′
D, tD

)dx′D (7)

where:

PD (x, t) =
KAλ̂o
qrefLC

(P (x, t)− Pi) (8)

6



λTD (x, t) =
λT (x, t)

λ̂o
(9)

qD (x, t) =
qT (x, t)

qref
(10)

in which λ̂o is the mobility of oil at water irreducible saturation. Note that

xDS = 1 for finite boundary condition and xDS →∞ for the infinity case.

There is no reported analytical solution for Equation 7, most of because the85

pressure and saturation fields should be solved coupledly. In order to avoid

such difficulty, we are proposing a decoupled approximated solution based in

two main hypothesis:

1. The mobility profile (λTD) can be approximated by the incompressible

solution;90

2. The flow-rate profile (qD) can be approximated by a two-zone, linear,

quasi-static, compressible problem.

As it will be discussed, the flow-rate profile is obtained by a linear PDE, mak-

ing valid the application of flow-rate time superposition (Duhamel’s principle).

Thus, the pressure in the inlet face (PwD) is given by:95

PwD (tD) =

∫ xDS

0

1

λTD
(
x
′
D, tD

)
Nsteps∑

j=1

[
qInjDj

− qInjDj−1

]
qD

(
x
′
D, tD − tDj−1

)
dx
′
D

(11)

where Nsteps is the number of flow-rate steps until tD, qInjDj
is the injection

flow-rate in step j and tDj is the time when qInjDj
has started. The terms inside

parenthesis are the (xD, tD) point where qD and λTD will be evaluated and

should not be confused with an algebraic multiplication.

2.1. Approximation for λTD (xD, tD) (Hypothesis 1)100

Considering the water and oil flow in porous medium, the mass conservation

for each phase is written by:

7



∂ (φSπρπ)

∂t
+
∂ (ρπvπ)

∂x
= 0, π = w, o (12)

Using the incompressibility assumption (Hypothesis 1):

∂Sπ
∂t

+
1

φ

∂vπ
∂x

= 0, π = w, o (13)

Now we introduce the saturation normalization:




Snw = Sw−Swi

1−Swi−Sor , Sw ∈ [Swi, 1− Sor]

Sno = So−Sor
1−Swi−Sor , So ∈ [Sor, 1− Swi]

(14)

Applying the dimensionless definitions (Equations 5-10) and the Darcy’s105

equation (Equation 1), we deduce the mass conservation of water phase, also

known by dimensionless Buckley-Leverett equation (Buckley and Leverett (1942)):

∂Snw
∂tD

+
∂qDfw
∂xD

= 0 (15)

in which fw defines the water fractional flow:

fw =

krw
µw

krw
µw

+ kro
µo

(16)

2.1.1. Solution for λTD (xD, tD)

The Equation 15 is a hyperbolic PDE, whose solution is given by the method110

of characteristics. By this method, the solution is constant over characteristic

paths:

dxD
dtD

= qD
dfw
dSnw

(17)

This work considers convex relative permeability curves, in which dfw
dSnw

is

not monotonic in Snw ∈ (0, 1). Weak solutions admissibility is tested using both

Lax (Lax (1957)) and Oleinik (Oleinik (1957)) stability criteria. The solution115

can then be described by a continuous region followed by a moving discontinuity:

8



Snw =





dfw
dSnw

−1 ( 1
qD(tD)

xD
tD

)
, xD ∈

(
0, xBLD

)

0, xD ∈
(
xBLD , xDS

) (18)

where the term 1
qD(tD)

xD
tD

inside parenthesis is called self-similar variable and

is the point where the inverse of dfw
dSnw

should be evaluated. The discontinuity

trajectory xBLD (tD) is obtained by solving the Rankine-Hugoniot equation:

dxBLD
dtD

= qD (tD)
fBLw
SBLnw

(19)

in which SBLnw and fBLw are the water saturation and fractional flow for limxD→xBL−D
.120

For a step-rate water injection qD (tD) is given by steps and the solution charac-

teristics are described by a sequence of straight lines in xD−tD plane (Figure 3),

where the dashed lines are used to represent the continuous part of the solution

(rarefaction fan) while the solid line is the Buckley-Leverett shock.
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Figure 3: Characteristic diagram for a step-rate water injection

2.1.2. Validity of Hypothesis 1125

To evaluate the validity of this hypothesis we need to analyze the magnitude

of neglected terms when we assume incompressible flow. Expanding the original

mass conservation (Equation 12) and applying the dimensionless definitions:

9



ρπ

(
∂Snπ
∂tD

+
∂qDfπ
∂xD

)
+Sπ

∂ (φρπ)

∂tD

1

(1− Swi − Sor)φ
+ fπqD

∂ρπ
∂xD

= 0, π = w, o

(20)

Using the slightly compressibility rock and fluid definitions:

cφ =
1

φ

dφ

dP
(21)

cπ =
1

ρπ

dρπ
dP

, π = w, o (22)

We obtain:130

(
∂Snπ
∂tD

+
∂qDfπ
∂xD

)
+Sπ (φcπ + cφφ)

∂P

∂tD

1

(1− Swi − Sor)φ
+fπqDcπ

∂P

∂xD
= 0, π = w, o

(23)

The first parenthesis is the Buckley-Leverett equation, the other terms are

related to the error by neglected values. Summing for both phases, we can define

a measure for the error introduced by incompressibility assumption:

εBLL =
∂P

∂tD

ct
(1− Swi − Sor)

+ [fwcw + foco]
∂P

∂xD
qD (24)

where ct is the total compressibility of the system (ct = cφ +Swcw +Soco). We

can relate terms ∂P
∂tD

and ∂P
∂xD

using the characteristic path (Equation 17) and135

the Darcy’s equation (Equation 2:

εBLL =

∣∣∣∣γL
dfw
dSnw

+ βL

∣∣∣∣ (qD)
2

(25)

in which:

γL (xD, tD) =
qrefLC

(1− Swi − Sor)KA
ct
λT

(26)

βL (xD, tD) = [fwcw + foco]
qrefLC
KAλT

(27)
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This equation is written in dimensionless variables where εBLL = εBLL (xD, tD)

because its dependency of the saturation field in the two-phase zone. Note that

εBLL tends to zero in the limit when ct → 0, as expected. Then we can define140

an admissibility condition for Hypothesis 1:

ΨBL
L ≡ max

(∣∣∣∣γL
dfw
dSnw

+ βL

∣∣∣∣
)(

max qInjD

)2
, ∀Snw ∈

(
SBLnw , 1

)
(28)

2.2. Approximation for qD (xD, tD) (Hypothesis 2)

Starting from the mass conservation (Equation 12), applying the Darcy’s

law (Equation 1) and the compressibility definitions:

φ
∂Sπ
∂t

+φSπ (cπ + cφ)
∂P

∂t
−
[
K
∂λπ

∂P
∂x

∂x
+Kλπcπ

(
∂P

∂x

)2
]

= 0, π = w, o (29)

Summing both water and oil phases and applying the dimensionless defini-145

tions (Equations 5-10):

1

λTD

∂λTD
∂PD
∂xD

∂xD
+ λTDβL

(
∂PD
∂xD

)2

= γL
∂PD
∂tD

(30)

For slow pressure gradients (validity of Darcy’s law) the quadratic pressure

gradient term is slow and can be neglected. Then:

1

λTD

∂λTD
∂PD
∂xD

∂xD
= γL

∂PD
∂tD

(31)

Equation 31 is the general linear pressure in the porous medium. However,

its solution is difficulty because of the temporal and spatial dependence of terms150

λTD and γL. Instead of solving the pressure by this equation, we can approx-

imate the flow-rate profile by the quasi-static approach, where for each tD we

consider a static saturation profile. The static λTD term can be decomposed in

the spatial average plus a fluctuation term (λTD = λTD + λ
′
TD):

1

λTD

1

1 +
λ
′
TD

λTD

∂
(
λTD + λ

′
TD

)
∂PD
∂xD

∂xD
= γL

1 +
c
′
t

ct

1 +
λ
′
TD

λTD

∂PD
∂tD

(32)
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where:155

γL =
qrefLC

(1− Swi − Sor)KA
ct

λTD
(33)

and ct = ct + c
′
t. Note that ct (Snw) is a linear function and c

′
t (Snw) =

ct

(
S
′
nw

)
≈ cr. Thus, both

c
′
t

ct
and

λ
′
TD

λTD
are small terms and the PDE becomes:

λTD
∂2PD
∂x2D

+
∂λ
′
TD

∂PD
∂xD

∂xD
= λTDγL

∂PD
∂tD

(34)

The domain can be divided in two zones by the Buckley-Leverett shock

position (xBLD ). For the single-phase zone, λ
′
TD is already null and for two-phase

zone we will consider λ
′
TD ≈ 0. Applying the initial (I.C.), internal boundary160

(I.B.C.) and external boundary (E.B.C.) conditions, we have a PDE for each

zone:





∂2PD
∂x2
D

= γ2PhL
∂PD
∂tD

, xD ∈
(
0, xBLD

)

PD (xD, tD = 0) = 0 (I.C.)

limx→0

(
∂PD
∂xD

)
= − qInjD

λ2Ph
TD

(I.B.C)

(35)





∂2PD
∂x2
D

= γ̂L
∂PD
∂tD

, xD ∈
(
xBLD , xDS

)

PD (xD, tD = 0) = 0 (I.C.)

PD (xD = xDs, tD) = 0 (E.B.C)

(36)

where λ2PhTD and γ2PhL are the spatial average in the two-phase zone (constant

before the breakthrough due to the self-similar Buckley-Leverett solution). To

couple both systems we are using the pressure and flow-rate continuity (Ap-165

pendix A):

limxD→xBL−D
PD (xD, tD) = limxD→xBL+

D
PD (xD, tD)(

λ2PhTD
∂PD(xD,tD)

∂xD

)
xBL−D

=
(
∂PD(xD,tD)

∂xD

)
xBL+
D

(37)

It must be remembered that because of the quasi-static approach the pres-

sure that we are calculating in Equations 35-37 is different of the pressure solu-

tion (Equation 7) and should not be confused.
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2.2.1. Solution for qD (xD, tD)170

To solve Equations 35-37 we apply the Laplace’s transform in both PDE’s

and in the coupling conditions:





∂2P̃D
∂x2
D

= γ2PhL uP̃D, xD ∈
(
0, xBLD

)

limx→0

(
∂P̃D
∂xD

)
= − qInjD

λ2Ph
TD

1
u (I.B.C)

(38)





∂2P̃D
∂x2
D

= γ̂LuP̃D, xD ∈
(
xBLD , xDS

)

P̃D (xD = xDs, u) = 0 (E.B.C)

(39)

limxD→xBL−D
P̃D (xD, u) = limxD→xBL+

D
P̃D (xD, u)(

λ2PhTD
∂P̃D(xD,u)

∂xD

)
xBL−D

=
(
∂P̃D(xD,u)

∂xD

)
xBL+
D

(40)

Solving the system and applying the Darcy’s law in Laplace’s domain (Equa-

tion 2), the flow-rate can be then determined by:

q̃D (xD, u) =




−λ2PhTD

√
γ2PhL ue

√
γ2Ph
L uxDA0 + λ2PhTD

√
γ2PhL ue−

√
γ2Ph
L uxDA1, for xD < xBLD

−√γ̂Lue
√
γ̂LuxDA2 +

√
γ̂Lue

−√γ̂LuxDA3, for xD > xBLD
(41)

where the system solution and coefficients A0, A1, A2 and A3 are described in175

Appendix B. Once calculated the flow-rate in Laplace’s domain, the result is

inverted to real field using the Stehfest’s algorithm Stehfest (1970).

2.2.2. qD (xD, tD) Solution After Breakthrough

For finite reservoir, as long the water injection persists, the Buckley-Leverett

front approximates to the outlet face (xD = 1). After the breakthrough, the180

qD solution given by Equation 41 cannot be used, because xBLD is outside the

domain. For this case, the flow-rate solution should be construct using:

q̃D (xD, u) = −λBTTD
√
γBTL ue

√
γBTL uxDABT0 +λBTTD

√
γBTL ue−

√
γBTL uxDABT1 (42)
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where λBTTD and γBTL are spatial averages inside domain only xD ∈ (0, 1). The

coefficients ABT0 and ABT1 are calculated using xBLD = 1 in coefficients A0 and

A1 for finite case.185

2.2.3. Validity of Hypothesis 2

During the construction of flow-rate solution we have made two simplifica-

tions: slow pressure gradients and average properties in two-phase zone. For

the first simplification, the associated error is given by:

εPL =

∣∣∣∣∣λTDβL
(
∂PD
∂xD

)2
∣∣∣∣∣ (43)

Applying the Darcy’s equation:190

εPL =

∣∣∣∣
βLq

2
D

λTD

∣∣∣∣ (44)

The flow-rate is always lower than the maximum injected flow-rate (qD (xD, tD) ≤
max qInjD ). The admissibility condition is then defined by:

ΨP
L ≡ max

(
βL
λTD

)(
max qInjD

)2
, ∀Snw ∈

(
SBLnw , 1

)
(45)

For the average properties assumption, we will define the average error as:

εML =

∫ xBLD

0

∂λ
′
TD

∂PD
∂xD

∂xD
dxD (46)

By Darcy’s law, the estimated pressure gradient is given by ∂PD
∂xD

= qD
λTD

,

thus evaluating the integral:195

εML =

(
λBLTD − λTD

λTD
qD

)

xD=xBLD

−
(
M − λTD
λTD

qD

)

xD=0

(47)

where λBLTD is the mobility using SBLnw and M =
λSor
λ̂o

. The admissibility for this

assumption is defined using maximizing the error:

ΨM
L ≡

∣∣∣∣∣

(
λBLTD −M

)

λTD

∣∣∣∣∣ q
INJ
D (48)

14



Note that if the saturation changes sharply in two-phase zone, ΨM
L will assume

high values leading to inadmissible errors for Hypothesis 2. This limitation can

be overcame dividing the two-phase region in more zones and repeating the200

process discussed in this section. However, as it will be discussed, for the values

we tested the approximated solution, this refinement was not necessary and all

results showed in this paper were generated using only a single zone for the

two-phase region.
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3. Infinity Reservoir Solution205

In this section we will compare the infinity reservoir solution (xDS → ∞)

with numerical simulation using the properties showed in Table 1. The approx-

imation of infinity reservoir is typically used in well test analysis, where the

well radius is orders of magnitude lower than the reservoir length, and also the

injected volumes are small compared with the original oil in-place. To write the210

space dimensionless variable (Equation 5) we are considering the reservoir length

as the characteristic length (LC). Rock and fluid properties are calculated using

the properties showed in Table 2 and Figure 4.

Table 1: Linear infinity reservoir properties

Length L = 10000 [m]

Cross Section Area A = 4000 [m2]

Starting Flow Rate q0T = 25 [m3/d]
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Table 2: Rock and Fluid physical properties

Fluid Properties

Water Viscosity µw = 1.0 [cp]

Water Compressibility cw = 1.0E − 6 [1/Kgf/cm2]

Oil Viscosity µo = 5.0 [cp]

Oil Compressibility co = 4.0E − 5 [1/Kgf/cm2]

Rock Properties

Porosity φ = 0.1 [-]

Absolute Permeability K = 500 [mD]

Rock Compressibility cr = 1.0E − 4 [1/MPa]

Relative Permeability Curves

Irreducible Water Saturation Swi = 0.20 [-]

kro in Swi Saturation kSwiro = 0.80 [-]

Residual Oil Saturation Sor = 0.20 [-]

krw in Sor Saturation kSorrw = 0.30 [-]

Water Corey’s Parameter nw = 2.2 [-]

Oil Corey’s Parameter no = 2.0 [-]

Figure 4: Relative permeability and fractional flow curves for properties showed in Table 2

The injectivity test schedule is composed by a three isochronal steps fol-

17



lowed by a falloff of same length (Table 3). The Figure 5 shows the flow-rate215

∆tD = 1x10−7, ∆tD = 1x10−6 and ∆tD = 1x10−5 after each flow-rate change.

Note that the flow-rate propagation front does not react the reservoir outlet

any moment during the test, validating the use of the infinity hypothesis. For

this case, both numerical and analytical solutions agree very well, in which the

stability conditions are:
(
ΨBL
L ,ΨP

L ,Ψ
M
L

)
=
(
2.0x10−1, 1.1x10−2, 2.9

)
. The nu-220

merical simulations were run using an uniform mesh grid with 20, 000 cells, with

a controlled time–step size in order to maintain CFL < 0.1. The saturation

profile comparison is not needed because the water saturation front entered less

than 0.2% of the total reservoir length.

Table 3: Step-rate schedule for infinity reservoir test

∆tD (x10−4) qInjD

0.00-1.00 1.0

1.00-2.00 2.0

2.00-3.00 3.0

3.00-4.00 0.0
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Figure 5: Numerical and analytical flow-rate profile comparison for ∆tD = 1x10−7, ∆tD =

1x10−6 and ∆tD = 1x10−5 after each flow-rate change considering the infinity reservoir

solution

Now we have the mobility and the flow-rate profile along the reservoir, the225

pressure solution in the inlet face is calculated by Equation 11 (Figure 6). Every

time the flow-rate is increased a new transient starts in the reservoir, increasing

the pressure rate. Then, in the falloff period, the pressure stops to increase and

falls in order to restore the original pressure in the reservoir. We may note the

excellent agreement between numerical and analytical solutions for the infinity230

reservoir case.
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Figure 6: Numerical and analytical pressure in inlet face (PwD) for the infinity reservoir

solution

3.1. Well-Test Analysis

The standard tool for well-test analysis is using the derivative of pressure

with respect to the natural logarithm of time (Bourdet’s analysis). However,

before use this technique, we need to diminish the effect of the injection flow-rate235

variation from the pressure data, in order to improve the reservoir component of

data. For this we will use the equivalent time concept, based in the convolution

scheme.

The equivalent time for the linear flow (teDl) can be defined by the time

when the pressure data in a particular time ∆t after a step change has the240

same magnitude of the pressure produced by the linear solution with constant

injection flow-rate. Mathematically:

PwD
(
tDN−1

)
− PwD

(
tDN−1

+ ∆tD
)

qDN−1
− qDN

= C1

√
teDl + C2 (49)
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where tDN−1
is the time where the flow-rate step N starts, qDN is the flow-rate

in step N and C1

√
teDl+C2 is the linear solution for the infinity reservoir, with

C1 and C2 given by arbitrary constants depending of the linear problem. The245

dimensionless pressure in time tDN−1
+∆tD can be written using the Duhamel’s

principle:

PwD
(
tDN−1

+ ∆tD
)

=
N∑

j=1

[
qDj − qDj−1

](
C1

√(
tDN−1

+ ∆tD − tDj−1

)
+ C2

)

(50)

then, combining both equations we have the equivalent time definition:

√
teDl =

N−1∑

j=1

(
qDj − qDj−1

qDN−1
− qDN

)[√(
tDN−1

− tDj−1

)
−
√(

tDN−1
+ ∆tD − tDj−1

)]
+
√

∆tD

(51)

Note that for the first injection step (N = 1) the equivalent time is the exact

time teDl = ∆tD = tD.250

Now we can use the pressure derivative with respect to the equivalent time

( dPwD
dlog(teDl)

) for any particular time-step to obtain the reservoir properties (Fig-

ure 7). When the equivalent time concept is applied for the infinity case, the

derivative for any time-step follows a straight line with 1
2 slop, typical of the

linear flow. For real well-tests the reservoir properties are obtained using only255

the falloff period (Figure 8), because the pressure data is smoother not influ-

enced by injection and operational noises. Comparing the multi-step solution

with the single-phase one, we can conclude that for the infinity reservoir case,

the single-phase hypothesis is an excellent approximation for the test analysis,

where the reservoir properties can be obtained adjusting the derivative curve.260
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Figure 7: PwD and dPwD
dlog(teDl)

for the infinity reservoir solution
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linear solution
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4. Finite Reservoir Solution

For long duration tests, when the injected volume is not neglected when

compared with original oil in place, the outlet reservoir face interferes in the

pressure solution and the infinity approximation cannot be used. In this section

a laboratory coreflooding experiment is modeled using the finite model (Table265

4), where the injection flow-rate is controlled in the core inlet and the pressure

drop along the rock core is monitored during all the experiment. The rock and

fluid properties are the same shown in Table 2 and Figure 4.

Table 4: Linear finite reservoir properties

Length L = 30 [cm]

Diameter D = 1.5 [in]

Starting Flow Rate q0T = 0.25 [cm3/min]

The injection schedule for this coreflooding experiment is composed by three

isochronal flow-rate steps followed by a fall-off period (Table 5 and Figure 3).270

If we compare the water front advance over time between our approximated

solution and one obtained by numerical simulation that considers fluid and

rock compressibility (Figure 9), we conclude that the first hypothesis gives out-

standing results for stability conditions that we are dealing (
(
ΨBL
L ,ΨP

L ,Ψ
M
L

)
=

(
2.9x10−4, 1.6x10−5, 2.9

)
). The water breakthrough happens in time tD ≈ 0.45275

where the shock wave leaves the domain, where the compressible and incom-

pressible solutions still agree. Note that, because the horizontal flow hypothesis,

the water profile does not change in the falloff period, most of because phase

segregation is not acting in this system.

The flow-rate along reservoir is compared with numerical solutions for times280

∆tD = 1x10−8, ∆tD = 1x10−7 and ∆tD = 1x10−6 after each flow-rate change

(Figure 10). Both solutions agree for the case we are studying, showing the

validity of Hypothesis 2. Note that solutions still agrees after the breakthrough,

time when the porous medium is highly saturated with water.
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Table 5: Step-rate schedule for finite reservoir test

∆tD qInjD

0.00-0.20 1.0

0.20-0.40 2.0

0.40-0.60 3.0

0.60-0.80 0.0
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Figure 9: Numerical and analytical water saturation profile comparison for tD = 0.2, tD = 0.4,

tD = 0.8 and tD = 0.8 considering the finite reservoir solution
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Figure 10: Numerical and analytical flow-rate profile comparison for ∆tD = 1x10−8, ∆tD =

1x10−7 and ∆tD = 1x10−6 after each flow-rate change considering the finite reservoir solution

Once we have calculated both λTD and qD profiles, we are able to evaluate285

the Equation 11 and calculate the pressure in the inlet face (Figure 11). As

expected, both solution agrees because this case satisfies both Hypothesis 1 and

2. The breakthrough time (tBTD ) can be well identified in the pressure plot

because of the pressure rate changing.
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Figure 11: Numerical and analytical pressure in the inlet face (PwD) for the finite reservoir

solution

4.1. Well-Test Analysis290

To analyze the results of a well-test using the finite reservoir solution we will

try to use the derivative technique using the same equivalent time definition that

we used in infinity case (Equation 51). However, if we compare the dPwD
dlog(teDl)

for each test period we conclude that we cannot use the same approach. This

is more evident if we compare the falloff period with the analytical single-phase295

solution.

Thus, to interpret tests where the reservoir limit interferes the solution we

have two options: analyze only the initial times of data (period where the infinity

approach is valid), or if it is not possible, we need to solve an inverse problem

matching experimental and the pressure solution given by Equation 11.300
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dlog(teDl)

for the finite reservoir solution
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Figure 13: PwD and dPwD
dlog(teDl)

for the finite reservoir solution compared with the single-phase

linear solution
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5. Sensitivity Analysis

In order to analyze the quality of the approximate solution, we made a

sensitivity analysis comparing the stability parameters and the error between

numerical and analytical solutions. The base case is the finite model, generated

using properties described in Tables 2, 4 and Schedule giving by Table 5.305

5.1. ΨBL
L Parameter Analysis

First comparison is fixing all physical properties except the fluid and rock

compressibilities, that are multiplied by the same constant, changing the value of

ct. The Figure 14 shows how the ΨBL
L value interfere in the saturation solution.

The error was calculated comparing the incompressible analytical (Equation310

18) and the compressible numerical solution for tD = 0.4. For ΨBL
L < 0.1, the

incompressible saturation profile is an excellent approximation for the compress-

ible problem. For comparison purposes the saturation profile was plotted for

two different ΨBL
L values (Figure 15), in which can be observed that the com-

pressible saturation front becomes slower with the increasing of ΨBL
L , generating315

the deviation in results.
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Figure 14: ΨBLL versus the error in saturation solution for the finite case
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Figure 15: Numerical and analytical saturation profile comparison for tD = 0.4 and ΨBLL =

0.01 and ΨBLL = 1.0
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5.2. ΨP
L Parameter Analysis

To analyze the ΨP
L impact in the flow-rate approximation we fixed all prop-

erties and changed the starting flow-rate velocity (reference flow-rate qref ). To

calculate the error we compared the flow-rate profile for ∆tD = 1x10−6 after320

the beginning of the second step (tD = 0.20).

As showed in Figure 16, the ΨP
L approximation produces relative low errors

for ΨP
L < 0.01, point where the errors increases fast. The Figure 17 presents

the flow-rate profile for two ΨP
L values, in which can be noted that the solution

looses accuracy for high ΨP
L values.325
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Figure 16: ΨPL versus the error in flow-rate profile for ∆tD = 1x10−6 after tD = 0.2, for the

finite case
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Figure 17: Numerical and analytical flow-rate profile comparison for ∆tD = 1x10−6 after

tD = 0.2, for ΨPL = 1x10−4 and ΨPL = 1x10−1

5.3. ΨM
L Parameter Analysis

The ΨM
L parameter is related to the average mobility profile assumption

in the two-phase zone. To evaluate this we changed the oil viscosity of the

base case. The Figure 18 presents the error when compared the numerical and

analytical flow-rate profile for ∆tD = 1x10−6 after the beginning of the second330

step (tD = 0.20). Observes that errors start to increase fast after ΨM
L > 5.
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6. Conclusions

In this work it has been presented an approximated solution for step variable

flow-rate injectivity tests for linear coordinate system. The analytical solution

proposed considers both infinity and finite reservoir extension, with applications335

in laboratory and field scale experiments. The comparison between numerical

and analytical solution shows excellent agreement.

In addition to the presented solution, it was discussed the approximations

done during mathematical formulation, creating three dimensionless parameters

(ΨBL
L , ΨP

L and ΨM
L ). Those were studied in an sensitivity analysis, generating340

a coherent criteria for the solution validity.
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Appendix A. Flow-Rate Coupling Condition

During the flow-rate approximation, we use the continuity of pressure and380

flow-rate profiles for coupling the equations in the two zones (Equation 37). In

this section we will demonstrate these two affirmations.

Appendix A.1. Proof of Pressure Field Continuity

The pressure profile can be expressed using the Darcy’s equation (Equation

2) as an integral function:385

P (x, t)− Pi =
1

AK

∫ xs

x

qT (x′, t)
λT (x′, t)

dx′ (A.1)

Then, if the argument of the integral has a countable set of discontinuities,

then the pressure is Riemann integrable and continuous.

Appendix A.2. Proof of Flow-Rate Continuity

Using the two-phase pressure equation in the dimensional form (Equation

31):390

∂λT
∂P
∂x

∂x
=
φct
K

∂P

∂t
(A.2)

Applying the Darcy’s equation (Equation 2):

∂qT
∂x

= −Aφct
∂P

∂t
(A.3)

We define the flow-rate in the inlet face, then we can write:

qT (x, t)− qInjT (t) = −
∫ x

0

Aφct
∂P

∂t
dx (A.4)

For the same arguments of pressure, for the time intervals where qInjT (t) is

continuous, the total flow-rate is Riemann integrable and continuous. Observes

that this proof is valid only for the total flow-rate, and each phase flow-rate can395

assume discontinuities, like the Buckley-Leverett shock.
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Appendix B. Flow-Rate Coefficients

The general solution for the PDE’s 38-39 in Laplace’s domain is giving by:

P̃D (xD, u) = A0e
α2Ph
L xD +A1e

−α2Ph
L xD , for xD < xBLD

P̃D (xD, u) = A2e
α̂LxD +A3e

−α̂LxD , for xD > xBLD

(B.1)

where α2Ph
L =

√
γ2PhL u, α̂L =

√
γ̂Lu. Substituting the boundary and initial

conditions, we construct the following linear system:400




1 −1 0 0

0 0 eα̂LxDs e−α̂LxDs

eα
2Ph
L xBLD e−α

2Ph
L xBLD −eα̂LxBLD −e−α̂LxBLD

λ2Ph
TD α2Ph

L eα
2Ph
L xBLD −λ2Ph

TD α2Ph
L e−α

2Ph
L xBLD −α̂Leα̂Lx

BL
D α̂Le

−α̂LxBLD







A0

A1

A2

A3




=




− q
Inj
D

λ2Ph
TD

1

uα2Ph
L

0

0

0




(B.2)

Appendix B.1. Solution for Infinity System

For the infinity system, xDs →∞, and in order to maintain real and limited

coefficients, A2 = 0. Thus, the coefficients are written by:

A0 =
q
Inj
D

λ2Ph
TD

α2Ph
L

u




(
λ2Ph
TD

α2Ph
L − α̂L

)(
1 + e

−2α2Ph
L xBLD

)2

2

(
1 + e

−2α2Ph
L

xBL
D

) [
α̂L +

(
α̂L + λ2Ph

TD
α2Ph
L

)
cosh

(
2α2Ph
L

xBL
D

)
− λ2Ph

TD
α2Ph
L

e
−2α2Ph

L
xBL
D

]




(B.3)

A1 =
q
Inj
D

λ2Ph
TD

α2Ph
L

u




2

(
α̂L + λ2Ph

TD
α2Ph
L

) (
1 + cosh

(
2α2Ph
L xBLD

))

2

(
1 + e

−2α2Ph
L

xBL
D

) [
α̂L +

(
α̂L + λ2Ph

TD
α2Ph
L

)
cosh

(
2α2Ph
L

xBL
D

)
− λ2Ph

TD
α2Ph
L

e
−2α2Ph

L
xBL
D

]




(B.4)

A2 = 0 (B.5)

A3 =
q
Inj
D

λ2Ph
TD

α2Ph
L

u




λ2Ph
TD

α2Ph
L

e
−α̂LxBLD

((
α̂L + λ2Ph

TD
α2Ph
L

)
cosh

(
α2Ph
L

xBL
D

)
− λ2Ph

TD
α2Ph
L

e
−α2Ph

L
xBL
D

)




(B.6)
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Appendix B.2. Solution for Finite System

For finite system, xDs → 1. The coefficients are written by:405

A0 =
qInjD

λ2PhTD α2Ph
L u




2λ2PhTD α2Ph
L

(
e−α̂Lx

BL
D − eα̂L(xBLD −2)

)
− e−α2Ph

L xBLD ΩL

2cosh
(
α2Ph
L xBLD

)
ΩL




(B.7)

A1 =
qInjD

λ2PhTD α2Ph
L u



eα

2Ph
L xBLD ΩL + 2λ2PhTD α2Ph

L

(
e−α̂Lx

BL
D − eα̂L(xBLD −2)

)

2cosh
(
α2Ph
L xBLD

)
ΩL




(B.8)

A2 = −2qInjD e−2α̂L

uΩL
(B.9)

A3 =
2qInjD

uΩL
(B.10)

in which:

ΩL =
(
α̂L + λ2PhTD α2Ph

L

)(
e(α

2Ph
L −α̂o)xBLD + eα̂L(xBLD −2)−α2Ph

L xBLD

)

+
(
α̂L − λ2PhTD α2Ph

L

)(
e−(α2Ph

L +α̂L)xBLD + eα̂L(xBLD −2)+α2Ph
L xBLD

)
(B.11)
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Abstract

Water-Alternated-Gas (WAG) flooding is largely used as an Enhanced Oil
Recovery (EOR) method in oil fields. It is based on the high sweep efficiency
of the water phase and the high displacement efficiency of the gas phase.
Additionally, other components may be dissolved in both displacing phases,
increasing the oil recovery factor and leading to modern WAG schemes such
as PWAG (Polymer WAG), MWAG (Miscible WAG), and others. In this
chapter we present approximate analytical solutions for the linear immisci-
ble Water-Alternated-Gas problem. The mathematical model is composed by
a 2x2 system of non-linear hyperbolic Partial Differential Equations (PDE),
solved by the Method of Characteristics (MOC) for a set of reservoir proper-
ties. The analytical solution is compared with numerical simulation showing
the accuracy and robustness of the method under different WAG conditions.
The solutions can be used to analyze laboratory WAG experiments or used
for screening the best recovery technique for a particular field in a fast and
efficient way.

Keywords: Enhanced Oil Recovery, Three Phase Flow, Water Alternated
Gas

1. Introduction

The choice of the most suited recovery technique for a particular reser-
voir depends on reliable fluid-rock data and the economic evaluation of the

∗Corresponding author
Email address: adolfo.puime@gmail.com (Adolfo P. Pires)

Preprint submitted to International Journal January 10, 2022



possible options. In general, this analysis is performed using numerical and
analytical mathematical tools.

Reservoir simulation is a widespread used technique to generate field pro-
duction forecasts for different scenarios. It is used to optimize the oil recovery
as a function of the number of wells, injection and production flow rates, and
others (Lin and Poole, 1991). However, numerical simulations are time con-
suming, and it is not possible to simulate local phenomena and field scale in
the same run (Christensen et al., 1998; Li et al., 2003). Another issue is that
commercial codes are limited to well established physical problems, which
do not fit new challenges. Then, new models must be built, and analytical
solutions for simplified problems are used to validate these codes.

One dimensional immiscible, incompressible two-phase flow in porous me-
dia for constant initial and boundary conditions is modeled by a hyperbolic
partial differential equation, and this problem can be solved by the Method
of Characteristics (MOC) (Buckley and Leverett, 1942). Two-phase prob-
lems considering capillary and gravitational effects were also solved (Fayers
and Sheldon, 1959; Sheldon and Cardwell, 1959), and also including mass
exchange between injected gas and reservoir fluid (Johns and Orr, 1996;
Bedrikovetsky et al., 2004). Three-phase immiscible problems generate a
2x2 system of equations (Bell et al., 1986; Holden, 1990). In general, the
solution for these problems considers the simultaneous injection of water and
gas as the boundary condition, and the oil saturation at the beginning of the
injection as initial condition.

Injection of alternated water and gas slugs in oil reservoirs is one of the
most interesting Enhanced Oil Recovery (EOR) techniques. The use of the
so called Water-Alternated-Gas (WAG) method can improve oil recovery
by up to 20%, depending on fluid and rock characteristics (Sanchez, 1999;
Christensen et al., 2001). Several rock and fluid properties, such as rock
heterogeneity, natural faults, fluids miscibility, and surface tension, among
others, impact the efficiency of this process (Sohrabi et al., 2004; Holtz, 2016).

The mathematical model of the WAG method leads to a variable bound-
ary condition problem. The change of the boundary condition introduces
new characteristic waves that interact with the existing ones in the solu-
tion domain. Marchesin and Plohr (2001) analyzed the wave structure that
appears in the WAG recovery scheme.

In this chapter we propose a simplified method to solve the WAG dis-
placement problem. At the end of each injection step, the saturations are
averaged and are considered constant at the beginning of the next step, avoid-
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ing the interaction waves problem. Results are generated for different WAG
conditions and are compared to numerical solutions with excellent agreement.

Next section presents the mathematical details involved with the WAG
problem. The general solution is presented in Section 3, followed by the
comparison of the approximate solution in different scenarios. Finally some
conclusions are addressed.

2. Mathematical Model

The physical problem analyzed in this chapter considers the simultaneous
flow of water, oil and gas in an one-dimensional porous medium. Additional
hypothesis are:

1. One dimensional isothermal horizontal flow;

2. Homogeneous and incompressible porous medium;

3. Negligible dispersion and capillary effects;

4. No chemical reactions nor components adsorption;

5. Incompressible and constant viscosity phases.

Under these assumptions, the mass conservation of each phase is written
as:

∂Sπ
∂t

+
1

φ

∂vπ
∂x

= 0, for π = w, o, g (1)

where φ is the rock porosity, Sπ and vπ are the phase π saturation and velocity
and w, o and g relate to water, oil and gas phases, respectively. Each phase
velocity is calculated using Darcy’s equation:

vπ = −Kkrπ
µπ

∂P

∂x
, for π = w, o, g (2)

in which K is the absolute permeability, krπ is the relative permeability of
phase π and µπ is the phase viscosity. The relation krπ

µπ
is also called the

phase mobility λπ. The phase fractional flow function is defined as:

fπ =
vπ
vT

=
λπ
λT

(3)

where vT and λT are the total velocity and total mobility. Then, applying
the fractional flow definition in Equation 1 we obtain:
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∂Sπ
∂t

+
vT
φ

∂fπ
∂x

= 0, for π = w, o, g (4)

Equation 4 can be rewritten as a function of the following dimensionless
space and time coordinates

xD =
x

L
(5)

tD =

∫ t

0

vT (τ)

φL (1− Swi − Som)
dτ (6)

to become

∂Sπ
∂tD

+
∂fπ
∂xD

= 0, for π = w, o, g (7)

2.1. Method of Characteristics

Equation 7 can be solved using the method of characteristics. As the sum
of the saturations is one, it is necessary to solve only two equations:

{
∂Sw
∂tD

+ ∂fw(Sw,So)
∂xD

= 0
∂So
∂tD

+ ∂fo(Sw,So)
∂xD

= 0
(8)

or, in matrix form

(
1 0
0 1

)(
Sw
So

)

tD

+

( ∂fw
∂Sw

∂fw
∂So

∂fo
∂Sw

∂fo
∂So

)(
Sw
So

)

xD

=

(
0
0

)
(9)

where the tD and xD subscripts denote partial derivatives. The system eigen-
values are calculated by:

λ± =
1

2

(
∂fw
∂Sw

+
∂fo
∂So

)
± 1

2

√(
∂fw
∂Sw

− ∂fo
∂So

)2

+ 4

(
∂fw
∂So

∂fo
∂Sw

)
(10)

in which λ+ and λ− are called fast and slow eigenvalues.
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2.1.1. Rarefaction Waves

System 9 can be rewritten as a functtion of a self-similar independent
variable ξ = xD/tD:

( ∂fw
∂Sw
− ξ ∂fw

∂So
∂fo
∂Sw

∂fo
∂So
− ξ

)( ∂Sw
∂ξ
∂So
∂ξ

)
=

(
0
0

)
(11)

This independent variable is an eigenvalue of the system and the continu-
ous part of the solution (rarefaction waves) can be found solving the following
system:

d~S

dξ
= ~r± (12)

where ~r± are the fast and slow right-eigenvector of the Jacobian matrix. Note
that the fast and slow rarefaction solutions are also given by the following
equations:

(
dSw
dSo

)±
= −

∂fw
∂So(

∂fw
∂Sw
− λ±

) (13)

2.1.2. Shock Waves

This system of equations also admits discontinuous solutions that must
conserve mass:

{
σ
(
SLw − SRw

)
=
(
fLw − fRw

)

σ
(
SLo − SRo

)
=
(
fLo − fRo

) (14)

This system is known as Rankine-Hugoniot conditions, where σ is the
shock speed, and superscripts L and R denote left and right shock conditions,
respectively.

2.1.3. Numerical Solution Method

The analytical solutions developed in this chapter are compared with
a numerical first order explicit method (LeVeque et al., 2002). To mini-
mize numerical diffusion issues, all runs were performed using the condition
CFL = 0.1 and the spatial domain composed by 10.000 cells.
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3. Approximate Analytical Solution

In this section we describe the approximate analytical solution of the
Water-Alternated-Gas problem. The relative permeability for each phase is
calculated using the modified Stone I model (Stone, 1970; Aziz and Settari,
1979):





krw = krw (Sw)

kro = kro (Sw, So, Sg) = (1− Swi − Som) So−Som
k
Swi
ro

(
kwro

1−Sw−Som

)(
kgro

1−Sg−Swi−Som

)

krg = krg (Sg)

(15)
where Swi is the irreducible water saturation, Som is the lowest oil resid-
ual saturation determined from waterflooding and gasflooding experiments
(Som = min (Swor, S

g
or)); and kwro and kgro are the relative permeability from

waterflooding and gasflooding experiments. Note that the oil relative per-
meability depends on the saturations of all phases. The waterflooding and
gasflooding two-phase relative permeability are calculated using a power law
model (Corey et al., 1956):





krw = k
Swor
rw

(
Sw−Swi

1−Swi−Swor

)nw

k
w|g
ro = kSwiro

(
So−Sw|g

or

1−Swi−Sw|g
or

)nw|g
o

krg = kS
g
or

rg

(
Sg

1−Swi−Sgor

)ng
(16)

in which the terms k
Swor
rw , kSwiro and kS

g
or

rg are the water, oil and gas relative
permeabilities calculated at the points Swor, Swi and Sgor. Note that for the
region where So ∈ (Swor, S

g
or) the water relative permeability curve is linearly

extrapolated using the point krw (Sw = 1) = 1. Figures 1 and 2 show the two
and three phase relative permeability curves calculated with the data shown
in Table 1. All cases run in this section use the water, oil and gas viscosity
equal to µw = 1.0, µo = 2.0 and µg = 0.05.
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Table 1: Corey’s parameters used in the Base Case simulations.

Waterflooding Gasflooding
Swi = 0.20 Swi = 0.20
kSwiro = 0.80 kSwiro = 0.80
Swor = 0.40 Sgor = 0.20

k
Swor
rw = 0.40 kS

g
or

rg = 0.80
nw = 2.20 ng = 1.80
nwo = 2.00 ngo = 2.10

Figure 1: Water-Oil and Gas-Oil relative permeability curves
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Figure 2: Three phase relative permeability curves

The residual oil saturation depends on the injected fluid along the WAG
displacement process. As a consequence, the integral curves also change
(Figure 3). In this figure the arrows point toward the associated eigenvalue

8



increasing direction. For the fast integral curves, there are three points where
the curves collapse: I = (Sw, So, Sg) = (Swi, 1− Swi, 0), Jw = (Sw, So, Sg) =
(1− Swor, Swor, 0) and Jg = (Sw, So, Sg) = (Swi, S

g
or, 1− Swi − Sgor). Figure 4

expands the region around Jw. Initial reservoir saturation is denoted by I,
where there is only oil at irreducible water saturation. Points Jw and Jg are
the injection boundary condition when So > max (Swor, S

g
or). One may note

that in the region where So ∈ (Swor, S
g
or), the fast integral curves are parallel

to the SwSg edge in the region near to the water vertex.
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Figure 3: Slow and fast integral curves for data shown in Table 1
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Figure 4: Detail of the fast integral curve around Jw for data shown in Table 1

To solve the complete WAG problem, every time the boundary condition
is changed a new wave interacts with the waves in the solution, generating a
new Riemann problem for each interaction (Rhee et al., 1970). To overcome
this limitation we propose a simplified method where at the end of each
injection step of the WAG cycle we calculate the average saturation in the
porous medium and start a new initial-boundary value problem. This new
problem is divided in two different cases based on the average oil saturation
S̄o.

3.1. Solution for S̄o > max (Swor, S
g
or)

For the case when S̄o > max (Swor, S
g
or), the injection condition will be ei-

ther the Jw or the Jg point. In this example we consider that the first injected
fluid of the WAG cycle is water. So, the initial and boundary conditions are
given by:

{
I1

st
w = I = (Swi, 1− Swi, 0)

J1stw = Jw = (1− Swor, Swor, 0)
(17)

The solution for this first step is composed by a rarefaction wave followed
by a shock wave (Figure 5). In the left plot of this figure the dashed lines
are a continuous rarefaction fan and the solid line is a shock. This solution
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is also known as a fast composite wave because the shock speed is equal to
the last rarefaction fast eigenvalue. Figure 6 shows the saturation profile for
three different times after the beginning of the water injection, compared to a
numerical solution. For this particular problem the WAG steps last tD = 1.0.
Note that the water breakthroughs after tD = 0.55, and at the end of the
injection step the saturation profile is a smooth curve. The saturation tra-
jectory can be seen in the ternary plot (Figure 5), where the minimum water
saturation is approximately Sw = 0.48, given by the left shock condition.

Figure 5: Characteristic diagram and saturation path for the first water injection step for
the Base Case
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Figure 6: Saturation profile for the first water injection step for the Base Case
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At the end of the water step the saturations spatial average are deter-
mined and the first gas injection step starts with the following conditions:

{
I1

st
g = (0.5566, 0.4434, 0.0000)

J1stg = Jg = (Swi, S
g
or, 1− Sgor)

(18)

where S̄o > Swor. The solution is given by a fast composite wave starting at
Jg (Figures 7 and 8). The gas mobility is greater than the water mobility
(λg > λw) leading to a faster gas breakthrough. For this data set the oil resid-
ual saturation for gasflooding experiments is smaller than for waterflooding,
increasing the recoverable oil during the gas step.

Figure 7: Characteristic diagram and saturation path for the first gas injection step for
the Base Case
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Figure 8: Saturation profile for the first gas injection step for the Base Case
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After the gas injection step the saturations are averaged and the second
WAG cycle starts:

{
I2

nd
w = (0.3694, 0.4246, 0.2060)

J2ndw = Jw = (1− Swor, Swor, 0)
(19)

Note that at the start of the second water step S̄o > Swor and the injection
condition is given by Jw. Figures 9 and 10 show the characteristic diagram
and the saturation profile for this injection step. The new water breakthrough
is slower than the one for the gas cycle but is faster than the one for pure
waterflooding, stressing the gas injection effect in the solution profile.

Figure 9: Characteristic diagram and saturation path for the second water injection step
for the Base Case
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Figure 10: Saturation profile for the second water injection step for the Base Case
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3.2. Solution for S̄o < max (Swor, S
g
or)

Usually the residual oil saturation for waterflooding is greater that for
gasflooding. As a consequence, a water injection step may start at a condition
where S̄o < max (Swor, S

g
or). The water injection condition for this case (J∗w)

is the point in the SwSo edge in which J∗w =
(
1− S̄o, S̄o, 0

)
.

Using the Base Case as example, at the beginning of the fourth WAG
cycle, S̄o < Swor. The initial and boundary conditions for this cycle are given
by:

{
I4

th
w = (0.3895, 0.3955, 0.2150)

J4thw = J∗w =
(
1− S̄o, S̄o, 0

) (20)

Figures 11 and 12 show the solution for this particular case. The solution
structure is composed by a fast composite wave. Analyzing the saturation
profile, we can observe that this water step cannot extract any additional oil
from the reservoir, however it is still important because the gas saturation
decreases, and the next gas step can recover additional oil.

Figure 11: Characteristic diagram and saturation path for the fourth water injection step
for the Base Case
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Figure 12: Saturation profile for the fourth water injection step for the Base Case
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4. Approximate Solution Validation

In this section we evaluate the proposed approximate analytical solution
comparing it with numerical results. Figure 13 presents the accumulated
production of each phase after two WAG cycles for the case presented in
previous section, denoted Base Case. The difference of the accumulated
oil recovery between the approximate proposed solution and the numerical
solution is −0.0162%PV (Pore Volume). Figure 14 shows the saturation
profile at the end of each injection step.

Figure 13: Accumulated production of each phase for the Base Case
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Figure 14: Saturation profile after each injection step for the Base Case

The Base Case solution was also developed considering the WAG process
starting with gas injection (Figure 15). For this case the oil recovery was
approximately 1% smaller at the end of the second cycle. The difference
between the approximate and the numerical solutions for the oil recovery
was −0.0191%PV.
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Figure 15: Accumulated production of each phase for the Base Case starting with gas
injection

4.1. Sensitivity analysis for injection time and number of WAG cycles

The approximate solution depends on the saturation averaging, which is
highly influenced by the water and gas volumes injected, or the dimensionless
injection time for each step. Figure 16 presents the accumulated production
after two WAG cycles for two different injection times, tD = 0.16 and tD =
4.00. For the smaller injection time the analytical solution does not present
good results because the saturation profile is not smooth (Figure 17).
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Figure 16: Accumulated production of each phase for the Base Case after two WAG cycles
for injection time tD = 0.16 and tD = 4.00
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Figure 17: Saturation profile after each injection step for the Base Case with injection
time tD = 0.16

We define oil recovery difference between our approximate and numerical
solution as relative cumulative oil error (e = 1− ORAnal.

ORNum.
), where ORAnal. and

ORNum. are the oil recovery at the end of the last injection step calculated
with the analytical and numerical methods. Figure 18 presents this error
after two WAG cycles for different injection times. For very small injection
times the error is also small because there is no injected fluids breakthrough
and only oil is produced. As injection time increases the error also increases
because the average saturation is not a good approximation for the WAG
problem. However, after the injection time is long enough to the break-
through of all phases (approximately tD = 0.5 for this particular case), the
relative error decreases and the approximate solution becomes an excellent
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tool to model the WAG injection problem.

Figure 18: Oil recovery relative error between analytical and numerical solution after two
WAG cycles for different injection times

Figure 19 presents oil recovery relative error as a function of the number
of injection steps for four different injection times. Note that for all cases the
marginal error decreases with the increase in the number of steps. For short
injection times the first injection steps present greater errors, because of the
sharp discontinuities in the saturation solution.
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Figure 19: Oil recovery relative error between analytical and numerical solution for differ-
ent number of WAG cycles

4.2. Sensitivity analysis for the injected mobility ratio

Water and gas phases present different physical properties and interact
with oil in different ways during immiscible displacement. Water phase is
more viscous than gas phase, while oil residual saturation for a gasflooding
is much smaller than for a waterflooding. We evaluate how the gas-water
relative mobility ratio ( λg

λw
) changes the results of the Base Case (Figure 20).
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Figure 20: Effect of the gas-water relative mobility ratio (
λg

λw
) on the oil recovery relative

error

When λg
λw

= 1 the error of the approximate solution is small, because
the saturation profile is well approximated by its average (Figure 21). As the
relative mobility increases the error also increases, because of the difference in
the saturation profiles (Figure 22). However, this effect reaches a maximum
because as the gas mobility is increased, the gas breakthrough is decreased,
which improves the solution quality.

27



Figure 21: Saturation profile after each injection step for the Base Case for
λg

λw
= 1

28



Figure 22: Saturation profile after each injection step for the Base Case for
λg

λw
= 10

5. Conclusion

In this chapter we present an approximate analytical solution for the Wa-
ter Alternated Gas (WAG) method of oil recovery. The mathematical model
was based on the assumption of one-dimensional immiscible, incompressible,
isothermal three-phase flow in porous media. The conservation laws for each
phase leads to a 2x2 system of hyperbolic partial differential equations, solved
by the method of characteristics for a set of reservoir properties and relative
permeability curves. It was considered that the residual oil saturation was
different for waterflooding and gasflooding. At the end of each injection step,
the saturations were averaged and considered constant along the porous me-
dia at the beginning of the following step, generating a new initial boundary
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value problem with constant saturation, avoiding the necessity to solve wave
interactions problems. The analytical solution was compared to the results
of a numerical simulator with excellent agreement. Injection time, number
of injection cycles and gas-water mobility ratio were changed to evaluate the
robustness of the proposed technique. It was shown that the approximate
solution is as good as the saturation profile can be approximated by its aver-
age. Larger WAG cycles led to better results, mainly after the injected fluids
breakthrough.

Acknowledgements

This research was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. Alvaro
Peres acknowledges the Universidade Estadual do Norte Fluminense Darcy
Ribeiro (UENF) for financial support.

References

Aziz, K., Settari, A., 1979. Petroleum reservoir simulation. Applied Science
Publishers.

Bedrikovetsky, P., Shapiro, A., Pires, A., 2004. New analytical solutions
for 1-d multicomponent gas injection problems, in: Abu Dhabi Interna-
tional Conference and Exhibition, Society of Petroleum Engineers. URL:
https://doi.org/10.2118/88760-ms, doi:10.2118/88760-ms.

Bell, J.B., Trangenstein, J.A., Shubin, G.R., 1986. Conserva-
tion laws of mixed type describing three-phase flow in porous me-
dia. SIAM Journal on Applied Mathematics 46, 1000–1017. URL:
https://doi.org/10.1137/0146059, doi:10.1137/0146059.

Buckley, S., Leverett, M., 1942. Mechanism of fluid displace-
ment in sands. Transactions of the AIME 146, 107–116. URL:
https://doi.org/10.2118/942107-g, doi:10.2118/942107-g.

Christensen, J., Stenby, E., Skauge, A., 1998. Compositional
and relative permeability hysteresis effects on near-miscible WAG,
in: SPE/DOE Improved Oil Recovery Symposium, SPE. URL:
https://doi.org/10.2118/39627-ms, doi:10.2118/39627-ms.

30



Christensen, J., Stenby, E., Skauge, A., 2001. Review of WAG field ex-
perience. SPE Reservoir Evaluation & Engineering 4, 97–106. URL:
https://doi.org/10.2118/71203-pa, doi:10.2118/71203-pa.

Corey, A., Rathjens, C., Henderson, J., Wyllie, M., 1956. Three-phase rel-
ative permeability. Journal of Petroleum Technology 8, 63–65. URL:
https://doi.org/10.2118/737-g, doi:10.2118/737-g.

Fayers, F., Sheldon, J., 1959. The effect of capillary pressure and gravity on
two-phase fluid flow in a porous medium. Transactions of the AIME 216,
147–155. URL: https://doi.org/10.2118/1089-g, doi:10.2118/1089-g.

Holden, L., 1990. On the strict hyperbolicity of the buckley–leverett equa-
tions for three-phase flow in a porous medium. SIAM Journal on Applied
Mathematics 50, 667–682. URL: https://doi.org/10.1137/0150039,
doi:10.1137/0150039.

Holtz, M.H., 2016. Immiscible water alternating gas (IWAG) EOR: Cur-
rent state of the art, in: SPE Improved Oil Recovery Conference, Society
of Petroleum Engineers. URL: https://doi.org/10.2118/179604-ms,
doi:10.2118/179604-ms.

Johns, R., Orr, F., 1996. Miscible gas displacement of multicomponent
oils. SPE Journal 1, 39–50. URL: https://doi.org/10.2118/30798-pa,
doi:10.2118/30798-pa.

LeVeque, R., J, L., Crighton, D., 2002. Finite Volume Methods for Hyper-
bolic Problems. Cambridge Texts in Applied Mathematics, Cambridge
University Press.

Li, D., Kumar, K., Mohanty, K.K., 2003. Compositional simulation of
WAG processes for a viscous oil, in: SPE Annual Technical Confer-
ence and Exhibition, SPE. URL: https://doi.org/10.2118/84074-ms,
doi:10.2118/84074-ms.

Lin, E., Poole, E., 1991. Numerical evaluation of single-slug, WAG,
and hybrid CO2 injection processes, dollarhide devonian unit, an-
drews county, texas. SPE Reservoir Engineering 6, 415–420. URL:
https://doi.org/10.2118/20098-pa, doi:10.2118/20098-pa.

31



Marchesin, D., Plohr, B.J., 2001. Wave structure in WAG recovery.
SPE Journal 6, 209–219. URL: https://doi.org/10.2118/71314-pa,
doi:10.2118/71314-pa.

Rhee, H.K., Aris, R., Amundson, N.R., 1970. On the theory of
multicomponent chromatography. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical Sci-
ences 267, 419–455. URL: https://doi.org/10.1098/rsta.1970.0050,
doi:10.1098/rsta.1970.0050.

Sanchez, N.L., 1999. Management of water alternating gas (WAG)
injection projects, in: Latin American and Caribbean Petroleum
Engineering Conference, Society of Petroleum Engineers. URL:
https://doi.org/10.2118/53714-ms, doi:10.2118/53714-ms.

Sheldon, J., Cardwell, W., 1959. One-dimensional, incompressible, noncapil-
lary, two-phase fluid flow in a porous medium. Transactions of the AIME
216, 290–296. URL: https://doi.org/10.2118/978-g, doi:10.2118/978-
g.

Sohrabi, M., Tehrani, D., Danesh, A., Henderson, G., 2004. Vi-
sualization of oil recovery by water-alternating-gas injection us-
ing high-pressure micromodels. SPE Journal 9, 290–301. URL:
https://doi.org/10.2118/89000-pa, doi:10.2118/89000-pa.

Stone, H., 1970. Probability model for estimating three-phase relative
permeability. Journal of Petroleum Technology 22, 214–218. URL:
https://doi.org/10.2118/2116-pa, doi:10.2118/2116-pa.

32



111

6 Article: An Immiscible Water
Alternating Gas (WAG)
Analytical Solution Based in
Wave Interaction Theory



An Immiscible Water Alternating Gas (WAG)
Analytical Solution Based on Wave Interaction Theory

Wagner Q. Barrosa, Adolfo P. Piresa,∗, Álvaro M. M. Peresa
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Fluminense Darcy Ribeiro, Macaé, RJ, Brazil

Abstract

Water-Alternating-Gas (WAG) process is the alternated injection of water and

gas slugs in the reservoir that allies the good microscopy displacement efficiency

of the gas with the mobility control provided by the water. In recent years the

use of this technique has been increased because of the good results in field

applications and the relative low costs when compared to others Enhanced Oil

Recovery (EOR) processes. In this work we present an analytical solution for

the linear, incompressible, immiscible WAG process. The three-phase flow in

porous media was modeled using the Darcy’s law and the governing equations

were solved using the method of characteristics. The wave interactions that

appears due to the injection of slugs with different mobilities are identified and

solved. This technique can be applied with any traditional three-phase relative

permeability curve and no consideration was made for slug lengths and order,

showing the great robustness of the model. Results were compared to numerical

solutions with close agreement.
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1. Introduction

The WAG process is an EOR technique where alternated slugs of gas and

water are injected in the reservoir. This method combines the high displacement

efficiency during the gas cycle with the mobility control provided by the water

slug, increasing both vertical and horizontal sweep efficiency and stabilizing5

the gas injection front. The first reported application was in North Pembina

field in Canada, operated by Mobil in 1957 and its usage has largely since then

(Christensen et al. (2001)). The incremental recovery efficiency varies between 1

to 13% of original oil in place (OOIP) for immiscible applications (Holtz (2016))

and between 2 and 20% for miscible cases (Christensen et al. (2001)).10

A WAG project is divided in two main phases: screening and implementa-

tion. During screening phase, laboratory, mathematical modeling and simula-

tion studies are performed to evaluate the impact of rock and fluid properties in

the additional oil recovery. The implementation phase then starts with the pilot

well, usually in a relatively isolated part of reservoir for performance evaluation15

(Nadeson et al. (2004)). One may observes that all information gathered during

the screening phase reduces the risks involved in implementation, showing the

importance of mathematical modeling and phenomenological understanding.

The mathematical problem of the WAG process can be understood as the

interaction among the waves that appears during the injection of different fluid20

slugs in porous media. Thus understanding the multiphase flow in porous media

is fundamental for WAG solutions. For the two-phase, linear, immiscible oil dis-

placement by water or gas, the solution is well established by Buckley-Leverett

equations (Buckley and Leverett (1942)).

Three-phase immiscible solutions are more complicated, because some stan-25

dard assumptions of the Buckley-Leverett equation can create non real eigen-

values of the system of equations, leading to mathematically ill-posed problems

(Bell et al. (1986); Holden (1990); Marchesin and Plohr (2001)). However, us-

ing the most common three-phase relative permeability models (Stone (1970);

Baker (1988); Delshad and Pope (1989)) and rock/fluid properties usually found30
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in reservoirs, the elliptical regions are usually small and do not cause numeri-

cal instabilities during numerical simulations (Shearer and Trangenstein (1989))

nor create physically inadmissible solutions (Guzmán and Fayers (1997a,b)). A

complete review of three-phase immiscible solutions can be found in Marchesin

and Plohr (2001).35

The three-phase immiscible solutions can be a good approximation for the

WAG process, making a Riemann problem with a constant right state (initial

saturation) and the left state being the temporal average of the injected fluid

(Marchesin and Plohr (2001)). This approximation show is that the WAG

process can be seen as a superposition of a non-linear self-similar three-phase40

displacement and a decaying oscillatory wave accounting the wave interactions.

Numerical simulation of these simplified model showed a good agreement for

small slug sizes, in which in the limit when the slugs length tends to zero,

the simultaneous solution matches perfectly with the numerical WAG solution

(LaForce and Jessen (2010)).45

However, in real WAG modeling, the injected fluid properties changes after

each cycle creating discontinuities in boundary condition, in which non-linear

waves propagating with different speeds will interact along the space-time plane.

Thus, self-similar solutions of three-phase immiscible flow cannot be used to

describe this phenomenon. When two characteristic waves cross in the space-50

time plane, it can be seen as a new Riemann problem, centered in the exact

crossing point and with limits given by both sides of initial waves (Rhee et al.

(1970)). This technique has already been applied in the theory of two-phase

slug injection of chemicals in reservoir (Borazjani et al. (2016); Khorsandi et al.

(2016); Apolinário et al. (2020); Apolinário and Pires (2021)). However, for the55

best of our knowledge, there is no analytical solution reported in literature for

a three-phase problem considering the wave interaction among different slugs.

In this work, we present the analytical solution of the WAG process in a

linear, immiscible and incompressible system. This solution considers different

water-flood and gas-flood residual oil saturations, to incorporate the displace-60

ment efficiency into the model. The system was solved by the method of char-

3



acteristics in which all wave interactions that appears due to the different slugs

interactions were identified and solved. In Section 2 we show the mathematical

modeling of the problem and the general solution of the simpler propagating

waves. Next section we classify all wave interactions that appears in the WAG65

process and show how to resolve each. Then, in Section 4, it is presented a com-

plete WAG analytical solution using the wave interactions discussed previously.

After, some conclusions are addressed.
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2. Mathematical Model of WAG Immiscible Flow

We consider the linear displacement of oil by the injection of alternated slugs70

of water and gas. The porous media is homogeneous and initially saturated with

oil at irreducible water saturation. Additional hypothesis are:

• Immiscible and isothermal flow;

• Negligible dispersion, gravitational and capillary effects;

• Incompressible fluids and porous media;75

• Fluids having constant viscosity;

• Darcy’s law hypothesis are valid;

• Constant cross sectional area;

• Neglecting hysteresis of relative permeability curves;

• Absence of gas critical saturation.80

Under these assumptions, the transport equation for each phase is given by:

∂Sπ
∂t

+
1

φ

∂vπ
∂x

= 0, for π = w, o, g (1)

in which φ is the rock porosity and Sπ and vπ are the saturation and velocity of

phase π. The aqueous, oil and gaseous phase are denoted by w, o, g, respectively.

Using the Darcy equation, the velocity of each phase can be calculated by:

vπ = −Kkrπ
µπ

∂P

∂x
(2)

where K and krπ are the absolute and relative permeabilities, µπ the phase85

viscosity and ∂P
∂x the linear pressure gradient.

The interfacial tension between oil and gas are orders of magnitude lower

than the oil-water, causing a lower residual oil by gasflooding (Sgor) than by

waterflooding (Swor). This phenomenon affects the displacement efficiency and

is modeled by the introduction of the minimum residual oil saturation:90
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Som = min (Swor, S
g
or) (3)

Thus, the phase saturations are all normalized by:





Snw = Sw−Swi
1−Swi−Som , Sw ∈ [Swi, 1− Sor]

Sno = So−Som
1−Swi−Som , So ∈ [Sor, 1− Swi]

Sng =
Sg

1−Swi−Som , Sg ∈ [0, 1− Swi − Sor]

(4)

where Swi is the irreducible water saturation.

We define the dimensionless time and space coordinates:

xD =
x

L
(5)

tD =

∫ t
0
q (τ) dτ

(1− Swi − Som)ALφ
(6)

where L is the core length, A is the cross sectional area, q is the total injected

flow rate measured at the inlet point (xD = 0) and τ is the integral variable.95

Thus, Equation 1 can be written in its dimensionless form as:

∂Snπ
∂tD

+
∂fπ
∂xD

= 0, for π = w, o, g (7)

in which fπ defines the fractional flow of phase π:

fπ =
λπ
λT

=

krπ
µπ

krw
µw

+ kro
µo

+
krg
µg

(8)

where λπ is the mobility for phase π and λT is the total system mobility.

2.1. Three-Phase Relative Permeability

Three-phase relative permeability models have a huge impact on the mathe-100

matical structure of immiscible solutions (Guzmán and Fayers (1997a,b)). The

traditional approach is based in using empirical models that converts two-

phase relative permeability curves into three-phase surfaces (Stone (1970); Baker

(1988)). Those models are usually based in the channel flow theory, postulated

6



for a water wetting medium by three rules (Leverett (1939); Leverett and Lewis105

(1941); Corey et al. (1956)):

1. The relative permeability of the water phase depends only on its own

saturation;

2. The relative permeability of the gas phase depends only on its own satu-

ration;110

3. The relative permeability of oil phase depends on the saturation of all

three phases.

To model the two-phase relative permeability curves we are using the power-law

model (Corey’s model Corey et al. (1956)), given by:





krw = k
Swor
rw (Snw)

nw

k
w|g
ro = kSwiro (Sno)

nw|g
o

krg = k
Sgor
rg (Sng)

ng

(9)

where the superscript w|g indicates if the oil permeability was obtained either115

by the waterflooding or by gasflooding experiment. All cases presented in this

work were generated considering the parameters in Table 1 and illustrated in

Figure 1. It is important to observe that the water relative permeability curve

was extrapolated by a line connecting Sw = 1 − Swor and Sw = 1, assuming

that krw (Sw = 1) = 1, this is necessary to compatibilize these curves with the120

three-phase empirical model.

Table 1: Corey’s model variables used in all cases

Waterflooding Gasflooding

Swi = 0.20 Swi = 0.20

kSwiro = 0.80 kSwiro = 0.80

Swor = 0.40 Sgor = 0.20

k
Swor
rw = 0.30 k

Sgor
rg = 0.70

nw = 2.2 ng = 2.4

nwo = 2.0 ngo = 1.8
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Figure 1: Two-phase relative permeability curves obtained from Corey’s model

To convert the two-phase curves into three-phase we are using the modified

Stone I model (Stone (1970); Aziz and Settari (1979)):





krw = krw (Snw)

kro = kro (Snw, Sno, Sng) = Sno
k
Swi
ro

(
kwro

1−Snw

)(
kgro

1−Sng

)

krg = krg (Sng)

(10)

The Figure 10 presents the three-phase relative permeability curves obtained

from the parameters in Table 1 and used in all cases of this work. It is important125

to observe that only the oil relative permeability curves are not straight lines,

showing its dependence on the saturation of all the three phases and obeying

the channel flow theory.
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Figure 2: Three-phase relative permeability curves inside the ternary diagram for Stone’s I

model 9



2.2. Method of Characteristics and Fundamental Waves

Physically, the saturations are limited by Sπ ∈ [0, 1] and by Sw+So+Sg = 1.130

Using these restrictions we write the gas saturation as a function of others and

the governing equations (Equation 7) can be written in a matrix form:


 1 0

0 1






∂Snw
∂tD

∂Sno
∂tD


+




∂fw
∂Snw

∂fw
∂Sno

∂fo
∂Snw

∂fo
∂Sno






∂Snw
∂xD

∂Sno
∂xD


 =


 0

0


 (11)

The right eigenvalues of the Jacobian of flux vector are written by:

λ± =
1

2

(
∂fw
∂Snw

+
∂fo
∂Sno

)
± 1

2

√(
∂fw
∂Snw

− ∂fo
∂Sno

)2

+ 4

(
∂fw
∂Sno

∂fo
∂Snw

)
(12)

in which λ− and λ+ are called slow and fast eigenvalues with λ− < λ+ in all

points that satisfies the following criteria:135

∆ ≡
(
∂fw
∂Snw

− ∂fo
∂Sno

)2

+ 4

(
∂fw
∂Sno

∂fo
∂Snw

)
> 0 (13)

Applying the relative permeability model (Figure 2) in Equation 12, there

is a simply connected region inside domain in which the eigenvalues are not

real (∆ < 0), called elliptic region (marked in gray in Figure 3). Inside the

elliptic region the problem is ill-posed and cannot be solved by the method

of characteristics (Castañeda et al. (2016)). For the WAG process, the initial140

and boundary conditions are always positioned outside this region. Thus, using

the fact that the rarefaction paths do not enter the elliptic region, we can safely

apply the method of characteristics. Then, the WAG immiscible solution can be

described by a sequence of elementary nonlinear waves (Lax (1957); Liu (1974,

1975)), showed in sequence.145
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Figure 3: Slow and fast eigenvalues inside the ternary diagram for Stone’s I model

2.2.1. Rarefaction Waves

Continuous solutions arises in the form of rarefaction waves, constructed by

calculating the orbits of the following eigenvector field:

d
−→
Sn
dξ

= −→r±
(−→
Sn

)
(14)

where −→r± are the slow and the fast right eigenvectors of the Jacobian of flux

vector and ξ = xD/tD. Each of these orbits is called integral curves (rarefaction150

paths) and the set completely fills the ternary diagram excluding the elliptic

region (Figure 3, in which the arrows point toward the eigenvalue increasement

direction). Applying the eigenvectors of the Jacobian of the flux vector (System

11), the integral curves are given by:

(
dSnw
dSno

)±
= −

∂fw
∂Sno(

∂fw
∂Snw

− λ±
) (15)

The slow integral path are transverse to the triangle edges, behavior already dis-155

cussed in literature (Marchesin and Plohr (2001)). However, the normalization

that we introduce created a point of converging fast rarefaction paths in point

(Sw, So, Sg) = (1− Swor, Swor, 0), causing that the fast integral paths are not ap-

proximately parallel of SnwSno edge (expected behavior discussed in literature).

This point can be physically interpreted by the limitation of waterflooding, in160

which additional oil can only be recovery by gas injection.
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The solution along a particular integral curve is valid if the associated eigen-

value is strict increasing along this path (Tai-Ping (2007)). Observes that, for

real values, the integral curves are not defined inside the elliptic region.

Figure 4: Slow and fast integral paths inside the ternary diagram for Stone’s I model

2.2.2. Shock Waves165

The System 11 admits weak solutions in the form of moving discontinuities,

called shock waves. A valid shock must balance the flux of all phases across

the discontinuity, where we call L and R the states immediately left (SL =
(
SLnw, S

L
no

)
) and right (SR =

(
SRnw, S

R
no

)
) of the discontinuity. This restriction

is known by Rankine-Hugoniot condition and is used to calculate the shock170

speed σ = σ
(
SL, SR

)
:




σ
(
SLnw − SRnw

)
=
(
fLw − fRw

)

σ
(
SLno − SRno

)
=
(
fLo − fRo

) (16)

For a fixed left state SL, we can define the Hugoniot locus (H
(
SL
)
) as the

geometrical place of all possible right states that obeys the Rankine-Hugoniot

condition, mathematically described by:

H
(
SL
)

=
{
T : ∃σ = σ

(
SL, T

)
obeying Equation 16 with T 6= SL

}
(17)
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The Figure 5 shows the Hugoniot locus for a particular point inside the175

ternary diagram. This locus has only two local branches meeting in the primary

bifurcation point SL, but more complicated bifurcations are found for WAG

process (Marchesin and Plohr (2001)). In Section 4 we will show that Hugoniot

loci with secondary bifurcation play an important rule in the WAG solution

structure.180

All points in H
(
SL
)

are possible weak solutions of System 11. To determine

which point is the an admissible solution we are using the Lax (Lax (1957)) and

Liu (Liu (1974, 1975)) stability criteria, where the characteristics waves should

converge to the shock space-time path and the shock velocity must be in a critical

point along a H
(
SL
)

branch. Additionally, a stable shock must be a zero-185

diffusion limit of the solution given by traveling waves, called vanishing viscosity

condition (Marchesin and Plohr (2001); Tai-Ping (2007)), where a stable solution

is obtained when there is at least one orbit in the vanishing viscosity phase plane

connecting both shock sides.
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Figure 5: Hugoniot locus for SL (Snw, Sno, Sng) = (0.3, 0.2, 0.5)

2.2.3. Composite Waves190

A composite wave or so called contact discontinuity can be defined by a

shock with speed equal to the eigenvalue of the upstream state (λ±
(
SL
)
):

σ
(
SL, SR

)
= λ±

(
SL
)

(18)

where ± indicates if it is either a fast or a slow composite wave. For stable

composite waves, σ must be in a critical point in the H
(
SL
)

(Liu (1974, 1975)),

respecting the Bethe-Wendroff theorem (Wendroff (1972a,b)), and obeying the195

vanishing viscosity criteria (Marchesin and Plohr (2001); Tai-Ping (2007)).

2.3. Numerical Solution Method

In order to check the analytical solutions, the saturation profiles were com-

pared with simulations using the first order, explicit, Upwind method LeVeque

et al. (2002):200
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(Snπ)
t+1
n − (Snπ)

t
n

∆tD
+

(fπ)
t
n−1 − (fπ)

t
n

∆xD
= 0, π = w, o, g (19)

where n and t are the spatial and temporal discretization index. This scheme

do not produce numerical oscillation in the discontinuities, allowing a reliable

comparison between analytical and numerical solution. To minimize numerical

diffusion effects the spatial domain was discretized using 100, 000 cells in all cases

shown in this work, with the ∆tD subject to the CFL condition to maintain the205

simulation stability.
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3. Wave Interactions

After each cycle in WAG scheme, the changes in fluid properties generates

discontinuities in boundary condition, in which non-linear waves propagating

with different speeds will interact along the space-time plane. These interac-210

tions can then interact with other waves generating new interactions in domain.

In this section we will describe all interactions that arises in the immiscible

WAG problem (Table 2). We treat all interactions as a new Riemann problem,

centered in the crossing point and with lateral limits given by the two initial

waves (Rhee et al. (1970)). For all saturation profiles shown in this and in the215

next section, the plotted dots are results obtained numerically.

There are basically two different kind of interactions: superposition and

transmission. As showed in Figure 4, except for some particular points, the

integral curves associated with the same eigenvalue (slow and fast) do not inter-

cept themselves inside the ternary diagram. Thus, if two waves are interacting220

or either they are associated with different eigenvalues (slow with fast eigen-

values) or they are in the same integral path. For interactions associated with

the same integral curve we call superposition phenomenon, and associated with

different eigenvalues we call transmission.

Table 2: Summary of the wave interactions in WAG injection

Slow Wave Fast Wave

SSS Shock-Shock Superposition Shock Shock

CCS Composite-Composite Superposition Composite Composite

SRS Shock-Rarefaction Superposition Shock Rarefaction

RSS Rarefaction-Shock Superposition Rarefaction Shock

RCS Rarefaction-Composite Superposition Rarefaction Composite

SRT Shock-Rarefaction Transmission Shock Rarefaction

RRT Rarefaction-Rarefaction Transmission Rarefaction Rarefaction

RCT Rarefaction-Composite Transmission Rarefaction Composite

SCT Shock-Composite Transmission Shock Composite
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3.1. Shock-Shock Superposition (SSS) and Composite-Composite Superposition225

(CCS)

When the left state of fast wave and the right state of slow wave respects

the Rankine-Hugoniot condition (Equation 16), there is a superposition of both

shock waves (or composite wave for CCS case) resulting in a new propagating

shock (Figures 6 and 7). Observe that the two shocks belong to the same integral230

curve: the SnwSno edge.

Figure 6: Characteristic plot before (a) and after (b) the SSS wave interaction solution

Figure 7: Saturation profile before (tD = 0.11) and after (tD = 0.12) the SSS wave interaction,

compared with numerical solution
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3.2. Shock-Rarefaction Superposition (SRS) and Rarefaction-Shock Superposi-

tion (RSS)

For shocks and rarefactions associated to the same integral curve, the inter-

action causes a superposition in which the shock changes its speed continuously235

until the end of the rarefaction fan (Figures 8 and 9). Observes that at each

interaction point the Rankine-Hugoniot condition is satisfied. The unique dif-

ference between SRS and RSS interaction is which wave is the slow and which

is the fast during the interaction.

Figure 8: Characteristic plot before and after the RSS wave interaction solution

Figure 9: Saturation profile before (tD = 0.11) and during (tD = 0.2) the RSS wave interac-

tion, compared with numerical solution
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3.3. Rarefaction-Composite Superposition (RCS)240

In the RCS interaction the continuous interaction between the rarefaction

and the composite wave cause an acceleration of the shock, opening space in the

composite fan. We interpret this phenomenon as a decompression of composite

wave, where at each point the rarefaction eigenvalue is equal to the shock speed,

characteristic of composite waves (Figures 10 and 11). Observes that after the245

interaction, only the composite wave remains with an expanded rarefaction fan.

Figure 10: Characteristic plot before and after the RCS wave interaction solution

Figure 11: Saturation profile during (tD = 0.15) and after (tD = 0.20) the RCS wave interac-

tion, compared with numerical solution
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3.4. Shock-Rarefaction Transmission (SRT)

The transmission phenomenon occurs when waves of different integral curves

are interacting. In the SRT case, rarefaction fan is continuously interacting

with the shock wave, and as result, both waves change their direction and speed250

(Figures 12 and 13). At each crossing point, the Rankine-Hugoniot condition

must be satisfied, making the rarefaction wave jumps to the integral path of the

right shock state.

Figure 12: Characteristic plot before and after the SRT wave interaction solution

Figure 13: Saturation profile during (tD = 0.07) and after (tD = 0.10) the SRT wave interac-

tion, compared with numerical solution
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3.5. Rarefaction-Rarefaction Transmission (RRT)

In this interaction, the rarefactions are associated with the
(
dSnw
dSno

)−
and255

(
dSnw
dSno

)+
integral curves, respectively. Thus, for each crossing point, the result-

ing rarefaction is found by the crossing point of both integral paths (Figures 14

and 15). In this case, both rarefaction fans are continuous solution, then the

process to solve is discretize the fan in rarefaction waves and solve the interac-

tion two by two, same procedure proposed by Rhee et al. (1970). It is important260

to observe that the final result is a continuous region among rarefaction inter-

actions in the space-time plane, where we show both characteristics crossing in

the same position only for illustration purposes.

Figure 14: Characteristic plot before and after the RRT wave interaction solution
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Figure 15: Saturation profile during (tD = 0.20) and after (tD = 0.30) the RRT wave inter-

action, compared with numerical solution

3.6. Rarefaction-Composite Transmission (RCT) and Shock-Composite Trans-

mission (SCT)265

In the RCT interaction, first the rarefaction interacts with the shock, ac-

celerating the composite wave and opening space for new rarefactions (similar

to interaction RCS). Then, the rarefaction fan transmits over the shock and

interacts with the other fan above the composite wave (similar to the RRT).

Thus this case is a combination of RCS and RRT behavior.270

For the SCT case, the waves were generated by previous interactions and the

correct way to deal this case is solving a new Riemann problem centered in the

interaction point and positioning the solution as resulting waves. The SCT and

RCT waves will be illustrated in the next section, in the context of the WAG

solutions.275
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4. WAG Analytical Solution

In this section the complete solution for the immiscible WAG process will

be discussed. The solution procedure is divided in two parts: the initial wave

positioning, where we build analytical solutions without consider the interaction

among the cycles, and the wave interactions, solved by the application of the280

methodology described in Section 3.

4.1. Initial Wave Positioning

The initial wave positioning is constructed identifying the boundary con-

dition and the inlet rock face saturation at beginning of each cycle (Table 3).

Initially the porous media is saturated with oil at irreducible water satura-285

tion and at tD = 0.0 we start the injection of pure water. In the second

cycle (tD = 0.05), the porous media is saturated with water at Swor condi-

tion and we start the injection the gas slug. From the third cycle onwards

(tD = 0.15) the boundary and the inlet face conditions will alternate between

(Sw, So, Sg) = (0, Sgor, 1− Sgor) and (Sw, So, Sg) = (1− Sgor, Sgor, 0) depending if290

it is a gas or water cycle. Observes that the first two cycles are different from

the others only because Sgor < Swor and the oil saturation in the inlet face do

not reach Som. After the 3rd cycle the solution pattern repeats indefinitely, not

generating new wave interactions.

We construct the solution injecting cycles with small lengths (∆tD < 1.0)295

in order to maintain all wave interactions inside the domain xD ∈ [0.0, 1.0],

allowing comparison with the numerical solution. However, the method can be

applied for any WAG configuration. It is important to observe that all satura-

tions reported in Table 3 must be normalized before the solution construction

(Equation 4).300
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Table 3: Initial position wave

Cycle tD
Boundary Condition

BC = (Sw, So, Sg)

Inlet Face Condition

IF = (Sw, So, Sg)

1st Water 0.00 (1− Swor, Swor, 0) (Swi, 1− Swi, 0)

2nd Gas 0.05 (0, Sgor, 1− Sgor) (1− Swor, Swor, 0)

3rd Water 0.15 (1− Sgor, Sgor, 0) (0, Sgor, 1− Sgor)

4.1.1. 1st Cycle

The first cycle is the displacement of original oil by water injection and is

described by the traditional Buckley-Leverett solutions (Figures 16 and 17).

The boundary condition is obtained using fw = 1 that implies Sw = 1 − Swor.
The solution is then a composite wave connecting the boundary and the initial305

states.

Figure 16: Characteristic diagram for the first cycle wave positioning
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Figure 17: Saturation profile (tD = 0.30) for the first cycle wave positioning, compared with

numerical solution

4.1.2. 2nd Cycle

The second cycle starts the gas injection with the left rock face saturated

with water at 1 − Swor. The direct composite wave connecting boundary and

left face conditions is not allowed, because do not respect the stability criteria.310

Thus the solution must necessarily pass through a point in SnwSno edge.

The Figure 18 shows the hugoniot locus for three different J points along

SnwSno around a neighborhood of point J∗SnwSno . Observes that each Hugo-

niot locus is formed by three branches, two locals and one non-local, in which

the SnwSno edge is always one of the local branches. For J below J∗SnwSno the315

other local branch always connects SnwSno and SnoSng edges, while for J above

J∗SnwSno SnwSno and SnwSng edges are connected. The non-local branch change

its behavior as well, for J below J∗SnwSno the non-local branch starts and fin-

ishes in SnwSng and for J above J∗SnwSno it starts and finishes in SnoSng edge.
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Thus, it can be seen that J∗SnwSno is a separatrix point, in which the Hugo-320

niot locus locally changes its topology and the local and non-local branches

collapses themselves in a single point. The J∗SnwSno point plays an important

role in WAG solution because this point forms a stable orbit in the phase plane

for the vanishing viscosity stability criteria using the identity viscosity matrix

(Tai-Ping (2007)) (Figure 19). The T point marked in each Hugoniot locus is325

the point where σ (T, J) = λ+ (T ), representing the most stable shock in that

branch according to Liu’s criteria (Liu (1974, 1975)).

26



Figure 18: Hugoniot locus for three different positions along the SnwSno edge
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Figure 19: Phase plane for the vanishing viscosity stability criteria, for the second cycle wave

The solution for the second cycle is then described by a composite wave

connecting T ∗SnwSno and J∗SnwSno , followed by other fast composite wave con-

necting J∗SnwSno to the inlet face condition of the second cycle (Figures 20330

and 21). Depending on the relative permeability curves adopted, the con-

dition σ
(
J∗SnwSno , I

2nd
F

)
> λ+

(
J∗SnwSno

)
will not be satisfied and the second

composite wave will not have rarefaction curves above (Figure 20). However,

the wave interactions with the first cycle will accelerate this shock, as dis-

cussed in Section 3.3, appearing the rarefactions of this composite wave when335

σ
(
J∗SnwSno , I

2nd
F

)
> λ+

(
J∗SnwSno

)
.
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Figure 20: Characteristic diagram for the second cycle wave positioning
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Figure 21: Saturation profile (tD = 0.45) for the second cycle wave positioning, compared

with numerical solution

4.1.3. 3rd Cycle

For the third cycle onwards the wave positioning is always in the SnwSng

edge, changing only the boundary and the inlet face conditions. The solution

of this case is also the traditional Buckley-Leverett equations considering the340

gas-water displacement (Figures 22 and 23), in which the solution consists of

a fast composite wave connecting both vertices of SnwSng. As discussed, from

this cycle, the residual oil in the inlet face reaches Som and no more additional

oil will be displaced in this point.
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Figure 22: Characteristic diagram for the third cycle wave positioning
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Figure 23: Saturation profile (tD = 0.65) for the second cycle wave positioning, compared

with numerical solution

The Figure 24 presents the diagram characteristic after positioning the three345

first WAG cycles. There are wave interactions occurring in all domain and the

order that we chose to solve these interactions can alter the final result. Thus

we apply the causality principle determining that wave events happening first

in time must be solved firstly, affecting only further events.
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Figure 24: Characteristic diagram after wave positioning without solving the wave interactions

4.2. WAG Wave Interactions350

In this section we will present the WAG scheme solution with wave inter-

actions after application of the causality principle. The Figure 25 presents the

characteristic diagram after solving all wave interactions, in which we are iden-

tifying the wave interactions using the keywords described in Table 2.

As discussed by Marchesin and Plohr (2001) the WAG scheme should present355

cyclic solutions, in which some patterns should repeat in characteristic diagram.

Thus we divided the wave interaction in four different groups, and as it will be

discussed, after the third WAG cycle the solution is a repetition of groups 02,

03 and 04, correctly positioned in the space-time plane.
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SRT
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RCT

RRT
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SRS

SRT

SCT

RSS

RRT

Figure 25: Characteristic diagram after solving all wave interactions

4.2.1. Group 01 - Composite-Composite Superposition360

The Group 01 is the interaction of the first water cycle and the second

composite wave of the next gas injection (Figure 26). All waves integrating this

group belong to the same integral curve, the SnwSno edge, thus we expect to

see interactions of superposition type. One may observes that the Group 01

interactions only occurs once between the first and the second cycle if, and only365

if, the residual oil of the second displacement is lower than the first (in this case

we start the WAG with water injection and Sgor < Swor).

The water rarefactions superposes with the second composite wave by a RCS

interaction. This interaction accelerates the shock and expands the rarefaction

fan. This phenomenon occurs until the crossing of both composite shocks, cre-370

ating a CCS interaction. Then the new shock generated by the CCS will relate

with the rarefaction fan by a SRS interaction.

The Figure 27 shows the saturation profile before (tD = 0.15) and after the

(tD = 0.18) the CCS interaction. As it can be observed, the two composite
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waves are approximating before the CCS point and, because the superposition375

phenomenon, only one resulting shock continues propagating in porous me-

dia. Comparing the numerical and analytical solutions we can see the excellent

agreement among them, where the numerical scheme could capture all these

complicated wave interactions. However it was only possible because the high

discretization that we used in this work.380

RCS
CCS 

SRS

Figure 26: First group of interactions - RCS, CCS and SRS

35



Figure 27: Saturation profile before (tD = 0.15) and after the (tD = 0.18) the CCS interaction

for the Group 01 of WAG interactions, compared with numerical solution
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4.2.2. Group 02 - Slow Shock Transmission

For every cycle after the first the solution needs to pass through the SnwSno

or the SnoSng edge. As it will be explained in Group 04, the points J∗SnwSno

and J∗SnoSng will always appear in the solution in the form of a constant state

bounded by a shock in the right side. Thus the Group 02 is formed by the385

interaction of these slow shocks and the composite wave of the next injection

cycle (Figure 28).

Because of these waves are in different integral paths, it will occur a SCT

transmission, generating slow and fast shocks. The slow shock will propagate

along the rarefactions fan of the next composite wave in the form of a SRT390

transmission, changing both shock and rarefaction speeds.

The Figure 29 presents the saturation profile before (tD = 0.25) and after

the (tD = 0.30) the SCT interaction. Before the SCT, the composite wave is

approximating of the slow shock making the constant state of J∗SnwSno contin-

uously smaller with time (this region is showed in xD ≈ 0.35 for tD = 0.25).395

After the SCT interaction the constant state vanishes and the rarefaction waves

transmits by a SRT interaction, generating a new rarefaction fan separated by

a shock discontinuity.
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SRT

SCT

Figure 28: Second group of interactions - SCT and SRT
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Figure 29: Saturation profile before (tD = 0.25) and after the (tD = 0.30) the SCT interaction

for the Group 02 of WAG interactions, compared with numerical solution
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4.2.3. Group 03 - Slow Rarefaction Transmission

After the residual oil saturation in the inlet face reaches Som, the solution of400

each cycle is always a composite wave in SnwSng edge. Thus, the rarefaction of

a particular cycle will always interact with the next composite wave by a RCT

transmission (Figure 30). This interaction accelerates the composite wave and,

consequently, expands of the rarefaction fan, appearing new rarefaction waves.

Rarefactions transmitted in RCT will interact with all rarefaction fan above the405

composite wave in the form of RRT transmission.

Both RCT and RRT interactions can be seen in Figure 27 in xD ≈ 0.05 for

tD = 0.18. It is important to observe that due to the RRT interactions, the

rarefaction fan above the composite wave does not belong to the SnwSng edge

as before (showed in Figure 23). As discussed in Section 3.5, the RRT region410

comprises a continuous solution where besides we show two characteristics in

the same position, it is used only to exemplify, because they have same value in

each point.

RCT

RRT

Figure 30: Third group of interactions - RCT and RRT
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4.2.4. Group 04 - Transmitted Shock-Composite Transmission

In the Group 02 there is a transmission of a slow shock in space-time plane in415

the form of SRT interaction. At some moment, this slow shock will collide with

the composite wave of the next cycle, in the form of a SCT transmission (Figure

31). The way to solve this interaction is evaluate both sides of the associated

Riemann problem (Section 3.6).

SCT

RRT

RSS

SSS 

Figure 31: Fourth group of interactions - SCT, RSS and SSS

The left side of the associated Riemann problem is the composite wave state420

after all RCT interactions described in Group 03, while the right state is the

right side of the slow shock after all SRT transmissions of Group 02. It is

important to observe that the right state will be always either in SnwSno or

the SnoSng edge. The Figure 32 presents the Hugoniot locus of the left state of

the associated Riemann problem in the ternary diagram, in which SL and SR425

are the left and right sides of this associated problem, respectively. As it can

be seen, there is no direct shock between these states, and the solution must

necessarily pass through a point in SnoSng edge.
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Using the same arguments described in Section 4.1.2, there is a separatrix

point J∗SnoSng where the Hugoniot locus locally changes its topology, forming a430

stable orbit for the vanishing viscosity criteria (Figure 33). Thus, the solution

of this Riemann problem is composed by three parts:

1. Expansion of the left composite wave until the shock for the separatrix

point becomes allowed;

2. Shock to the separatrix point (either J∗SnwSno or J∗SnoSng ) creating a con-435

stant state in this point;

3. Shock to the right state of the associated Riemann problem.

Figure 32: Hugoniot locus for the left state of the SCT interaction in Group 04
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Figure 33: Hugoniot locus for three different positions along the SnoSng edge
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The Figure 34 shows the saturation profile before (tD = 0.34) and after

(tD = 0.39) the SCT interaction. The expansion of the left composite wave

creates rarefactions that interacts with the transmitted rarefactions of Group440

03, by a RRT transmission, changing continuously the rarefaction fan of left

state (showed in the form of a ramp in xD ≈ 0.40 for tD = 0.39). After

this RRT interaction there is a composite shock followed by a constant state

of J∗SnoSng point and finishing with a shock to the right state of the Riemann

associated problem (xD ≈ 0.45 for tD = 0.39).445

The last shock of SCT interaction is in the same edge of the transmitted

waves of Group 02 (SnoSng for the third cycle) generating a continuous RSS

superposition and diminishing the rarefaction fan in front of this shock (xD ≈
0.65 for tD = 0.48 in Figure 35). At some point this shock will superpose with

the fast shock generated in Group 02, in the form of SSS interaction, creating450

a single shock that bounds the J∗SnoSng constant state (xD ≈ 0.75 for tD = 0.54

in Figure 35).

One may observes that for water cycles, this process creates a constant

state in J∗SnoSng point bounded by a shock in SnoSng edge and for gas cycles

it is created a constant state in point J∗SnwSno bounded by a shock in SnwSno455

edge. These constant states generated in this Group 04 will vanish in the SCT

interaction of the Group 02 for the next WAG slug starting a new solution cycle

(xD ≈ 0.85 for tD = 0.55 in Figure 25).
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Figure 34: Saturation profile before (tD = 0.34) and after the (tD = 0.39) the SCT interaction

for the Group 04 of WAG interactions, compared with numerical solution
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Figure 35: Saturation profile before (tD = 0.48) and after the (tD = 0.54) the SSS interaction

for the Group 04 of WAG interactions, compared with numerical solution
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5. Conclusions

We present the analytical solution of WAG scheme considering the wave460

interactions among different injected slugs. The mathematical solution was

obtained using the method of characteristics where we classify and discuss the

mathematical keys involved in all wave interactions.

The WAG scheme shows a cyclic wave interactions where after we identify

the main groups involved, the solution can be extended for any number of465

injected cycles. The difference of displacement efficiency between water and gas

injection is observed after the first cycle, in which additional oil is mobilized in

porous media. All results were compared with numerical simulations, showing a

good agreement. The results obtained in this paper improves our mathematical

understanding of WAG scheme and can be used to validate reservoir numerical470

simulators.
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1. Introduction

The Water Alternating Gas (WAG) technique combines the high displace-
ment efficiency of the gas injection with the mobility control provided by
water slugs, increasing the sweep efficiency and stabilizing the gas injection
front Christensen et al. (2001). Regarding to the injected gas characteristics
we can divided the WAG scheme in two major groups (Shahverdi et al., 2011;
Shahverdi and Sohrabi, 2013):

1. Miscible WAG (MWAG): the composition of the injected gas and the
original oil creates a miscible displacement, in which the lack of in-
terfacial tension between phases drastically increases the displacement
efficiency (Shahverdi et al., 2011; Shahverdi and Sohrabi, 2013; Afzali
et al., 2018). Generation and maintenance of an stable miscible front
is governed by equilibrium thermodynamic concepts and depends of
fluids composition, pressure and temperature.

2. Immiscible WAG (IWAG): when the miscibility effect in reservoir’s
pressure and temperature is not achieved, it will occur the simulta-
neous flow of oil, gas and water in reservoir. The existence of surface
tension between fluids decreases the displacement efficiency when com-
pared to the MWAG, however, due to relative permeability hysteresis
effects, this method reaches higher recovery factors when compared to
waterflooding or gasflooding injections;

The incremental recovery factor when using WAG schemes varies between
1% unit 13% for IWAG and from 2% until 20% for MWAG applications
(Christensen et al., 2001; Holtz, 2016). This huge performance range de-
pends mainly of reservoir factors like fluid channeling, presence of sealing
faults and the balance between gravity and viscous forces (Sanchez, 1999;
Afzali et al., 2018). From the mathematical perspective the MWAG injec-
tion is a combination of hydrodynamic hyperbolic equations with an accurate
thermodynamic description that can captures the mas transfer among phases.

Solutions for the hydrodynamic system started with the Buckley-Leverett
equations (Buckley and Leverett, 1942; Leverett, 1939), where it was con-
sidered the transient oil displacement by an immiscible fluid injection in an
one-dimensional reservoir. The system was described in terms of a non-linear
hyperbolic partial differential equation and solved by the method of charac-
teristics. Improved solutions of two-phase immiscible flow included capillary
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and gravitational effects (Welge, 1952; Sheldon and Cardwell, 1959; Fayers
and Sheldon, 1959).

Three-phase immiscible solutions follows the same principle where a sys-
tem of non-linear partial differential equations is solved by the same method.
However, depending on the relative permeability curves used to model the
three-phase flow in the porous medium, it can appears points (umbilic) or
regions where the system loses its hyperbolicity (Guzmán and Fayers, 1997a).
Then, the solution for three-phase immiscible flow are divided in three main
groups: Hyperbolic with a single umbilic point (Isaacson et al., 1990, 1992;
Guzmán and Fayers, 1997b; Marchesin and Plohr, 2001; Marchesin and Mai-
lybaev, 2006; Azevedo et al., 2009, 2014; Castañeda et al., 2016; Guerrero
and Marchesin, 2020; Barros et al., 2021), hyperbolic with multiple umbilic
points (Guzmán and Fayers (1997a,b)) and mixed hyperbolic and elliptic
(Shearer and Trangenstein (1989); Guzmán and Fayers (1997b); Jackson and
Blunt (2002)). Additional issues appears in the solution when we solve the
immiscible system with variable boundary conditions (WAG principle), be-
cause new waves are constantly entering in the medium and interacting with
the one previously in the system (Andrade et al., 2016, 2018).

All the solutions described before do not consider the mass exchange
between injected and displaced phases. Traditionally the thermodynamic
equilibrium between components in gas and oil phases can be described using
the tie-line approximation (Wachmann, 1964; Hirasaki, 1981; Dumoré et al.,
1984; Monroe et al., 1990; Johns et al., 1993; Johns and Orr, 1996; Orr
Jr., 2007). By this approach, the liquid-vapor equilibrium is completely
described by a map between composition and a virtual line that connects
both phases. The thermodynamic equations are coupled with hydrodynamic
ones, creating a hyperbolic partial differential equation system that is solved
by the application of the method of characteristics. Additional efforts were
made by Bedrikovetsky et al. (2004); Dutra et al. (2009) in order to decouple
hydrodynamic and thermodynamic in different systems (splitting technique),
allowing the solution of multi-component mixtures having more than three
components.

Three-phase miscible solutions were found extending the tie-line concept
for three-phase space (LaForce and Johns, 2005; LaForce et al., 2006; LaForce
and Jessen, 2010). Using this approach and taking advantage of the Gibbs
freedom rule the three phase system is divided in different spaces where the
traditional immiscible theory applies. The main issue of this technique is
that the complexity increase with the number of components in the mixture.
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Despite all the methods that treat miscible flow reported in literature, for the
best of our knowledge, there is not a mathematical description for the three-
phase flow in a linear porous medium where only oil and gas can exchange
mass and water is treated as an immiscible phase. This approach is useful
because the splitting technique can be applied and problem can be solved for
any number of components.

In this work we formulate a new mathematical system that describes
the three-phase flow in a linear porous medium, where oil and gas can ex-
change mass while water is treated as an immiscible phase. We solve this
problem considering time variable boundary conditions, describing the main
aspects of the miscible WAG scheme. In Section 2 we present the physical
and mathematical model, where we apply the splitting scheme to decouple
thermodynamic and hydrodynamic equations. Next we described the general
solution of both systems using the method of characteristics (Section 3). In
the next two sections we solve the thermodynamic and hydrodynamic sys-
tems using an example to illustrate the solution (Sections 4 and 5). Finally
we address some conclusion.

2. Physical and Mathematical Model

We are investigating the alternated water and gas injection in a reservoir
initially containing oil at irreducible water saturation (Figure 1). Gas and oil
phases are allowed to exchange mass while water is considered immiscible.
Additional hypothesis are:

1. One-dimensional, linear and homogeneous porous medium with con-
stant cross sectional area;

2. Instantaneous thermodynamic equilibrium between components in gas
and oil phases;

3. Isothermal flow with absence of chemical reactions and molecular dif-
fusion;

4. Negligible dispersional, gravitational and capillary effects;

5. Hypothesis considered in Darcy’s equation are valid;

6. Low pressure gradient along porous medium;

7. Water and rock are treated as incompressible phases;

8. Ideal mixing is valid for oil and gas phases (Amagat’s hypothesis).
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Gas
Oil
Water

Figure 1: Mathematical model for the Miscible Water Alternating Gas (MWAG) problem.

Using the water immiscibility consideration and applying the mole con-
servation of hydrocarbon component i:

{
φ ∂
∂t

(Soρoxio + Sgρgxig) + ∂
∂x

(ρoxiouo + ρgxigug) = 0, i = 1, ..., n

φ∂Sw

∂t
+ ∂uw

∂x
= 0

(1)

in which Sπ, ρπ and uπ are the saturation, molar density and velocity of the
generic phase π (π can be water (w), oil (o) or gas (g)); φ is the rock porosity,
xiπ is the mole fraction of component i in phase π and n is the number of
hydrocarbon components considered in the problem. By the ideal mixing
hypothesis the molar density of hydrocarbon phases (ρo|g) may be written
by:

ρ(o|g) =

(
n∑

i=1

xi(o|g)
ρci

)−1
(2)

where ρci is the molar density of the pure component i at same pressure and
temperature of the original system. We now define the volume fraction of
component i in hydrocarbon phases:

ci(o|g) =

xi(o|g)
ρci∑n

k=1

xk(o|g)
ρck

(3)

and after some algebraic manipulation in Equation 1 we have:
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{
φ ∂
∂t

(Socio + Sgcig) + ∂
∂x

(uocio + ugcig) = 0, i = 1, ..., n

φ∂Sw

∂t
+ ∂uw

∂x
= 0

(4)

The phase velocity is related with the gradient pressure by the Darcy’s
equation:

uπ (x, t) =
qπ
A

= −Kλπ (x, t)
∂P (x, t)

∂x
(5)

where K is the reservoir absolute permeability, qπ is the phase volumetric
flow and λπ is the phase mobility, defined by:

λπ =
krπ
µπ

(6)

in which krπ and µπ are the relative permeability and viscosity of phase π. It
is important to note that the relative permeability is function of the satura-
tion of all phases (krπ = krπ (Sw, So, Sg)) and for hydrocarbon phases the vis-
cosity is function of the phase volumetric composition (µπ = µπ (c1π, ..., cnπ)).

Defining the fractional flow for phase π:

fπ =
uπ

uw + uo + ug
=

λπ
λw + λo + λg

(7)

and manipulating Equation 4, we have:

{
φ ∂
∂t

(Socio + Sgcig) + qT
A

∂
∂x

(focio + fgcig) = 0, i = 1, ..., n

φ∂Sw

∂t
+ qT

A
∂fw
∂x

= 0
(8)

in which qT = qT (t) is the volumetric total flow rate (qT = qw + qo + qg) and
A is the porous medium cross sectional area.

Considering L the porous medium length we introduce the dimensionless
spatial and temporal variables:

xD =
x

L
(9)

tD =

∫ t
0
qT (x = 0, τ) dτ

ALφ
(10)

then, we obtain the dimensionless form of the mass conservation system:
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{
∂
∂tD

(Socio + Sgcig) + ∂
∂xD

(focio + fgcig) = 0, i = 1, ..., n
∂Sw

∂tD
+ ∂fw

∂xD
= 0

(11)

2.1. Tie-Line Equilibrium Formulation

As we are considering that only oil and gas phases are allowed to exchange
mass it is natural to describe the solution in terms of normalized hydrocarbon
saturations:

{
SHCo = So

So+Sg
= So

1−Sw

SHCg = Sg

So+Sg
= Sg

1−Sw

(12)

and normalized hydrocarbon fractional flow:

{
fHCo = vo

vo+vg
= fo

1−fw
fHCg = vg

vo+vg
= fg

1−fw
(13)

where the superscript HC means that this property is normalized by hydro-
carbon phases. Then, defining the total composition of component i:

Ci = SHCo cio + SHCg cig (14)

and the total fractional flow of the same component:

Fi = fHCo cio + fHCg cig (15)

we can rewrite the Equation 11 in the form:

{
∂SHCCi

∂tD
+ ∂fHCFi

∂xD
= 0, i = 1, ..., n

∂Sw

∂tD
+ ∂fw

∂xD
= 0

(16)

where SHC = 1− Sw and fHC = 1− fw. Additional restrictions are:

Sw + So + Sg = 1 (17)

SHCo + SHCg = 1 (18)

fw + fo + fg = 1 (19)
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fHCo + fHCg = 1 (20)

n∑

i=1

Ci =
n∑

i=1

(
SHCo cio + SHCg cig

)
= 1 (21)

Nc∑

i=1

Fi =
Nc∑

i=1

(
fHCo cio + fHCg cig

)
= 1 (22)

To model the thermodynamic equilibrium between hydrocarbon phases,
we will relate the composition of component i with the composition of the
last hydrocarbon component (Cn):

Ci = αiCn + βi (23)

in which αi and βi are known by tie-line coefficients, calculated after some
manipulation in Equation 14:

{
αi =

cio−cig
cno−cng

βi = cig − αicng
(24)

Note that if we manipulate the Equation 15 we have:

Fi = αiFn + βi (25)

and consequently the final form of the mass conservation system:





∂SHC(αiCn+βi)
∂tD

+ ∂fHC(αiFn+βi)
∂xD

= 0, i = 2, ..., n− 1 (a)
∂SHCCn

∂tD
+ ∂fHCFn

∂xD
= 0 (b)

∂Sw

∂tD
+ ∂fw

∂xD
= 0 (c)

(26)

Note that the first part of this PDE (Partial Differential Equation) system
has n − 2 equations. This happens because we are modeling the thermody-
namic system in terms of the last component composition (Cn) and using
restrictions showed in Equations 21 and 22.

For any system in thermodynamic equilibrium the Gibb’s rule states that
the mathematical freedom of the system is calculated by F = n−Np+2, where
Np is the number of phases. With only oil and gas as hydrocarbon phases
and assuming constant pressure and temperature along porous medium (low
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pressure gradient hypothesis), any tie-line can be uniquely identified by F =
Nc − 2 variables. This means that we can write the αi variable as αi =
αi (β2, ..., βn−1).

2.2. System’s Splitting

Equation 26 is a system of n non-linear partial differential equations that
describes the miscible WAG flow in a linear porous medium. In order to
obtain an analytical solution for such system we will apply the splitting tech-
nique (Pires et al., 2006) to decouple the thermodynamic and hydrodynamic
parts of the PDE system. Integrating the Equation 26-(a) in (0, xD)× (0, tD)
domain and applying the Green’s theorem:

∫ tD

0

∫ xD

0

[
∂SHC (αiCn + βi)

∂tD
+
∂fHC (αiFn + βi)

∂xD

]
dxDdtD =

∮
[−fHC (αiFn + βi) dtD + SHC (αiCn + βi) dxD] = 0 (27)

We may now define two auxiliary variables for this problem

dϕ = −fHCFndtD + SHCCndxD (28)

dψ = fHCdtD − SHCdxD (29)

and substituting in Equation 27 we obtain:

∮
[αidϕ− βidψ] = 0 (30)

Applying again the Green’s theorem we have the final form or the auxil-
iary thermodynamic system:

∂αi
∂ψ

+
∂βi
∂ϕ

= 0, i = 2, ..., n− 1 (31)

note that by the Gibb’s rule we can write αi = αi (β2, ..., βn−1) and conse-
quently Equation 31 depends exclusively of thermodynamic variables.
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2.3. Velocity Projection

It is necessary a rule to convert the solution from (ϕ, ψ) to (xD, tD) spaces.
Using the characteristics definition xD = xD (tD) in Equations 28 and 29
manipulating we have:

dϕ

dψ
=
−fHCFn + SHCCn

dxD
dtD

fHC − SHC dxDdtD

(32)

and:

dxD
dtD

=
fHC

(
Fn + dϕ

dψ

)

SHC

(
Cn + dϕ

dψ

) (33)

these equations are used to convert characteristic speeds from both planes,
helping the solution of the WAG problem.

3. General Solution of Miscible WAG System

The application of the splitting technique decoupled the equation system
and isolated the thermodynamic part of the solution. In this section we will
discuss the general analytical solution of the miscible WAG problem in term
of thermodynamic and hydrodynamic systems.

3.1. General Solution of Thermodynamic System

Equation 31 is a non-linear hyperbolic equation system. To solve it we
apply the method of characteristics, describing the solution in terms of trav-
eling shock and rarefaction waves (Tai-Ping, 2007).

3.1.1. Shock Waves in Thermodynamic System

A shock wave is an weak solution of an hyperbolic equation system where
the mass flux of all components is balanced between both sides of the dis-
continuity, denoted by L and R. Mathematically this condition is achieved
if, and only if, the following equation system is satisfied (Rankine-Hugoniot
condition):

σ(ϕ,ψ) ( ~αR − ~αL) =
(
~βR − ~βL

)
(34)
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where ~α = (α2, ..., αn−1), ~β = (β2, ..., βn−1) and σ(ϕ,ψ) is the shock speed
calculated in (ϕ, ψ) plane. Fixing a left point (L) it is possible to write the
geometrical place of all possible right points (R) that respects the Rankine-
Hugoniot condition, called Hugoniot locus (H (L)). To determine which of
these points is the real admissible solution for the problem we are employing
the so called Lax, Liu and Entropy criterias (Lax, 1957; Liu, 1974, 1975).

3.1.2. Rarefaction Waves in Thermodynamic System

Rarefaction waves may have deduced by application of the chain rule in
Equation 31 and writing in matrix notation:

∂~α

∂~β

∂~β

∂ψ
+ I

∂~β

∂ϕ
= 0 (35)

where ∂~α

∂~β
is the Jacobian matrix of ~α and I is the identity matrix. Defin-

ing ξ(ϕ,ψ) = ϕ/ψ the self-similar variable and manipulating Equation 35 we
find that the rarefaction path must obey the following ordinary differential
equation system:

d~β

dξ(ϕ,ψ)
=

−→ri〈
dλi

d
−→
β
,−→ri
〉 (36)

where λi and −→ri are the i-esim eigenvalue and eigenvector of the inverse of
the jacobian matrix (∂~α

∂~β
). Note that because the system is hyperbolic all

eigenvalues are real and we have n − 2 different rarefaction paths passing
for each point in domain. In order to exclude invalid solutions, a rarefaction
solution must always increase the eigenvalue along the ξ(ϕ,ψ) path.

3.2. General Solution of Hydrodynamic System

Once we have determined the solution of thermodynamic system, the next
step is solving the hydrodynamic variables (Sw and Cn). The strategy we
are adopting for hydrodynamic variables is solving the Equation 26 direct in
(xD, tD) space by the velocity conversion of β solution from (ϕ, ψ) space by
Equations 32 and 33.

3.2.1. Shock Waves in Hydrodynamic System

There are two different situations to consider for shock solution in hy-
drodynamic variables, shock with constant ~β where only Sw and Cn change
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across the discontinuity and complete shocks where all variables change. For
the first case, Equation 26-(a) has trivial solution and the Rankine-Hugoniot
condition is written using only terms (b) and (c):

{
σ(xD,tD) =

fRHCF
R
n −fLHCF

L
n

SR
HCC

R
n −SL

HCC
L
n

(b)

σ(xD,tD) = fRw−fLw
SR
w−SL

w
(c)

(37)

where the subscript (xD, tD) indicates the domain where the speed is cal-

culated. For the particular case when both Cn and ~β are constant across
the shock, the shock speed is calculated using only Equation 37-(c), that is
known by the Buckley-Leverett shock.

For the complete shock case, the shock speed was already calculated in
(ϕ, ψ) plane by Equation 34 and the speed can be converted by application
of Equation 33:

σ(xD,tD) =
fLHC

(
FL
n + σ(ϕ,ψ)

)

SLHC
(
CL
n + σ(ϕ,ψ)

) =
fRHC

(
FR
n + σ(ϕ,ψ)

)

SRHC
(
CR
n + σ(ϕ,ψ)

) (38)

An interesting particular case of Equation 38 is when one side of the shock
has only water and a single hydrocarbon phase (oil or gas) saturating the
porous medium. Supposing this condition is valid for the left shock side (L),
then we have FL

n = CL
n and Equation 38 resumes to:

σ(xD,tD) =
fLHC
SLHC

=
fRHC

(
FR
n + σ(ϕ,ψ)

)

SRHC
(
CR
n + σ(ϕ,ψ)

) (39)

that means that the shock speed depends unique and exclusively of the left
condition and all points in this hugoniot locus (H (L)) have the same shock
speed.

Another particular case of Equation 38 is when both sides of the shock
are saturated with water and only one hydrocarbon phase. For this case we

have
fLHC

SL
HC

=
fRHC

SR
HC

with different ~β values in each shock side. Such situation is

not real because even if we accept this solution as a valid shock in (xD, tD)
space, it cannot be converted to (ϕ, ψ) by application of Equation 32. Thus

we conclude that does not exist ~β shocks when both sides has only one
hydrocarbon phase.
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3.2.2. Rarefaction Waves in Hydrodynamic System

There are two different cases to consider in order to find rarefaction so-
lutions in the hydrodynamic system: constant ~β rarefactions and complete
rarefactions. The complete rarefaction case is simpler because we already
have calculated the rarefaction speed in (ϕ, ψ) domain and we only need to
convert to (xD, tD) space using Equation 33.

For the rarefactions with constant beta, first we need to manipulate Equa-
tions 26-(b) and (c) and write in a matrix form:

(
Cn
Sw

)

tD

+

(
1

SHC

(
fHC

∂Fn

∂Cn
+ (Cn − Fn) ∂fw

∂Cn

)
1

SHC

(
fHC

∂Fn

∂Sw
+ (Cn − Fn) ∂fw

∂Sw

)

∂fw
∂Cn

∂fw
∂Sw

)(
Cn
Sw

)

xD

=

(
0
0

)
(40)

Defining the self-similar variable ξ(xD,tD) = xD
tD

and manipulating the
Equation 40, we find that the rarefaction paths for the hydrodynamic system
must solve the following ODE system:

( dCn

dξ(xD,tD)
dSw

dξ(xD,tD)

)
=

−→r ±〈(
∂λ±
∂Cn

, ∂λ±
∂Sw

)
· −→r ±

〉 (41)

where λ± and −→r ± are the eigenvalue and eigenvector associated to the flux
matrix of Equation 40. The sub-indexes ± indicates that this matrix has two
different eigenvalues and consequently for each point there are two rarefaction
paths, one associated to the slow eigenvalue (−) and one to the fast (+).

One important particular case occurs when there is only one hydrocarbon
phase (oil or gas) in system, because we have Cn = Fn and the System 40
reduces to:

(
Cn
Sw

)

tD

+

(
fHC

SHC
0

∂fw
∂Cn

∂fw
∂Sw

)(
Cn
Sw

)

xD

=

(
0
0

)
(42)

where the eigenvalues of flux matrix are the Buckley-Leverett rarefaction
( ∂fw
∂Sw

) and the trivial solution for single phase compositional flows ( fHC

SHC
) (Orr

Jr., 2007).
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4. Thermodynamic Description and Solution

The last section we presented the general solution for the miscible flow
of water, oil and gas in an one-dimensional porous medium. In this section
we will present a practical example of a hydrocarbon mixture and solve the
thermodynamic partial differential equations. In the next section we will
solve the hydrodynamic part of the system and show how waves can interact
in a changing boundary condition problem like WAG injection.

4.1. Thermodynamic Description

We may relate two phases in thermodynamic equilibrium using tie-lines
by direct application of Equation 24 where cio and cig are the volumetric com-
positions of component i in oil and gas phases. We can relate the volumetric
composition of each component with ~β values by adjusting the following
surface to the thermodynamic data:

ci(o|g)
(
~β
)

=
2∑

i2=0

...

2∑

in−1=0

ai2...in−1β
i2
2 ...β

in−1

n−1 (43)

in which ai2...in−1 are the adjusted coefficients that models the thermodynamic
equilibrium. Once we have a formula to calculate the hydrocarbon phase
compositions, the viscosity of each of them are calculated by:

µ(o|g) =
n∑

i=1

ci(o|g)µ
0
i (44)

where µ0
i is the viscosity of the pure component at the same pressure and

temperature. Note that the water viscosity is constant because it does not
exchange mass with other components.

4.2. Thermodynamic Example

Considering the pressure of 100bar and 300K we applied the Peng-Robinson
equation of state (Robinson and Peng, 1978) to calculate the thermodynamic
equilibrium of a component mixture described in Table 1 for different mix-
ture compositions, where pc and Tc are the critical pressure and temperature,
Mw is the molecular weight, ω is the acentric factor and µ0 is the viscosity
of the pure component.
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Table 1: Pure component thermodynamic properties

Comp. pc (bar) Tc (K) Mw

(g/mol)
ω µ0(cp)

C1 45.99 190.56 16.043 0.011 0.01
C3 42.48 369.83 44.097 0.152 0.10
C6 30.25 507.60 86.177 0.300 1.00
C10 21.10 617.70 142.285 0.490 5.00

To correctly capture the thermodynamic equilibrium at the given pressure
and temperature for any composition we performed more than 50.000 two-
phase flash calculations for different composition points. After that, we used
the least squares method to adjust the volumetric composition surface of each
phase using Equation 43 (Table 2). The Figures 2 and 3 show the quality of
the adjusted surface over the calculated data for the oil and gas phases. It
can be noted the high R-score even using a huge number of points, showing
the applicability of the proposed technique.
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Figure 2: Adjusted equilibrium volumetric composition surface (Equation 43) for oil phase
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Figure 3: Adjusted equilibrium volumetric composition surface (Equation 43) for gas phase

4.3. Solution of the Thermodynamic Auxiliary System

Once we adjusted analytical expressions for ~α we can write the analytical
solutions for the thermodynamic auxiliary system by direct application of the
solutions described in Section 3. The volumetric composition of the original
oil in-situ and the injected gas is showed in Table 3 as the calculated ~β for
each composition. We are using J and I to express the injection and initial
compositions in the charts showed in this section.

Table 3: Initial oil and injected gas volumetric compositions

C1 C3 C6 C10 β2 β3

Oil 0.2897 0.1180 0.3146 0.2777 2.3158x10−2 6.1089x10−3

Gas 0.9897 0.0091 0.0012 0.0000 9.0753x10−3 1.2512x10−3
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The eigenvalues and the integral curves (Equations 35 and 36) are showed
in Figures 4 and 5, while the Hugoniot locus for initial and injection points
is showed in Figure 6. It can be noted that there is no combination of
rarefaction paths that connects J and I points. Thus, the solution for this
condition is a shock from ~βJ to the intermediate ~βA point (Sβ1), followed by

a shock from ~βA to the initial point ~βI (Sβ2), showed in Figure 7.

Figure 4: Slow and fast eigenvalues (λ− and λ+) for the thermodynamic auxiliary system

Figure 5: Slow and fast integral curves (λ− and λ+) for the thermodynamic auxiliary
system. The arrows point toward the eigenvalue increase direction
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Figure 6: Hugoniot locus for injection (solid) and initial (dashed) conditions in auxiliary
system
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Figure 7: Characteristic diagram for ~β solution in the auxiliary system

5. Solution of MWAG Problem

In the last section we solved the thermodynamic equilibrium in the (ϕ, ψ)
space. In this section we will describe the complete solution of the miscible
WAG problem, including both hydrodynamic and thermodynamic systems.
The methodology applied here is similar of the immiscible solution, where we
first build the analytical solutions for each WAG cycle without consider the
wave interaction and after we solve each interaction as it is a new Riemann
problem centered in the interaction point.

All solution profiles presented in this section were compared with nu-
merical simulations using the first order, implicit, upwind method (LeVeque
et al., 2002). The linear porous medium was discretized using 100,000 cells
uniformly spaced, in order to decrease numerical diffusion effects.

5.1. Hydrodynamic Solution: Wave Positioning

We solved three injection steps to identify the key aspects of the MWAG
solution (Table 4). The inlet condition is how the reservoir is saturated at the
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moment that the next step starts in xD = 0 position, where for the first step
is the same of the initial condition. The system starts with the linear porous
medium completely saturated with oil at irreducible water saturation Swi.
The first step we inject pure water in the rock (fw = 1) saturating the inlet
face with water and residual oil saturation for water (Swor). After this, in the
second step, we inject pure gas with composition showed in Table 3 (fg = 1)
that saturates the inlet face with water and irreducible water. For the third
step, we repeat the water injection, but now we could achieve 100% of water
saturation, because the gas in the last step completely remove the oil in this
face. Next steps boundary conditions are simple repetitions of steps 2 and 3
where, because of the miscibility effect, only the water saturation changes.

Table 4: Boundary and inlet face conditions considered in the MWAG solution

Step tD Boundary Condition
BC = (Sw, Cn, β2, β3)

Inlet Condition
IC = (Sw, Cn, β2, β3)

Water 0.00
(
1− Swor, CI

n, β
I
2 , β

I
3

) (
Swi, C

I
n, β

I
2 , β

I
3

)

Gas 0.10
(
Swi, C

J
n , β

J
2 , β

J
3

) (
1− Swor, CI

n, β
I
2 , β

I
3

)

Water 0.20
(
1.0, CJ

n , β
J
2 , β

J
3

) (
Swi, C

J
n , β

J
2 , β

J
3

)

The rock-fluid interaction is described using relative permeability curves.
For the two-phase interaction, we are using the Corey’s model (Corey et al.,
1956) with parameters showed in Table 5 (Figure 8):





krw = k
Sw
or

rw (Snw)nw

k
w|g
ro = kSwi

ro (Sno)
n
w|g
o

krg = kS
g
or

rg (Sng)
ng

(45)

where Snw, Sno and Sng are the normalized water, oil and gas saturations:





Snw = Sw−Swi

1−Swi−Som
, Sw ∈ [Swi, 1− Som]

Sno = So−Som

1−Swi−Som
, So ∈ [Som, 1− Swi]

Sng = Sg

1−Swi−Som
, Sg ∈ [0, 1− Swi − Som]

(46)

in which Som = min (Swor, S
g
or) is the minimum residual oil by immiscible pro-

cesses. The two-phase curves are converted to three-phase relative perme-
ability curves by the modified Stone I model (Stone, 1970; Aziz and Settari,
1979):
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



krw = krw (Snw)

kro = kro (Snw, Sno, Sng) = Sno

k
Swi
ro

(
kwro

1−Snw

)(
kgro

1−Sng

)

krg = krg (Sng)

(47)

Table 5: Relative permeability Corey’s parameters

Waterflooding Gasflooding
Swi = 0.20 Swi = 0.20
kSwi
ro = 0.80 kSwi

ro = 0.80
Swor = 0.40 Sgor = 0.20

kSorw
rw = 0.30 k

Sorg
rg = 0.70

nw = 2.20 ng = 2.40
nwo = 2.00 ngo = 1.80

Figure 8: Two-phase relative permeability curves with parameters showed in Table 5

5.1.1. First Step: Water Injection

For the first water step, the solution is described by the traditional
Buckley-Leverett equations, that can be analyzed in the fw diagram (9).
The tangent express the traditional Buckley-Leverett shock that has the
same velocity of the last rarefaction. Note that the injection point in the
initial oil composition curve (fw = 1) happens when Sw = 1 − Swor, showing
that the first water step has a low efficiency letting a huge portion of oil in
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the reservoir when compared with the same curve in the injected gas compo-
sition. The Figure 10 shows the solution in the characteristic diagram, where
solid lines represent shocks and dashed lines rarefactions, while the Figure
11 shows the solution profile when tD = 0.1, where it can be noted that the
~β values does not change in this first step.

Figure 9: Water fractional flow in initial oil composition (dotted) and injection gas com-
position (dashed)
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Figure 10: Characteristic diagram for the first water injection step without consider wave
interactions

Figure 11: (Sw, Cn, β2, β3) solution profile for tD = 0.10 for the first water injection step
without consider wave interactions, compared with numerical solution

5.1.2. Second Step: Gas Injection

Because the injected gas exchanges mass with the original oil, the ther-
modynamic interactions must obey the speed of the characteristics solved in
the auxiliary system (7). Once we have already calculated the ~β in the (ϕ, ψ)
plane, we can construct the Fn diagram (Figure 12) for any water satura-
tion. By analogy of the two-phase miscible solution, when the Fn curve for
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injection ~β values (red) is in the right of the Fn curve for the initial ~β values

(green), then the ~β transition will end with a right composite wave, otherwise
the solution will start with a left composite wave. Thus, for the parameters
we are using, the easiest way to describe the gas injection solution is from I
to J point.

Figure 12: Fn versus Cn chart for initial ( ~βI), intermediate ( ~βA) and injection ( ~βJ) tie-lines

Considering the initial composition ~βI we construct the constant ~β rar-
efactions (Equation 40) by analyzing the eigenvalues in (xD, tD) domain (Fig-
ures 13 and 14). By analyzing those maps we can make three important con-
clusions: 1) there is no rarefaction curve that enters or leaves the three-phase
saturation region (Cn < 0.17); 2) the speed in I point is null, obligating the
solution end with a shock and 3) there is an elliptic region in the map where
the eigenvalues of System 40 are not real and the rarefaction curves does not
enter in this zone (marked with gray).
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Figure 13: Slow and fast eigenvalues for constant ~βI values in (xD, tD) domain, with the
elliptic region marked in gray

Figure 14: Slow and fast rarefaction curves for constant ~βI values in (xD, tD) domain,
with the elliptic region marked in gray

As we determined that the solution must finish with a shock we must
plot the Hugoniot locus for the inlet face point (H (I)), showed in Figure
15. This horizontal line means that the solution must end with a Buckley-
Leverett left composite shock, where the eigenvalues of the left condition has
the same value of the shock speed (SI shock in Figure 16).
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Figure 15: Hugoniot locus for I point (H (I)) for initial tie-line ( ~βI) in (xD, tD) domain

Figure 16: Characteristic diagram for the second step injection solution without consider
the wave interactions
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The next step to construct the gas solution is determine the point along
H (I) locus that leaves the three-phase saturation zone. If we construct a
Hugoniot locus for the points in this locus for Swi < Sw < 1−Swor, we conclude
that for each locus there is at least one point where the left fast eigenvalue is
the same of the shock speed (marked with triangles in Figure 17). However,
exists a particular point where the shock velocity is equal both left and right
fast eigenvalues, creating a stable solution called transitional shock wave (ST
in Figure 16), that is the shock that leaves the three-phase saturation zone.

Figure 17: Hugoniot locus for different points along H (I) curve for initial tie-line ( ~βI) in
(xD, tD) domain

Once we entered in the three-phase saturation region, the solution is found
by following the fast integral curve until the rarefaction velocity be the same
of the second ~β shock in (ϕ, ψ) domain (Sβ2). The same procedure applies

to the first ~β shock, by direct conversion (Sβ1), where the left shock side is
entirely in the injection tie-line (SLβ1 in Figure 18). Analyzing the Hugoniot

locus H
(
SLβ1

)
we can see that the solution connects to the injection point by

a partial shock to J2 followed to a shock J (SJ1 and SJ2 in Figure 16). The
Figures 19 and 20 show the solution and saturation profiles for tD = 0.15.
It can be noted that the tie-line variables (~β) only change in the Sβ1 and
Sβ2 shocks, remaining constant in the other points, while the gas injection
front completely miscibilizes the oil in the inlet face, saturating the porous
medium with only water and gas at this point.
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Figure 18: Hugoniot locus H
(
SLβ1

)
in the injection tie-line ( ~βI) in (xD, tD) domain

Figure 19: (Sw, Cn, β2, β3) solution profile for tD = 0.15 in the gas injection step without
consider wave interactions, compared with numerical solution
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Figure 20: Saturation profile for tD = 0.15 in the gas injection step without consider wave
interactions

5.1.3. Third Step: Water Injection

For the next water injection step, the oil was completely removed from
the inlet face by the gas injection. Thus, the injection point for fw = 1
is the inlet face completely saturated with water (Sw = 1). The solution
without consider wave interactions for this step is the conventional Buckley-
Leverett composite shock, that can be analyzed in the traditional fractional
flow diagram (9). If we construct the solution profile for this injection step
(Figure 21) we can note that the β and Cn profiles are constant and equal
to the injection gas tie-line. That is the reason why the next steps that we
are not treating are just repetitions of steps 2 and 3.
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Figure 21: (Sw, Cn, β2, β3) solution profile for tD = 0.35 for the third injection step without
consider wave interactions, compared with numerical solution

After we solve the injection steps we can position each of them in the char-
acteristic diagram and start the wave interaction solution procedure (Figure
22). We always solve the interactions following the time that they occur, in
order to respect the causality principle.

Figure 22: Characteristic diagram for the third three injection steps, without consider
wave interactions
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5.2. MWAG Solution: Wave Interactions

We now present the MWAG solution after solving the wave interactions
(23). We use here the same procedure and nomenclature for immiscible
solutions where each crossing wave in the characteristic diagram is treated
as a new Riemann problem. To facilitate the comprehension, the interactions
were divided in three main groups.

SCT

RCS

CCS 

SRT

RRT

SRS

RCT

RRT

SCT

SRT

SCT

SRT

Figure 23: Characteristic diagram for the miscible WAG problem after three injection
steps

5.2.1. Group 01 - Water/Gas Interactions

These interactions appears by the interaction of the first water and the
second gas steps (Figure 24). The rarefactions of the water cycle interacts
with the last composite shock from the gas cycle (Shock SI in Figure 16),
where the rarefactions and the shock superimposes their waves accelerating
the shock of the composite wave (RCS interaction). This speed increasing
decompresses the SI composite fan, opening space for appearing new rarefac-
tions as the interactions evolves. The Figure 25 shows two solution profiles
for different times, showing how this interaction affects the solution. It can
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be noted that this is an interaction of two different water banks, where the
bank behind is faster and is superimposing with the slow one and the others
properties remain constant.

At some time the shock that defines both water bank will reach each other,
generating the Composite-Composite Superposition interaction ((xD, tD) ≈
(0.85, 0.31) point in Figure 24). The two composite waves superimposes and
a resulting shock continues traveling in the domain (solution profile showed
in Figure 31). This shock interacts with the rarefactions of the gas injection
cycle, reducing its speed by a Shock-Rarefaction Superposition.

RCS

CCS 

SRS

Figure 24: Group 01 characteristic diagram for the miscible WAG problem after three
injection steps
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Figure 25: (Sw, Cn, β2, β3) solution profile for tD = 0.150 and tD = 0.200, compared with
numerical solution

5.2.2. Group 02 - Initial Gas/Water Interactions

The second group is formed by the interaction of the first waves in the gas
step with the posterior water injection step (Figure 26). First the SJ1 shock
(Figure 16) superimposes with the water composite wave (SCS interaction).
Then, there are two similar Shock-Composite Transmissions between shocks
SJ2 and Sβ1 and the water composite wave. In both cases the water wave
decompresses, releasing new rarefactions in the solution.

The solution profiles for these initial interactions are showed in Figure
27. Note that the transmitted shocks interacts with the water rarefactions
(Shock-Rarefaction Transmissions) reducing its speed until the shock velocity
become almost null (vertical lines). At this point the water injection almost
not changes the fluid saturation, remaining a residual oil saturation that will
be removed only in the next gas injection step. The Figure 28 shows the
saturation profile for tD = 0.205 and tD = 0.208, showing the presence of the
residual oil bank after the water injection step.
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SCT

SCT

SCS 

SRT

SRT

Figure 26: Group 02 characteristic diagram for the miscible WAG problem after three
injection steps
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Figure 27: (Sw, Cn, β2, β3) solution profile for tD = 0.205 and tD = 0.208, compared with
numerical solution

Figure 28: Saturation profile for tD = 0.205 and tD = 0.208 showing the residual oil
saturation bank (dashed area) after a water injection step

5.2.3. Group 03 - Later Gas/Water Interactions

This group occurs after the SCT interaction between the Sβ1 shock and
the water composite wave (Figure 29). The rarefaction fan after Sβ1 transmits
over the water composite wave in a Rarefaction-Composite Transmission and
interacts with the rarefactions of the water injection step (RRT transmission).
If we analyze the solution profile for tD = 0.230 and tD = 0.250 (Figure 30) we
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can see that after the Sβ1 SCT interaction ((xD, tD) ≈ (0.10, 0.24)) it forms
two shocks: one faster for RCT interaction and one slow for the SRT. Due to
the rarefaction interactions (SRT and RRT) the transmitted characteristic
waves become increasingly vertical until the speed becomes null, indicating
the presence of the residual oil.

At some point the water composite wave will reach the transitional shock
wave (ST in Figure 16) creating the same SCT/SRT/RRT pattern, as showed
in Figures 32 and 33. There are the creation of a slow shock that interacts
with the water rarefactions (SRT) and a fast shock that interacts with the
rarefactions in the gas step before. An interesting result occurs after the
SCT interaction where after the water front the gas dissolves in the oil phase
and the system becomes saturated with water and an oil that has a different
composition of the original oil in reservoir.

SCT

SRT

RRT

RCT

RRT

SCT

SRT

Figure 29: Group 03 characteristic diagram for the miscible WAG problem after three
injection steps

38



Figure 30: (Sw, Cn, β2, β3) solution profile for tD = 0.230 and tD = 0.250, compared with
numerical solution
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Figure 31: (Sw, Cn, β2, β3) solution profile for tD = 0.290 and tD = 0.320, compared with
numerical solution
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Figure 32: (Sw, Cn, β2, β3) solution profile for tD = 0.350 and tD = 0.450, compared with
numerical solution

Figure 33: Saturation profile for tD = 0.350 and tD = 0.450

6. Conclusions

This work presents a new mathematical model for the miscible water al-
ternating gas (MWAG) injection scheme in linear porous media. In this for-
mulation, oil and gas exchanges mass while water is treated as an immiscible
phase. As showed, this approach is useful because allowed the application of
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the splitting technique, and the MWAG problem can be described and solved
for any number of components.

Hydrodynamic and thermodynamic equations are decoupled by the split-
ting technique generating different hyperbolic partial differential equation
systems, that are solved separately. Then, the time variable boundary con-
dition problem for WAG cycles are solved by the wave interaction technique,
where each interaction is treated as a new Riemann problem. The solutions
described in this paper are compared with numerical schemes showing the
accuracy of the method. Note that this formulation approaches to the used
in commercial reservoir simulators, where the water is treated as an immis-
cible phase, and the analytical solution described in this paper can provide
a new understanding about physical phenomena involved in WAG enhanced
oil recovery.
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8 Conclusions

This thesis presents the results obtained along a four year doctoral research about

the mathemtical and physical aspects of the Water Alternating Gas EOR methof. First

the simultaneous three-phase immiscible flow in porous medium was modeled and

a new solution for concave relative permeability curves was published. Then it was

evluated how step variable boundary conditions affects the analytical solution, and an

application to injectivity well tests was developed.

After that, the immiscible WAG problem was solved using the wave interaction the-

ory to handle the interactions between different characteristics caused by the variable

boundary condition. Finally a new mathematical formulation was developed for the

miscible WAG problem where the split technique was applied to decouple the hydro-

dynamic and thermodynamic parts of the original problem. Suggestion for further re-

search includes:

• Development of a simultaneous immiscible three-phase flow solution for mixed

concave and convex relative permeability curves;

• Develop a well-test pressure solution applied for an injectivity test after WAG

cycles;

• Analyze the influence of the stable orbits of the associated vanishing viscosity

problem in both WAG and MWAG solutions;

• Develop the miscible WAG solution considering injected gas slugs with different

compositions.
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