Conservação ex situ de germoplasma

- Sementes Ortodoxas
 - Características:
 - Temperatura baixa: -18°C
 - Conteúdo de umidade da semente: 3-7%
 - Umidade relativa.
 - Sobrevivem por muitos anos em câmara fria.

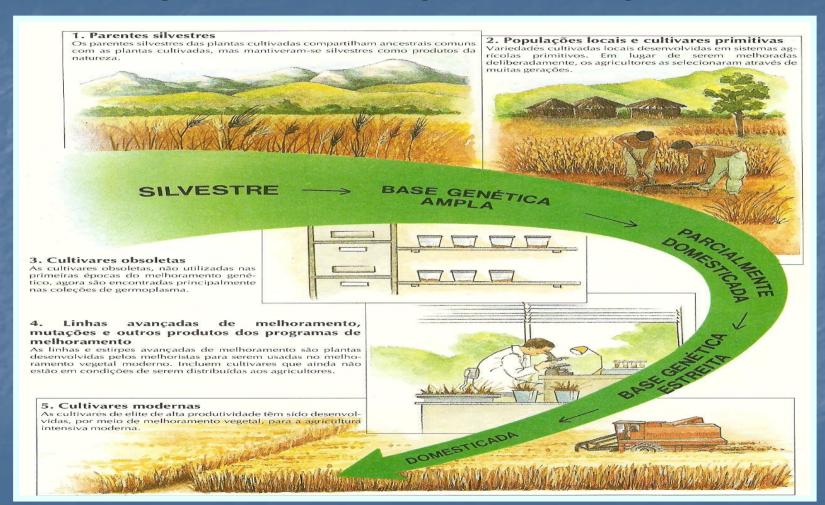
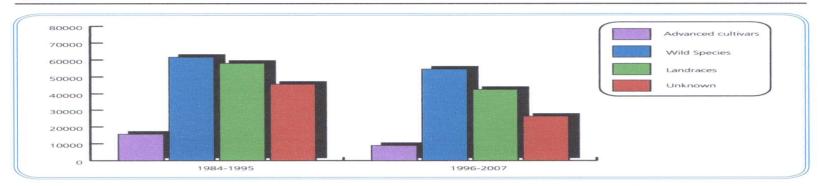
Sementes recalcitrantes

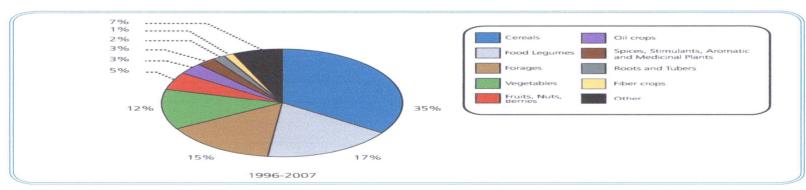
- Características
 - Contaminação microbial;
 - Germinação durante a conservação
- Plantas tropicais;
 - Mantidas no campo;
 - Cultivo in vitro;
 - Criopreservação

Conservação dos RGV

- Conservação de Germoplasma
 - Etapas de um programa de conservação ex situ
 - Aquisição do germoplasma:
 - Coleta
 - Intercâmbio ou doação.
 - Multiplicação do germoplasma;
 - Conservação propriamente dita;
 - Caracterização e Avaliação;
 - Coleta de dados e análise;
 - Utilização e distribuição.

O que conservar? Tipos de Germoplasma

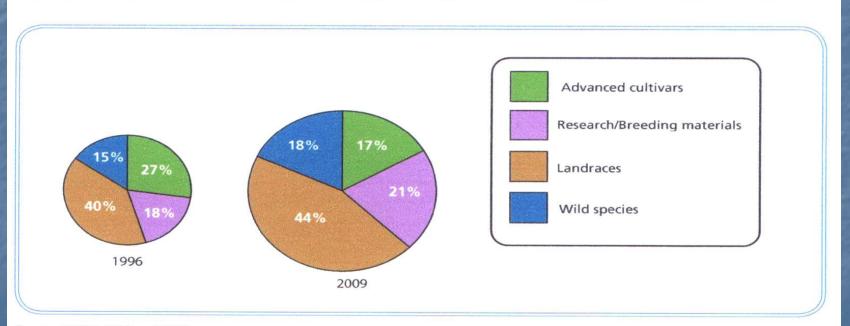




FIGURE 3.3

Type of accessions collected by selected genebanks over two time periods, 1984-95 and 1996-2007

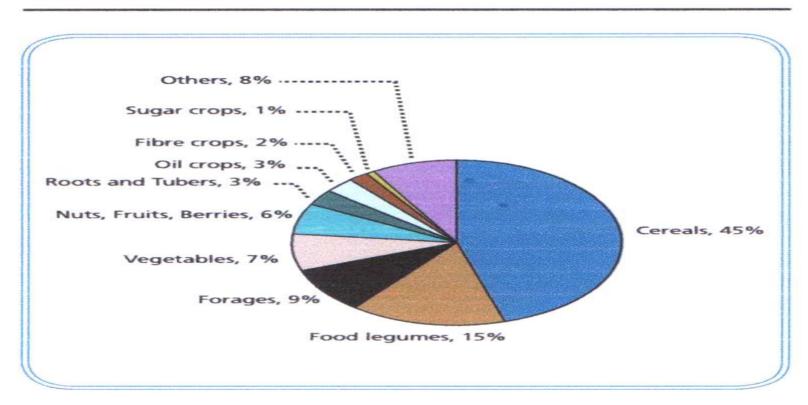
Source: genebanks of the NPGS of USDA (source: GRIN, 2008); 234 genebanks from Europe (source: EURISCO, 2008); 12 genebanks from SADC (source: SDIS, 2007); NGBK (Kenya) (source: dir. info., 2008); INIAP/DENAREF (Ecuador) (source: dir. info., 2008); NBPGR (India) (source: dir. info, 2008); IRI, ICARDA, ICRISAT and AVARDC (source: dir. info., 2008); CIP, CIMMYT, ICRAF, ITA, ILRI and WARDA (source: SINGER, 2008)

FIGURE 3.4
Accessions collected by selected genebanks over the period 1996-2007 according to crop group



Source: 31 genebanks of the NPGS of USDA (source: GRIN, 2008); 234 genebanks from Europe (source: EURISCO, 2008); 12 genebanks from SADC (source: SDIS, 2007); NGBK (Kenya) (source: dir. info., 2008); INIAP/DENAREF (Ecuador) (source: dir. info., 2008); NBPGR (India) (source: dir. info., 2008); IRRI, ICARDA, ICRISAT and AVRDC (source: dir. info., 2008); CIP, CIMMYT, ICRAF, IITA, ILIR and WARDA (source: SINGER, 2008)

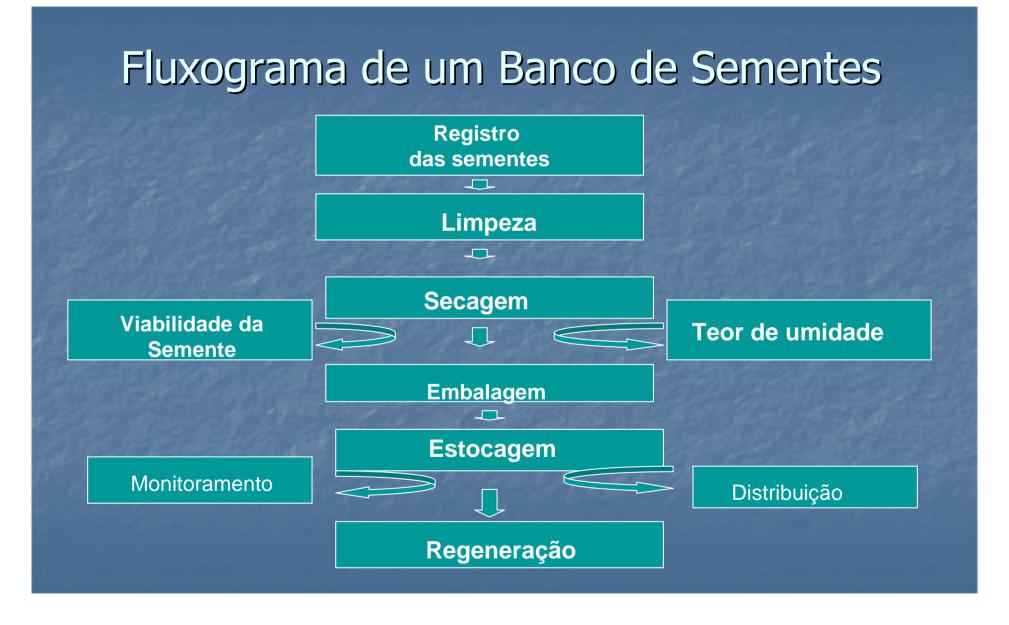
Tipo de acessos conservados na coleções


FIGURE 3.6

Types of accessions in *ex situ* germplasm collections in 1996 and 2009 (the size difference in the charts represents the growth in total numbers of accessions held *ex situ* between 1996 and 2009)

Source: WIEWS 1996 and 2009

FIGURE 3.5
Contribution of major crop groups in total ex situ collections


Grupo	# Acessos	Silvestre (%)	Raças locais (%)	Material Elite (%)	Cultivares (%)	Outros (%)
Cereais	3.157.578	5	29	15	8	43
Legumes	1.069.897	4	32	7	9	49
Raízes e Tubérculos	204.408	10	30	13	10	37
Hortaliças	502.889	5	22	8	14	51
Nozes, frutas e berries	423.401	7	13	14	21	45
Oleaginosas	181.752	7	22	14	11	47
Forrageiras	651.024	35	13	3	4	45
Açucareiras	63.474	7	7	11	25	50
Fibras	169.969	4	18	10	10	57
Medicinais, aromáticas e especiarias	160.050	13	24	7	9	47
Industriais	152.325	46	1	2	4	47

Banco de sementes

Registro das sementes

Checar a lista de acompanhamento do lote

Checar se já existe material similar na coleção

Checar as condições da sementes

As sementes estão em boas condições?

Decidir se o lote será mantido no banco

Dar uma identificação ao lote

Entrar com os dados do lote no banco

Banco Global de Sementes - Noruega

Conservação a longo prazo
4 milhões e 500 mil amostras;
- 18oC, 3 câmeras de segurança máxima
Túnel de 125m;

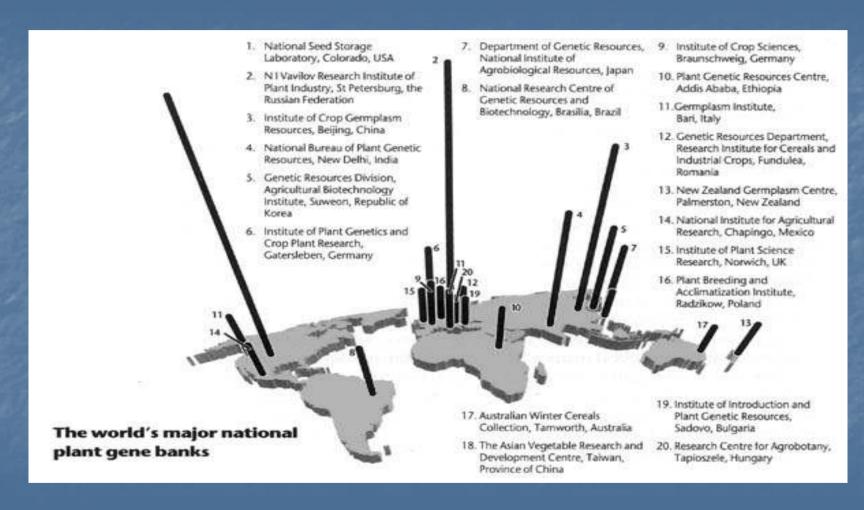
Baixa temperatura e baixa umidade: ártico

Conservação longa

Cevada: 2000 anos;

Trigo: 1.700 anos;

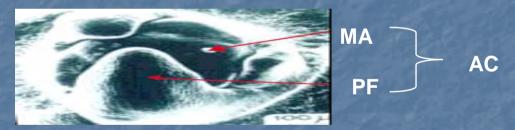
Sorgo: 20 mil anos.


Em 2009:

664 gêneros, 3.286 espécies 412.446 acessos 204 países

TABLE 1.2
Comparison between the collections maintained by selected national genebanks in 1995 and 2008^a

Country	Genebank	1995 (no.)				2008 (no.)			Change (%)		
		Generab	Species	Accessions	Genera	Species	Accessions	Genera	Species	Accessions	
Brazil	CENARGEN	136	312	40 514	212	670	107 246	56	115	165	
Canada	PGRC	237	1 028	100 522	257	1 166	106 280	8	13	6	
China	ICGR-CAAS		-	358 963	-		391 919	-	10 - Bon# 2.8	9	
Czech Republic	RICP	34	96	14 495	30	175	15 421	-12	82	6	
Ecuador	INIAP/DENAREF	207	499	10 835	272	662	17 830	31	33	65	
Ethiopia	IBC	71	74	46 322	151	324	67 554	1113	338	46	
Germany	IPK Gatersleben ^c	633	2 513	147 436	801	3 049	148 128	27	21	0	
Hungary	ABI	238	742	37 969	294	915	45 321	24	23	19	
ndia	NBPGR	73	177	154 533	723	1 495	366 333	890	745	137	
lapan	NIAS			202 581	341	1 409	243 463	-	14 per - 3	20	
Kenya	KARI-NGBK	140	291	35 017	855	2 350	48 777	511	708	39	
Nordic Countries	NGB ^d	88	188	24 241	129	319	28 007	47	70	16	
Russian Federation	VIR	262	1 840	328 727	256	2 025	322 238	-2	10	-2	
Netherlands	CGN	30	147	17 349	36	311	24 076	20	112	39	
Turkey	AARI	317	1 941	32 122	545	2 692	54 523	72	39	70	
United States of America	NPGS ^e	1 582	8 474	411 246	2 128	11 815	508 994	35	39	24	
Average		289	1 309	140 205	502	2 098	178 294	74	60	27	



Bancos de germoplasma

Conservação de germoplasma in vitro

- Cultura de Tecido: cultivo de tecidos ou órgãos em meio de cultura propiciando assim a regeneração de uma planta a partir de um explante.
- Explantes: folhas, sementes, meristemas

Características da CT

Fases do Crescimento

- Lento
- Rápido: crescimento exponencial
- Estacionário: # células permanece constante
- Esgotamento dos nutrientes
- Tendência: morte do material
- Tempo: Varia de 1-6 semanas
 - Espécie
 - Tipo de cultura
- Manutenção in vitro
 - Trabalhosa

Métodos

- Sistema de Crescimento Lento
- Criopreservação

Tipos de Cultura de Tecido

- Calo
 - Mudanças genéticas
 - Mutações
 - Rearranjos cromossômicos
- Meristema
 - Eliminação de vírus

Cultura de embrião somático

- Cenoura
- N líquido

Cultura de embrião zigótico

- Dendê
- N líquido
- 8 meses

Vantagens da CT

- Alta taxa de multiplicação;
- Rapidez;
- Controle das condições de cultivo;
- Propagação contínua ao longo do ano;
- Propágulos livres de doenças e pragas;
- Custo baixo uma vez estabelecido e otimizado o protocolo;
- Espaço reduzido;
- Armazenamento a longo prazo de germoplasma;
- Adaptado para plantas de difícil propagação.

Desvantagens da CT

- Exige instalações e equipamentos especializados;
- A capacitação tecnológica deve ser maior;
- Os protocolos regenerativos não estão disponíveis para todas as espécies;
- Laboratórios são caros para instalar e manter.

Etapas da propagação via CT

- Estágio 0 Seleção de planta matriz e escolha do explante;
- Estágio I Estabelecimento da cultura asséptica;
- Estágio II Multiplicação;
- Estágio III Enraizamento;
- Estágio IV Aclimatização in vitro ou ex vitro.

Gêneros que podem ser cultivados in vitro

Propagação assexuada

Solanum

Manihot

Musa

Ipomoea

Xanthosoma

Colocasia

Dioscorea

Canna

Vitis

Olea

Ananas

Ficus

Agave

Vanilla

Piper

Saccharum

Tubérculos andinos

Propagação sexuada

Citrus

Elaeis

Coccus

Malus

Persea

Mangifera

Mcadamia

Anacardium

Theobroma

Hevea

Chinchona

Cinnamotium

Coffea

Camellia

Artocarpus

Crescimento Lento

Vantagens

- Reduz o trabalho de sub-cultivo
- Deve ser mantido sob condições subótimas
- Reduz a taxa de crescimento
- Permite mudanças genéticas
- Não é adequado para conservação a longo tempo

Redução de Temperatura

- 20 a 25 °C: Condição ideal
- 6 a 12 °C: Conservação
- Tropicais
 - 30 °C: Ideal
 - 20 °C: Conservação

Químicos com Ação Retardante

- Manitol
- Ácido abcísico (ABA)
- Solanum
 - Temperatura normal de 22 °C
 - Adição de 5-10 mg/l de ABA
 - 63 % de sobrevivência
 - 12 meses
- Mandioca
 - 4% sacarose + 0,01 mg/l BAP ou 2% sacarose + 0,05 mg/l BAP
 - Temperatura: 20 °C
 - Taxa de sobrevivência: 95%
 - Período de Conservação: 15 meses

Crescimento Lento (Cont.)

- Redução do tempo entre sub-cultivos
 - Solanum spp.
 - 20 ml de meio de cultura líquido
 - 60 ml de meio de cultura líquido
 - Temperatura 10 °C
 - Período: 18 meses
 - Taxa de sobrevivência: 100%
 - Fragaria spp. (morangos)
 - Meristema
 - Escuro 4 °C
 - Checado a cada 3 meses
 - Adição de 1 a 2 gotas do meio nas culturas que se mostravam ressecadas
 - Durante 6 anos
 - Crescimento normal

Criopreservação

Técnica

- Utilizada para conservação de longa duração
- Crioprotetor
- Resfriamento rápido
- Conservação em N liquido (- 196 °C)
- Período indeterminado
- Redução de trabalho de repicagem

Fases

- Fase de pré-crescimento
 - Células em crescimento exponencial
 - Uso de crioprotetores ainda nesta fase
- Crioprotetor
 - Baixar a temperatura de congelamento das células
 - Reduzir a cristalização do gelo
 - Podem ser usados sozinhos ou em combinação
- Congelamento propriamente dito
 - Colocar os explantes em frascos apropriados para o congelamento
- Conservação em N líquido
- Descongelamento
 - Ponto crítico

Criopreservação

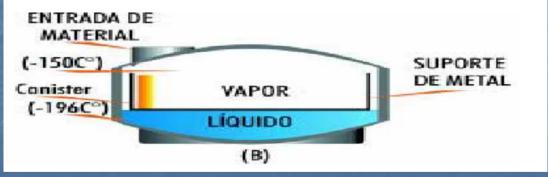
Vantagens

- Conservação por tempo indeterminado;
- Preservação das estruturas (células, tecidos e órgãos);
- Evita a variação somaclonal;
- Em BG é um processo econômico

Desvantagens

- Complexidade técnica e biológica dos processos de congelamento e descongelamento;
- Cada cultura exige um procedimento específico exigindo assim o desenvolvimento de um protocolo para cada espécie.
- Problemas na regeneração das plantas após o resfriamento devido a formação de cristais de gelo.

TABELA 1 - Lista de algumas espécies de plantas de importância econômica criopreservadas com sucesso.


Grupo/Espécie	Explante Técnica	Sobrevivência (%)	Referência
a) Raízes, bulbos e tubérculos			
Albo (Alltum sattvum L.)	M/V	90	Niwata, 1995
Batata inglêsa (Solanum spp.)	A/E-D	10	Fabre e Dereuddre, 1990
Batata-doce (Ipomea batatas L.)	A/V	23	Schneibel-Preikstas et al., 1992
Mandioca (Manthot esculenta Crantz)	EZ/CL-R	97	Marin et al., 1990
b) Cereais e gramíneas			
Trigo (Trtticum spp.)	EZ/CL	70	Вајај, 1983
Milho (Zea mays L.)	EZ/CL	80	Delvallée et al., 1989
Cana-de-açúcar (Saccharum officinale L.)	A/E-D	38-91	Paulet et al., 1993
c) Plantas ornamentais			
Cravo (Dianthus caryophyllus L.)	G/CL	90	Dereuddre et al., 1988
Crisântemo (Chrysanthemum spp.)	A/CL	90	Fukai, 1990
d) Frutiferas tropicais e temperadas			
Banana (Musa spp.)	SC/CL	42	Panis et al., 1990
Citrus (Citrus stnensts [L.] Osb.)	ES/CL	5	Marin e Duran-Vila, 1988
Maçã (Malus spp.)	G/CL	-	Stushnoff e Seufferheld, 1995
Morango (<i>Fragaria</i> spp.)	SC/V	87	Yonjie et al., 1997
Pêra (Pyrus communis L.)	A/E-D	47	Dereuddre et al., 1990
Videira (Vitts vintfera L.)	A/E-D	30	Plessis et al., 1993
e) Leguminosas e oleaginosas			
Amendoim (Arachts hypogea L.)	EZ/CL	90	Runthala et al., 1993
Côco (Cocos nuctfera L.)	EZ/V	10-43	Assy-Bah e Engelmann, 1992
Grão-de-bico (Ctcer spp.)	A/V	60	Bajaj, 1995
Oliveira (<i>Olea europea</i> L.)	EZ/D	70	Gonzales-Rio et al., 1994
f) Estimulantes, medicinais e aromáticas			
Café (Coffea arabica L.)	EZ/D	95	Abdelnour et al., 1992
Chá (Camellta sinensis [L.] O. Kuntze)	EZ/D	95	Chaudhury et al., 1990

Tipo de material: A – ápice caulinar; ES – embrião somático; EZ – embrião zigótico; G – gema lateral; M – meristema; SC – suspensão celular;

Técnica de congelamento: CL – congelamento lento; CL-R - congelamento lento e rápido; D – desidratação; E-D – encapsulamento-desidratação; V – vitrificação.

Criopreservação

Criopreservação: Metodologia Clássica

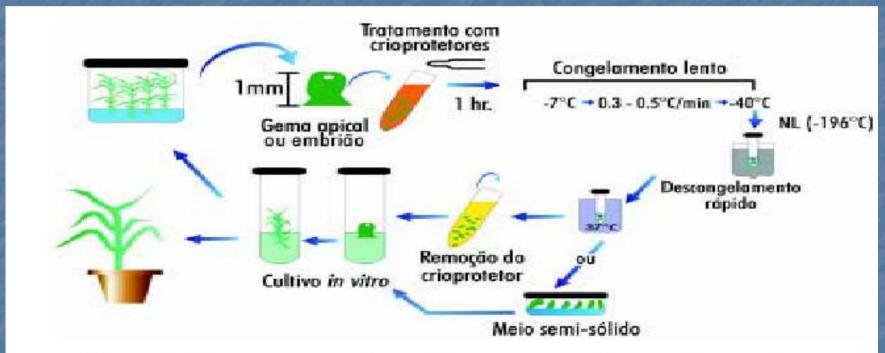
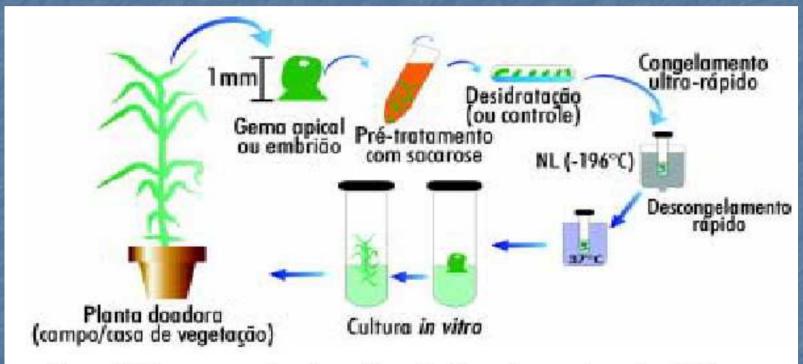



Figura 4. Diagrama mostrando as diferentes etapas do congelamento lento (metodologia clássica)

Fonte: Santos, I.R.I. 2001. Biotecnologia. 20: 60-65

Criopreservação: Congelamento rápido

Figura 5. Diagrama mostrando as diferentes fases do congelamento rápido (metodologia contemporânea)

Fonte: Santos, I.R.I. 2001. Biotecnologia. 20: 60-65

Vitrificação

- É o processo pelo qual a água sofre uma transição de fase líquida para um estado sólido amorfo e estável.
- É obtida experimentalmente através da desidratação dos tecidos para um teor de umidade em que não existe água livre para a cristalização antes de mergulhar no N liquido.

Desidratação

- Evaporação da água
- Tratamento com crioprotetores em alta concentração:
 - Dimetilsulfóxido (DMSO)
 - Etileno glicol;
 - Metanol;
 - glicerol.;
 - Propileno glicol.
 - Causam citotoxicidade
 - Açucares
 - sacarose, trealose, e glucose

Encapsulamento-desidratação

- Um método alternativo à desidratação celular induzida pelo congelamento antes da imersão no N liquido
 - Dereuddre et al., 1990
- Explantes são encapsulado sem cápsulas de gel de alginato de sódio, as quais são então pré-cultivadas em um meio contendo altos níveis de sacarose, desidratados por exposição ao ar da capela de fluxo laminar ou com sílica gel, diretamente imersos em N liquido, e lentamente descongelados.

Variação Somaclonal

- Variabilidade em indivíduos resultantes da cultura de tecidos vegetais, notadamente aqueles regenerados a partir de calos.
- As variações ou alterações podem ser genotípicas ou fenotípicas, genéticas e epigenéticas:
 - ✓ **Genéticas**: mudanças no número cromossômico (poliploidia e aneuploidia); na estrutura cromossômica (translocações, deleções e duplicações) e nas sequências de DNA (mutações de bases).
 - Epigenéticas: gene, amplificação gênica e metilação gênica.

Variação somacional em plantas de Rhododendron derivadas de gemas adventícias (calos)

Variação somaclonal

Vantagens:

- Melhoramento de plantas: criação de variabilidade genética adicional, associada p. ex. à resistência à estresses bióticos e abióticos e ao aumento da produção de metabólitos secundários de interesse.
- Desvantagens: produção de off-types. Quando o objetivo é fixar um genótipo a variação somacional é altamente

Como evitar:

- Evitar calos;
- Limitar o número de sub-cultivos;
- Reiniciar as culturas a partir das plantas matrizes;
- Evitar fitorreguladores em altas concentrações.

Conservação de grãos de pólen

- Consiste em coletar os grãos de pólen e conserva-los para uso posterior.
- Principal uso: cruzamento entre plantas

Vantagens

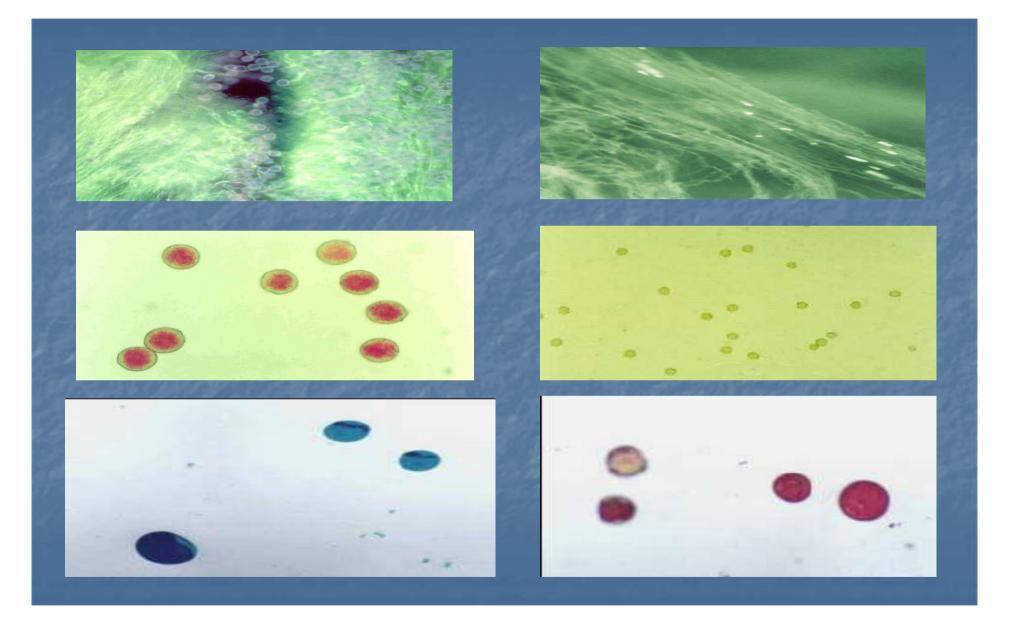
- Dispensa a quarentena
- Grandes amostras podem ser conservadas
- Ocupam pouco espaço

Desvantagens

- Herança citoplasmática não é preservada
- Não gera uma planta a não ser após cruzamento com outro material adequado
- Viabilidade do pólen deve ser testada de tempo em tempo
- Pólens podem ter longevidade e viabilidade diferenciada

Classificação dos grãos de pólen

Grãos de pólen sensíveis à dessecação


- Não podem ser conservados à temperaturas muito frias (freezing) sem emprego de técnicas especiais.
- Danos mecânicos causados pela formação de cristais de gelo nos espaços intracelulares
- Pólen trinucleados
- Asteraceae
- Poaceae

Grãos de pólen resistentes à dessecação

- Conservados à temperatura e umidade muito baixas
- Dessecação ou vácuo
- Temperaturas moderadas: 20-25 ° C
- Freezing-drying
- Conservados -18 ° C
- Pólen binucleado
- Rosaceae, Ericaceae

Monitoramento da viabilidade dos grãos de pólen

- Corantes Vitais
 - Atividade enzimática
 - Integridade da membrana
 - Teste com Tetrazólio
 - Enzimas Oxidativas
 - Teste com Fluorocromos
 - Integridade da membrana
 - Dificuldade: Avaliação
- Germinação in vitro
- Germinação in vivo
- Produção de Semente

