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Who’s related to whom? Recent results from molecular 
systematic studies 
Elizabeth A Kellogg 

Similarities among model systems can lead to generalizations 

about plants, but understanding the differences requires 

systematic data. Molecular phylogenetic analyses produce 

results similar to traditional classifications in the grasses 

(Poaceae), and relationships among the cereal crops 

are quite clear. Chloroplast-based phylogenies for the 

Solanaceae show that tomato is best considered as a 

species of Solarium, closely related to potatoes. Traditional 

classifications in the Brassicaceae are misleading with 

regard to true phylogenetic relationships and data are only 

now beginning to clarify the situation. Molecular data are 

also being used to revise our view of relationships among 

flowering plant families. Phylogenetic data are critical for 

interpreting hypotheses of the evolution of development. 
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Introduction 
The study of model organisms is generally justified on the 
grounds that the results will be applicable to all organisms. 
Testing this assumption requires comparative studies. 
When laboratory models are compared across kingdoms 
or phyla, the similarities are taken as fundamental 
aspects of life. This approach is obviously powerful; it 
is the source of most of what we know about proteins, 
cell biology, and genetic structure and function. Such 
comparison also represents higher-level systematics: the 
commonalities among kingdoms are the shared derived 
characters (synapomorphies, in phylogenetic jargon) of life. 
This broad comparison can easily be performed within 
kingdoms as well. If a result from Ar-abidopsis is assumed to 
be common to all plants, then it is simple to compare it to 
another dicot (e.g. snapdragon or tomato) or to a monocot 
(e.g. maize) [ l,‘P]. This too is implicit use of phylogenetic 
data. 

The limitations of the model system approach become 
obvious when there are differences between plants. 
Organisms and their characteristics evolve, leading to 
shared similarities that vary across a near-infinite number 
of hierarchical levels. This is particularly true as more 
and more molecular geneticists concern themselves with 
mechanisms of development, and move closer to the 

systematist’s question-why are there so many different 
kinds of organisms? Studies of the evolution of develop- 
ment demand that the investigator go beyond the model 
system and learn the pattern of variation in its relatives 
[3*]. This requires a reasonable assessment of the relatives’ 
identity. 

Knowledge of plant relationships has increased rapidly 
in the past decade, reflecting partly the development 
of molecular systematics. It has been known for some 
time that plant classifications do not reflect phylogeny 
accurately, even though both phylogeny and classification 
are hierarchical. The hierarchy of classification was 
imposed in the late 18th century, well before ideas of 
descent with modification (evolution) were prevalent [4]. 
These pre-evolutionary groups were then re-interpreted in 
an evolutionary context, and were assumed to be products 
of evolution, rather than man-made artefacts. Thus, 
every named group represents an historic assumption of 
relationship that may or may not be accurate but these 
assumptions can now be tested. Data are accumulating 
that show, in some cases, historically recognized groups 
are indeed phylogenetically linked (monophyletic), and 
other ‘groups’ are quite miscellaneous and made up of 
unrelated elements (polyphyletic). In addition, taxa whose 
placement have been ambiguous can frequently now be 
placed. 

Molecular systematics proceeds by firstly sequencing a 
gene from multiple ‘organisms, secondly aligning the 
sequences, and thirdly by constructing a phylogenetic tree 
from the sequences. There are many methods that can 
be used to produce the tree; one of the most common 
is the so-called ‘parsimony method,’ which assumes that 
the best inference of evolutionary history is the one 
that requires postulating the fewest mutations (i.e., the 
shortest tree). The underlying principle is that scientists 
prefer explanations that best fit their data. Given the 
shortest tree, it is often desirable to assess how much 
evidence there is for particular groups. This too can be 
done in various ways; one commonly used quasistatistical 
method is bootstrap analysis. The nucleotide positions in 
the alignment are sampled randomly with replacement 
to generate a new ‘sequence’ and this is analyzed to 
produce a phylogenetic tree; the randomization procedure 
is repeated many times and the support for a particular 
group can be estimated as the percentage of randomised 
trees in which it occurs. Bootstrap values vary between 0 
(no support for a particular group) and 100% (a group well 
supported by the data). 

The phylogeny of sequences from multiple organisms is 
just that-a phylogeny of sequences, a tree of genes. 
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Phylogeneticists commonly assume that the phylogeny of 
sequences is a good approximation of the phylogeny of 
organisms. There are many cases when this may not be 
true, however. For example, if introgression occurs, then 
genes may find themselves in a nucleus different from 
the one in which they evolved. Similarly, chloroplasts, 
which are maternally inherited in most plants, may be 
transferred among species, so that a chloroplast may now 
share a cell with a nucleus quite different from the 
nucleus with which it had been associated historically. 
Such chloroplast transfer can be detected by comparison 
with the phylogeny of a nuclear gene. 

In this review, I focus on the major plant model 
systems -Arabidopsis thaliana, Antirrhum majus (snap- 
dragon), Lycopersicon esculentum (=Solanum lycopersicum; 
tomato), Zea mays (maize), and Oryza sativa (rice)- begin- 
ning with recent studies that identify their near relatives. I 
then comment briefly on progress in determining the ‘big 
picture’ of flowering plant evolution. I have highlighted 
particular studies that use multiple gene and genome 
comparisons to track the history of organisms. This tests 
the assumption that all pieces of DNA have similar 
histories. I have also focused on studies that include large 
numbers of taxa as these avoid errors associated with 
biased sampling of species. 

Maize, rice and the grass family 
Of all plant model organisms, the grasses (Poaceae or 
Gramineae) are the best understood phylogenetically. 
There are now seven published molecular phylogenies: 
five representing markers from the chloroplast [S-12], and 
two using nuclear markers [13*,14]. These phylogenies 
are strikingly congruent as can be seen in Figure 1 (see 
also [15”]). The lack of resolution in relationships among 
Bambusoideae, Oryzoideae, and Pooideae reflects strongly 
supported differences among the various gene trees, but 
this is almost certainly due to sampling problems in some 
data sets; some gene trees (e.g. the chloroplast-encoded 
gene for subunit F of NADH dehydrogenase [ndAF] and 
phytochrome B ~~JIB] [11,13’]) indicate that these three 
subfamilies form a single clade. This phylogeny shows that 
the panicoid grasses - maize, sugar cane, sorghum, pearl 
millet-are more closely related to finger millet than they 
are to rice. Furthermore, if thephj!B and ndhF phylogenies 
are accurate, the small grains-wheat, barley, rye, and 
oats, in the Pooideae-are more closely related to rice 
than they are to maize. 

Even at lower taxonomic levels, phylogenies of different 
genes all indicate the same relationships. Within the 
subfamily Pooideae, for example, there are four molecular 
phylogenies, all of which are congruent (Figure 2). This 
group was identified as monophyletic by cladistic studies 
of morphology [16], but several genera or small tribes, 
including the Stipeae, were sometimes placed with the 
pooids [17] and sometimes in other subfamilies [18]. 
Two of the molecular studies are based on chloroplasc 

DNA-restriction site polymorphisms [7] and sequences 
of ndhF [ 19’1 -and, as expected, give the same phylogeny 
because the chloroplast does not recombine and thus has 
a single history. The other two are based on nuclear 
genes encoding ITS [20], and phytochrome B ([13*]; SY 
Mathews, RC Tsai, EA Kellogg, unpublished data). These 
also support the placement of Stipeae. As all data from 
both nuclear and chloroplast genomes suggest the same 
relationships, the gene trees are probably good estimates 
of the organismal phylogeny. 

Within the pooid tribe Triticeae, the general congruence 
among gene trees is lost. This is a cytogenetically complex 
group, containing 17 intersterile diploid genera from 
which a number of allopolyploids are derived. For the 
diploid genera, we have five molecular phylogenies. The 
two chloroplast phylogenies, based on restriction site 
polymorphisms [21*] and sequences of the gene encoding 
RNA polymerase subunit A (goA) [22*], suggest the 
same history. The three nuclear gene trees, however, are 
significantly different, both from each other and from 
the chloroplast phylogeny ([23”,24**]; Figure 3). The 
explanation for this is not clear, but may involve a history 
of rare gene Aow among the genera, perhaps across 
different ploidal levels. The important point is that each 
gene has a distinct history, indicating that the organismic 
history is complex and reticulate and is better diagrammed 
as a network than as a tree. This might have been 
expected for a group of interfertile species or subspecies, 
but not for a group of intersterile genera. 

Tomato and snapdragon 
Tomato, generally classified as Lycopelsicon esculentum, is a 
member of the family Solanaceae; next to the grasses, this 
is the group for which we have the most comprehensive 
picture of relationships ([25*,26”,27”]; Figure 4). Note, 
however, that virtually all gene trees to date are based on 
chloroplast markers. We, therefore, make an assumption 
that the organismal phylogeny is tracked accurately by this 
single genome. 

The traditional genus Lycopersicon clearly represents a 
single lineage of seven species. It has been known for 
some time that Lycopersicon was closely related to the 
genus Solanum which, in its traditional circumscription, 
includes potatoes (8. tuberosum) and eggplant (S. mefongena) 
as well as -1400 other species. These are apportioned for 
convenience into seven subgenera each of which is in turn 
divided into sections [28,29]. Lycopersicon is most closely 
related to section Petota, subgenus Potatoe [26Dg,27**,30], 
which includes the familiar grocery store potato, as well 
as many other tuber-bearing species. As Lycopersicon is 
derived from within Solanum and does not represent a 
separate evolutionary line, its genetic relationships are 
more accurately reflected if it is considered a species 
of Solanum (S. fycopenicum) rather than an independent 
genus. If the name Lycopersicon were retained, it would 
imply that it is quite distinct from all other species of 
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Figure 1 
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Summary (combinable component analysis) of phylogenetic data on the grass family. Extant taxa are listed on the right of the diagram; points 
at which lines attach indicate hypothetical ancestors. Triangles indicate large groups and numbers refer to number of genera in the group. 
Joinvilleaceae is the sister family of the grasses; all other taxa are members of the Poaceae. If more than one line attaches to a particular 
ancestor it indicates that we do not know the order in which the lineages formed. For example, some evidence 111 ,13*1 suggests that there 
was a single branch that later divided into Bambusoideae, Otyzoideae and Pooideae, but this is not ye? well supported, so the relationship is 
drawn to indicate that we do not know the order in which the three lineages formed. The diagram synthesizes data from morphology [16,83,841; 
rbcL [5,8,9]; ndhF [l 11; chloroplast restriction sites [71; rpoC2 [6,10]; rps4 [12]; rRNA [141; phytochrome B ([131; SY Mathews, RC Tsai, EA 
Kellogg, unpublished data). If a group is found in a particular gene phylogeny, and is not strongly contradicted by any other gene phylogeny, an 
appropriately patterned rectangle is placed below the common ancestor of the group. For example, both ndhF and phytochrome B sequences 
link Streptochaeta and Anornochloa, as indicated by the two rectangles just below the pair of genera; no other gene has been sequenced for 
both genera. Reprinted with permission from [15”1. 

So/anum, whereas it is in fact more closely related to some 
members of Solanum than to others. 

The phylogeny of Solanaceae has obvious implications for 
the evolution of form. To consider a single example, many 
species of Solanum have compound leaves, as do species 
of Sc/lizant/lus, whereas other members of the family have 
simple leaves. The degree of leaf compounding in sect. 
Lycopelsicum is known to be affected by homeobox genes 
such as Let6 [31*]. Changes in the regulation of this gene 
may thus have been involved in the changes leading to the 
origin of compound leaves in the ancestor of Solarium. The 
phylogeny shows that leaf compounding in Sc/rizwnt/lus 
originated independently; it is, therefore, necessary to test 
whether it is genetically and developmentally the same. 

The Solanaceae is the sister family to the Convolvulaceae 
(morning glory family) and these, in turn, are closely 
related to the large group of families including the 
Lamiaceae (mints) and Scrophulariaceae (snapdragon 
family) [32,33*]. Both Lamiaceae and Scrophulariaceae 
are polyphylecic. Scrophulariaceae can be divided into 
two unrelated groups, one of which contains the genus 
ScropMaria (and thus must be called Scrophulariaceae) 
and the other of which contains Antivhinum, Digitalis 
(foxglove), and Veronica (speedwell) [32]. 

Arabidopsis 
Arabidopsis t/ra/iana is a member of the mustard family 
(Brassicaceae), a group for which there remains remarkably 
little phylogenetic information. This is in part because 
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Summary (combinable component analysis) of phylogenetic data on the grass subfamily Pooideae. An appropriately shaded rectangle marks any 
clade supported by particular sets of data and not strongly contradicted by any other set of data. Triangles indicate large clades and numbers 
refer to the number of genera. The overlapping triangles for Poeae and Aveneae indicate that tribal boundaries are unclear. Base chromosome 
numbers (x) for each clade are shown to the right of the diagram. Sources of data are as follows: morphological data [16,641; ndhF [19’1; 
fTS [20]; chloroplast restriction sites [7]; phytochrome B ([13-l; SY Mathews, RC Tsai, EA Kellogg unpublished data); granule-bound starch 
synthase (651. 

the existing classification of Brassicaceae, based largely 
on fruit structure, is proving to be a poor indicator of 
relationship. In other words, generic and tribal names 
do not indicate anything about evolutionary history. 
(An analogous situation in modern society would be 
if children were not given the family name of either 
parent but rather a name pulled at random from the 
‘phone book). Preliminary data from &CL [34]-the 
gene encoding the large subunit of the photosynthetic 
enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCo) - indicate that species in the genus Arabidopsis 
are not closely related to A. t/laliana and, conversely, 
that the closest relatives of A. t/ra/iana are in the genera 
Cardaminopsis and Arabis. 

This proposal was recently corroborated by sequences 
of the nuclear ITS which verified the allopolyploid 
Arabidopss sue&a as being the offspring of A. t/ra/iana and 
most likely Cardaminopsis arenosa, or possibly C. neglecta 
[35*]. C. petraea is also closely related to A. t/ra/iana and A. 
sue&a but is not involved in the allopolyploidization event. 
ITS sequences also verify the substantial evolutionary 
distance between A. t/ra/iana and other species currently 
classified in Arabidopsis. 

Molecular data have led to a new classification of 
Arabidopsis, which places Arabis [vrata and all species 

formerly known as Cardaminopsis into Arabidopsis [36*]. 
49 other species, formerly called Arabidopsis, are excluded 
from the genus, with several of them already placed 
elsewhere (e.g. [37-391). Molecular phylogenies for a 
newly circumscribed genus Arabidopsis are forthcoming 
(RA Price, S O’Kane, personal communication). 

The one tribe of Brassicaceae that does appear to be 
monophyletic is Brassiceae [34]. Restriction site data have 
been used to reconstruct the history of the chloroplast 
genome in Brassiceae [40”]. If the history of the 
chloroplast mirrors the history of the organism, then the 
genus Bra&a is polyphyletic, with the species B. oleracea 
(cabbage, brussels sprouts, broccoli, etc.) and several other 
Bra&a species closely related to the genus Diplotaxis, 
whereas radish (Rap/zanus sativus) is related to B. barrefieti 
and B. oxy&ina. 

The Brassicaceae is a member of the glucosinolate clade 
of angiosperms (see below), members of which produce 
mustard oils in specialized myrosinase cells. Data from 
both &CL [41] and from 1% rRNA indicate the same 
relationships among these families [42], confirming, among 
other things, that Brassicaceae is sister to or derived 
from within the Capparaceae (capers), as had long been 
suspected by morphological systematists. 
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Figure 3 
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Evolutionary relationships in the grass tribe Triticeae. Relationships identified on the basis of three nuclear genes are shown on the left, and 
relationships identified on the basis of the chloroplast genome are on the right. Crossed lines indicate that there are many differences between 
the chloroplast and nuclear gene phylogenies. The differences among the various sources of phylogenetic data may indicate a history of 
introgression. Dotted lines indicate well-supported differences among the nuclear genes. Numbers above branches indicate bootstrap support 
values. Redrawn from [23”]. 

Relationships among flowering plants 
Systematists have grappled for a long time with the 
relationships among flowering plant families [43-47]. The 
system of Cronquist [47] is perhaps the most familiar 
to American botanists, and has the advantage of being 
comprehensive. It is not at all phylogenetic, however, and 
many relationships are ambiguous. Molecular systematic 
data have now overturned many of the proposed higher- 
level (ordinal and superordinal) groups. 

Many plant systematists were involved in a community- 
wide effort to generate a large database of sequences of 
&CL, the gene encoding the large subunit of the pho- 
tosynthetic enzyme ribulose-1,5-bisphosphate carboxy- 
lase/oxygenase (RuBisCO). This led to a phylogeny for 
all seed plants, using 499 &CL sequences [48]. As the 
authors observed, the results should be interpreted with 
caution. The published trees turned out not to be the 
shortest available [49*], and a few of the sequences proved 
to be pseudogenes [50’]. Nonetheless, the &CL phylogeny 
is taken as the starting point for many current research 
projects. 

Another large co-operative effort, analogous to that used 
for &CL, has recently generated a large database of 
sequences for the small subunit of nuclear ribosomal RNA 

(18s rRNA; [51**]). This study helps test some of the 
tentative conclusions of the original &CL study. In broad 
outline, phylogenies_of the two genes find similar groups 
among angiosperms. Additional data have been generated 
for the gene atpB (a chloroplast gene encoding the subunit 
B of ATP synthase), and these data have been combined 
with those from &L and 18s rRNA [52”,53**]. From 
the combination of these data sets, a number of robust 
conclusions emerge. 

Many aspects of the rbcL, 18S, and atpB trees sup- 
port ideas that had already been formed on the basis 
of morphology. For example, the Caryophillidae -the 
group including spinach, beets, cacti, and campion-are 
monophyletic. The Asteridae, a group that includes many 
of the plants with fused petals -such as Antin-hum, 
Petunia, Nicotiana, and Solanum - are also monophyletic. 
The groups that Cronquist [47] called the Rosidae 
and the Dilleniidae are largely intermingled, as had 
been suspected. The well-known family pairs (e.g. As- 
clepiadaceae/Apocynaceae, Araliaceae/Umbelliferae, Labi- 
atae/Verbenaceae [54]) are supported as being close rela- 
tives by molecular data: Asclepiadaceae are derived from 
within Apocynaceae; Araliaceae and Umbelliferae may be 
sisters; and Labiatae and Verbenaceae are polyphyletic. 
Families such as Saxifragaceae (saxifrages, gooseberries, 
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Figure 4 
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Phylogenetic relationships in Solanaceae. The diagram was produced 
by grafting the ndhF [26”] and chloroplast restriction site (cpRFLP; 
[27”1) histories (above the arrow) to a chloroplast history inferred 
from a combination of three genes ([85]; below the arrow). Above the 
arrow, an appropriately shaded rectangle marks any clade supported 
by one set of data and not strongly contradicted by the other. Below 
the arrow, clades with bootstrap support greater than 90% in the 
combined phylogeny are indicated by two asterisks: clades with 
80-90% support are indicated by a single asterisk. 

and hydrangeas) and Caprifoliaceae (honeysuckles) appear 
polyphyletic, as had also been suspected. The_ eudicot 
clade, first identified in morphological studies [SS] as 
including all taxa with tricoplate (three-grooved) pollen, is 
supported as monophyletic, as are the monocots. 

In other cases, the molecular data support relationships 
that previously appeared ambiguous. For example, the 
Ericaceae (health family, including rhododendron, blue- 
berries, and cranberries) were placed by 19th century 
botanists with other fused-petal families (the Sympetalae 
[56] or Gamopetalae [57]), but systematists of the 20th 
century thought the groups were unrelated [43-47]. The 
&CL, 18S, and atpB data support the placement of an 
Ericalean clade in a larger clade with the Asteridae, 
reuniting much (but not all) of the Englerian Sympetalae. 
As another example, Juglandaceae (walnuts) are clearly 
placed with Betulaceae and Fagaceae (birches and oaks, 
respectively), despite Cronquist’s suggestion [47] that the 
two groups might be unrelated. 

Finally, there are a few cases in which the molecular data 
suggest something that is quite surprising and entirely 
unexpected. The polyphyly of the Scrophulariaceae was 
noted above. Another striking example is the fact that 
the nine families with nitrogen-fixing members fall into 
a single large clade, along with only ten families that are 
not nitrogen-fixing [58]. As the nitrogen-fixing families had 
previously appeared to be completely unrelated, this is 
unusual and suggests that these families may have more 
in common than was formerly believed. 

The congruence among the 18S, &CL), and atpB phy- 
logenies has made it clear that the existing systems of 
classification [43-47] need to be replaced. In particular, 
the relationships among families need to be rearranged 
to reflect the phylogenetic history, some families need to 
be dismembered, and others reconstituted. Our picture 
of the evolution of flowering plants is still coming into 
focus and further changes will undoubtedly be necessary. 
Fortunately, the technology of the World Wide Web has 
permitted the construction of Web Sites that provide 
classifications [59] and descriptions of families and orders 
(PF Stevens, unpublished data). These place extensive 
morphological data in the phylogenetic framework pro- 
vided by molecular studies. 

Do gene trees indicate species trees? 
With the exception of the grass phylogenies, most 
molecular systematic studies focus on either chloroplast 
genes or nuclear ribosomal DNA. In general, they indicate 
similar relationships among organisms, suggesting that, 
indeed, the gene chosen does not matter much. For 
very large data sets (hundreds of taxa), however, more 
base pairs are needed to identify each branching event 
[53,60*]. Work on low copy number genes is in its infancy 
in plant molecular systematics, and no nuclear gene has 
yet been used across enough groups to provide a clear 
comparison with chloroplast or ribosomal data. Other 
nuclear genes that are good candidates for phylogeny 
reconstruction are the phytochrome genes [13*,61], the 
small heat-shock proteins [62*], alcohol dehydrogenase 
(Adh) [63*,64’], granule-bound starch synthase [65], and 
phosphoglucoisomerase [66*]. In all cases, the history of 
the gene may or may not be a faithful reflection of 
the history of the cell in which it resides. Functional 
constraints, natural selection, and random genetic drift, can 
under certain circumstances, cause the phylogeny of the 
gene to differ from that of other genes in the same nucleus 
or cell. Only by comparison of multiple genes will we be 
able to discern the history of the organisms that bear them. 

Among closely related species or genera, many studies 
find discrepancies among different gene histories, even if 
plants are apparently intersterile. The case of the Triticeae 
[‘23”,24”] may be the most striking example of this at 
present, although we have more data on this than on 
any other similar group so we don’t really know how 
typical it is. If this pattern of discordance is at all general, 
however, it suggests that any single gene tree may be 
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quite misleading about the history of organisms. It is not 
uncommon to find that the history of the chloroplast differs 
from that of the nucleus in one or more taxa [67-70,71”]. 
Few studies incorporate sequence data on more than one 
nuclear marker, however; a notable exception is the study 
of relationships among species of peony, in which genes for 
A&l estimated relationships similar to those from ITS and 
the chloroplast gene matK [64’]; Adz2 gene trees, however, 
had a significantly different history. 

Phylogeny and genome evolution 
Phylogenies will be critical to the interpretation of the 
burgeoning data on genome structure and size, because 
only with a phylogeny is it possible to determine the 
direction and frequency of change. In a standard genetic 
study, it is easy to keep track of which plants are mutant 
and which are wild-type, but over evolutionary time the 
only way to know which are the ‘mutants’ (i.e. derived) 
is to have a phylogeny. For example, with the grass 
phylogeny shown in Figure 1, it is possible to infer that 
there exists some mechanism for replacing the centromeric 
region of one chromosome with an entirely different 
chromosome and its centromere, such that two ancestral 
chromosomes are combined by inserting one into the other 
[15”]. A phylogeny can also be used to show that changes 
in genome size are frequent, even among groups such as 
the grasses in which genome structure is largely conserved 
[ 15”,72’]. 

Bharathan used phylogenetic data to study correlates of 
genome size with reproductive characteristics of monocots 
[73”]. She found four to nine independent transitions to 
large genomes (which she defined as those with more than 
9.025 pg DNA per 1C nucleus) and up to five reversions to 
small .genomes. She found no strong association between 
genome size and the presence of nuclear endosperm or 
the presence of simultaneous microsporogenesis, but did 
find that genomes were significantly larger in families 
with bisporic or tetrasporic embryo sacs. Her study 
relied extensively on available molecular phylogenies, and 
indeed would not have been possible without them. 

Conclusions 
As a consequence of space limitation, this review cannot 
incorporate the many methodological advances that have 
led to the data cited above. Computational advances have 
made it possible to analyze data sets that are an order 
of magnitude larger than was possible a decade ago (e.g. 
[49*,74**]). It is also increasingly possible to assess support 
for the data sets [74**,75]. This is critical as assessment 
of support is necessary for accurate comparison of gene 
trees [24*‘,71**]. There has also been much discussion 
of the relationship between gene trees and species trees 
[76*,77*] and the methods of incorporating information 
from different gene trees (24*~,71**,78-82]. 

Relationships among major groups of grasses are now 
known with some precision, although the history is 

complex in the Triticeae (which includes wheat, barley and 
rye). Rapid progress is occurring on relationships within 
Solanaceae and other sympetalous families, although 
we must still assume that the chloroplast phylogeny 
is an accurate reflection of the organismal phylogeny. 
Understanding of the phylogeny of Brassicaceae lags 
behind that of other groups. This is partly because the 
morphological classification is so radically different from 
the molecular phylogeny that it is impossible to use any 
one species as a place-holder for a genus or tribe, as can 
be done in the grasses or Solanaceae; each species must 
be re-evaluated individually. Finally, our understanding 
of angiosperm relationships is being revolutionized by 
molecular data. It is too early to know what new insights 
will come from these data but they are likely to be 
profound. 

We can now envisage a time in the near future when 
robust phylogenies will have been constructed for many 
angiosperm groups. This will permit an entirely new 
discipline-let us call it “evolutionary genetics” -to test 
the generality of the model systems, and use comparative 
data to understand the genetic basis of diversification. 
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