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Summary

We resolve the question as to when an asymptotically almost periodic function with values in
a Banach space has an asymptotically almost periodic integral. Further, we characterize the weakly
relatively compact sets in spaces of vector valued continuous functions and use the resulting
criteria to investigate the relationship between weak almost periodicity in the sense of Eberlein and
the parallel notion utilized by Amerio in his approach to extending the classical Bohl-Bohr
integration theorem. One consequence is the discovery of an unexpected connection between
Eberlein weak almost periodicity and the asymptotic almost periodicity of integrals. We also apply
our methods to investigate periodicity properties inherited by integrals of functions which are only
asymptotically almost periodic in a weak sense.






0. Introduction

The Bohr—Neugebauer theorem (cf. [21]), for example, addresses a prob-
lem of longstanding interest in the theory of differential equations by providing
an instance in which asymptotic behavior of solutions can be predicted from
corresponding properties inherent in the equation; namely, in the case of an
ordinary linear differential equation

(02) Y ay¥0=1@), teR,
k=0

with constant coefficients, if f is a scalar valued almost periodic function, then
every bounded solution of (0.a) is also almost periodic. Indeed, this general
problem has been treated with notable success in the context of almost periodic
equations, and we refer to the monographs [1] and [21] for a wealth of
information on the subject. The key to these developments, however, is a result
which resolves an extremely basic form of the general question — the classical
Bohl-Bohr integration theorem (cf. [21]) asserts that the indefinite integral
F(@t)= _[:, f(u)du of a complex valued almost periodic function f defined on
R will as well be almost periodic on R whenever F is bounded.

Although many results concerning scalar almost periodic functions can be
directly carried over to the case of almost periodic functions taking values in an
arbitrary Banach space X, the Bohl-Bohr theorem is not among them (cf. [1, p.
53]). Nonetheless, L. Amerio (cf. [1]) has shown that a verbatim version of this
important result does hold in case the Banach space X is uniformly convex,
while M.I. Kadets [18] has subsequently given the best possible extension by
showing that the Bohl-Bohr—Amerio theorem remains valid as long as X does
not contain an isomorphic copy of c, These results, in turn, have led to
a development for almost periodic equations in Banach spaces which parallels
that in the scalar case, and we again refer to [1] and [21] for details.

The basic question resolved by Kadets’ generalized Bohl-Bohr theorem
has a natural counterpart in the context imposed by equations describing only
a forward evolution in time. In particular, when attention is restricted to
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6 Integration of asymptotically almost periodic functions

a given halfline J, = [a, ), ae R, the part of the almost periodic functions on
R with values in a Banach space X is taken by the space A4AP(J,, X) of all
X-valued asymptotically almost periodic functions defined on J, (cf. [12], [13]
"and [25], [26]), and the question becomes the following:

t
(0.b) Forfe AAP(J,, X) and F(t) = | f(u)du, teJ,, under what conditions
is it true that Fe AAP(J,, X)?

A partial response to the problem in this setting has been given by M. Fréchet
[12], [13], who established a form of Bohl-Bohr theorem for asymptotically
almost periodic functions with finite dimensional range, but (0.b) has remained
otherwise unsettled. Our work in the sequel provides a complete solution.

In the course of our investigation, we were led to consider a weak notion
of asymptotic almost periodicity which is directly related to a concept
originally introduced by W.F. Eberlein [10] in the context of scalar’ valued
continuous functions on abelian locally compact topological groups. To be
more precise, taking C,(J,, X) to denote the space of bounded continuous
functions from a halfline J, into a Banach space X and assuming that
Cy(J,, X) is equipped with the topology of uniform convergence, the idea that
entered the picture involves those fe C,(J,, X) such that the corresponding set
H*(f)={f,: @eR"*} of translates is weakly relatively compact in C,(J,, X),
and this view of weak almost periodicity brought us to the problem of
developing suitable characterizations of weak relative compactness in spaces of
vector valued continuous functions. The criteria that evolved have been
instrumental in our subsequent discovery of an unexpected connection between
weak almost periodicity in the sense of Eberlein and the asymptotic almost
periodicity of integrals, as well as in treating other questions which have arisen
at various stages along the way.

Although from a different perspective, the idea of characterizing weak
compactness in the setting of vector valued functions had first suggested itself
in connection with our work in [25] to extend the classical Arzeli—Ascoli
theorem. There, for reasons which equally apply to the question of weak
compactness, we choose to develop our characterizations of precompact sets
within the framework provided by spaces of vector valued continuous
functions with topologies induced by weighted analogues of the supremum
norm, and we now take a parallel path in our approach to the problem at
hand. Following a brief preliminary section in which we set the context for our
study of weak compactness, we begin in Section 2 by establishing our general
criteria. In Section 3, the focus is on weak asymptotic almost periodicity, and
we take advantage of our work in the preceding section to develop criteria and
collect examples which we will require for our subsequent discussion of
integrals. Moreover, addressing a question raised in [25], we shed some light
on the distinction between weak almost periodicity in the sense of Eberlein
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and a second widely studied concept of weak almost periodicity (cf. [1]) which
Amerio had utilized in his approach to the almost periodic version of (0.b). The
fourth and final section then centers on our solution of (0.b), but we also apply
our methods to investigate related questions about integrals of functions which
are only asymptotically almost periodic in a weak sense.

Some of the results of this paper have been announced in [27].

1. Preliminaries

A detailed discussion of the setting in which we shall develop our
characterizations of the weakly relatively compact sets can be found in our
earlier treatise [25] on compactness and asymptotic almost periedicity. Here,
consequently, we only pause to set the notation and recall some requisite ideas.

Throughout the remainder of the article, we let T denote a completely
regular Hausdorff space. A nonnegative upper semicontinuous function on
T will be called a weight (on T). If V is a set of weights on T such that, given
any te T, there is some ve V for which v(t) > 0, we write V> 0. A set V of
weights on T is said to be directed upward provided that, for every pair
v,, v,€V and each 1 > 0, there exists ve V so that Av; < v (pointwise on T) for
i =1, 2. Since there is no loss of generality, we hereafter assume that sets of
weights are directed upward; a set ¥ of weights on T which additionally
satisfies V> 0 will be referred to as a system of weights on T.

The phrase “locally convex space” will henceforth be taken to mean
a Hausdorff locally convex topological vector space over K € {R, C}; there will
be fio loss of generality in tacitly assuming that K = C. Further, the set of all
continuous seminorms on a locally convex space X will be denoted by cs(X),
while we write C(T; X) to indicate the collection of all continuous functions
from T into X. Now, taking a system V of weights on T and a locally convex
space X, we consider the following vector spaces (over K) of continuous
functions associated ‘with the triple (T, ¥, X):

CVo(T, X) = {feC(T;, X): of vanishes at infinity on T for all veV};
CV,(T, X) = {feC(T; X): of (T) is precompact in X for all veV};
CV(T, X) = {feC(T; X): vf (T) is bounded in X for all veV}.

Obviously, CV,(T, X) € CV,(T, X), while the upper semicontinuity of the
weights yields that CV,(T, X) € CV,(T, X). Thus, if for each ve ¥, gecs(X), and

feC(T, X), we put
Pog(f) = sup {v(t)a(f (¥)): te T},

then p,, can be regarded as a seminorm on either CV (T, X), CV,(T, X), or
CVo(T, X);, we assume that each of these three spaces is equipped with the
Hausdorff locally convex topology induced by {p,,: veV, gecs(X)}.
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In case X = K, we will omit X from our notation and write, say, CV,(T) in
place of CV,y(T, K); we also then put p, = p,, for each ve ¥, where q(z) = |z,
ze K. Similarly, if X = (X, g) is any normed space and v ¥, we write p, instead
of p, .. As a matter of further notational convenience, given ve V and g€ cs(X),
the closed unit ball corresponding to the seminorm p, g in either CVy(T, X),
CV,(T, X), or CV,(T; X) will be denoted by B, ,, or simply B, in case X = (X, q)
is a normed space; this ambiguity should occasion no difficulty since the setting
under consideration will always be clear from context.

Aside from examples that arise in response to special considerations such
as those inherent in the dynamics of age dependent populations (cf. [34]), many
standard spaces of continuous functions can be realized in the format set forth
above, and we shall here list certain instances for future references. To this end,
given a completely regular Hausdorff space T, and writing I to designate the
characteristic function of a subset F of T, we distinguish three systems of
weights on T: namely,

N =X(T)={Alx: A>0, K= T, K compact}, 1=I1(T)={Al;: A>0},

and the system U = U(T) consisting of all weights on T which vanish at
infinity, Further, given a locally convex space X, we put

Co(T, X) ={feC(T, X): f vanishes at infinity on T},
C,(T X)={feC(T, X): f(T) is precompact in X},
Co(T, X) = {f€C(T, X): f(T) is bounded in X}.

ExaMpPLE 1.1. For any pair (T, X) consisting of a completely regular
Hausdorff space T and a locally convex space X,

(1.a) CH o(T; X) = CX (T, X) = CH(T, X) = (C(T, X), %),
where x denotes the compact-open topology;
(Lb)  CU(T; X) = CU,(T, X) = CU,(T; X) = (C,(T; X), B).

where B, denotes the substrict topology (cf. [11]);
C1(T; X) = (Co(T; X), ¥)CL(T; X) = (C,(T; X), v),
CI(T, X) = (Cb(7; X), V),
where we use v in each case to denote the topology of uniform convergence on T,

(1.c)

The use of functional analytic techniques to link the vector and scalar
cases is an important fagtor in our study of compactness, and the idea on which
we base this aspect of our approach follows from a linearization principle for
vector valued functions that is incorporated into the notion of e-product (in the
sense of L. Schwartz [29], [30]). In our context, the question of e-product
representation has been considered by K.-D. Bierstedt [3]. Before stating
Bierstedt’s result in this direction, however, we first present one additional item
of terminology.
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A completely regular Hausdorff space T is said to be a Vg-space with
respect to a given system V of weights on T if a function f: T— R is necessarily
continuous whenever, for each veV, the restriction of f to {teT: v(t) = 1} is
continuous. This requirement on a pair (7, V) can essentially be construed as
a condition for the completeness of CV,(T) (cf. [15]), and we note in passing
that it is a relatively modest restriction. Indeed, if V = % (T), the only
requirement is that T be a kg-space (in the language of H. Buchwalter), which
certainly holds, say, when T is locally compact, while no restriction whatsoever
is imposed on T in case V = I(T).

THEOREM 1.2. (Bierstedt [3, p. 39]). Let V be a system of weights on
a completely regular Hausdorff space T, and assume that X is a quasicomplete
locally convex space. If T is a Vg-space, then

CVo(T, X) = XeCVy(T) and  CV,(T, X) = XeCV,(T).

2. Weak compactness

In developing our criteria for weak relative compactness, we impose the
same standing hypothesis under which we established our results of Arzeld
—Ascoli type in [25]-—-viz,

(2.a) T is a completely regular Hausdorff space, ¥ is a system of weights
on T, and T is a Vg-space such that, for each te T, there exists
L,eCV,y(T) with f,(t) #0;
these basic assumptions will be in force throughout the present section. Also,
given veV, let us put N(v) = {teT: v(t) > 0}.

The point of departure for our work is the classical result due to
A.Grothendieck [16] in which he.characterizes the weakly relatively compact
subsets of C1,(T) =(Cy(T), v) in terms of the interchangeable double limits
condition. From the lead set in [25], we expected from the outset that this
criterion should carry over to spaces of type CV,(T, X). However, since weakly
asymptotically almost periodic functions with precompact range are already
asymptotically almost periodic [25, Theorem 3.6], something more was
required for the applications we had in mind. We now proceed to show that
Grothendieck’s interchangeable double limits characterization can be extended
to the class of spaces of type CV, (T, X).

THEOREM 2.1. Let X be a quasicomplete locally convex space. A subset H of
CV(T, X) is then weakly relatively compact if and only if H is bounded in
CV,(T, X) and the following interchangeable double limits property holds for
every ve V and each q in a given generating family & of continuous seminorms on
X: for all sequences (h,) in H, (t,) in N(v), and (x,) in ext(By),

limlim v(t,) b, (t,), x;> = imlim {v(,)h,(t,), x>

m n n m

whenever both iterated limits exist.
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Remark. As the proof will show, the part of ext(B;) can be taken by any
subset A of B having the property that its a(X’, X)-closed absolutely convex
hull coincides with Bj. (Of course, following our convention for denoting the
unit ball associated with a seminorm, B, = {xeX: g(x) € 1}, while ext(Bj)
denotes the set of extreme points of the polar of B, in X')

Proof. We shall reduce the general case to the classical situation treated
by Grothendieck. To this end, for veV and qe ¥, let us equip ext(By) and
E, = {v(t)d,: te N(v)} with the topologies induced by the weak-star topology
a(X', X) and the strong topology B(CV,(TY, CV,(T)), respectively. Next, given
feCV,(T, X), consider the corresponding function f, ,: E, xexp(Bg)—K de-
fined by f, . (v(£)8,, x') = <v() f (t), x'>. The fact that {x'of: x'e Bj} is a bound-
ed subset of CV,(T) readily yields that f, e C,(E, x ext(B3)). Moreover,

I foall = sup{|fua(v(®)é,, X')|: teN(1), x' eext(B)}
< sup{[<v(8) (), xD|: te T, x' € Bg} = p,q(f).
If || fyqll < Poo(f), there would exist (¢, y)e N(v) x By such that

(2.b) I<o(e) £ (&), XD < [ £l < <00 f@), ¥

for all x'eext(B;). However, since the inequality (2.b) would then hold as well
for all x’ belonging to the o(X’, X)-closed absolutely convex hull of ext(By), this
would stand in contradiction to the Krein—-Milman theorem, and so we
conclude that | f, |l = p,q(f). Setting @(f)(v, q) =1, for fe CV (T, X), vel,
and qe &, the map )

®: CV,(T, X)-> I {C1,(E, x ext(B)): veV, qe¥}

is thus a topological linear embedding. Consequently, because the quasicom-
pleteness of X implies that CV, (T, X) is quasicomplete,-a bounded subset H of
CV,(T, X) will be weakly relatively compact if, and only if, @(H)(v, q) is weakly
relatively compact in CI,(E, x ext(Bg)) for each (v, )€ Vx &, and the desired
equivalence is now immediate from [16, Théoréme 6].

Although the interchangeable double limits condition specified in The-
orem 2.1 may not appear too tractable at first sight, we will demonstrate in the
subsequent sections that this criterion can indeed be used to advantage as
a tool for investigating vector valued weakly almost periodic functions in the
sense of Eberlein [10]. Furthermore, keeping in mind the classical case of
C1,(T), there is not much hope for finding a more amenable characterization
even in the setting provided by spaces of type CV,(T, X). For spaces of type
CV,(T, X), however, we can give an alternative description of the weakly
relatively compact subsets in terms of pointwise-weak relative compactness,
and we now proceed to do this in the following extension of another classical
result due to Grothendieck [16, Théoréme 5]. As a matter of notational
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convenience in what follows, when given a generating family & of continuous
seminorms on a locally convex space X, we will let e, (X) denote the topology
of pointwise convergence on U {ext(B3): g &}.

THEOREM 2.2. Let X be a quasicomplete locally convex space. Then the
following are equivalent for a subset H of CV,(T, X):
1. H is weakly relatively compact in CVy(T, X);
2. (i) H is bounded in CVy(T, X), and
(ii) given a generating family & of continuous seminorms on X, H is
pointwise — ey (X) relatively countably compact in CVy(T, X);
3. (i) H is bounded in CV,(T, X),
(i) for every te T, H(t) is weakly relatively compact in X (equivalently,
e, (X) relatively countably compact for any generating family & of continuous
seminorms on X), and
(iif) if f: ToX is the pointwise-weak limit of a net in H, then
FECVy(T, X).
The proof of Theorem 2.2 will be divided into several steps, and we begin
by noting the recent result by J. Bourgain and M. Talagrand [5, Théoréme 1]
in which the weak compactness of any bounded subset of a Banach space is
equated with countable compactness relative to the topology of simple
convergence on the extreme points of the dual unit ball. In the obvious way,
this result can be extended to show that a bounded subset of any quasicom-
plete locally convex space X is weakly relatively compact if, and only if, it is
e,(X) relatively countably compact for an arbitrary generating family % of
continuous seminorms on X, and so the task at hand is to suitably characterize
the extreme points of the sets (B, ,)° in CV,(T, X) for all ve V and ge cs(X).

THEOREM 2.3. Let X be a quasicomplete locally convex space. If veV,
qecs(X), and B, , is the corresponding neighborhood of zero in CVy(T, X), then

ext(B;, ) = {v(t)6,®x": teN(v), X' eext(By)}.

To prove 2.3, since CV,(T, X) = XeCV,(T) by Theorem 1.2, [24, Theorem
2.2] applies to give us that

ext(B; ) = ext(B,)®ext(By).

The problem is thus reduced to a corresponding one for the scalar case, and the
following lemma will serve to complete the argument.

LemMMA 24. For veV, if B, is the corresponding zero neighborhood in
CVy(T), then

(i) ext(Bg) = {av(t)d,: teN(v), aeK with |a| = 1}, and

(i) E, = {aw(t)d,: te N(v), aeK with |o| <1} is weak-star compact in
CV,(T).

Remark. The representation 2.4 (i) includes the well-known charac-
terization of the extreme points in the unit ball of C1,(T) which R.F. Arens and
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J.L. Kelley [2] established in the case that T is compact. For comparison of
2.4(i) with more recent special cases, we refer to [32, p. 329] and [15, p. 157].

Proof of Lemma 24. Given teN(v), if ¢€(0, 1), then it is an easy
consequence of [22, Lemma 2, p. 69] that there is a function f,e CV,(T) such
that f,(T) = R*,f,e B,, and 1 —¢& < v(t) f (t) < 1. Using this fact, and noting that
every ge CV,(T) then has the form g = h+g(£)[ /()" f,] where he CV,(T) with
h(t) = 0, one can readily adapt the argument in the appropriate direction from
the proof of the classical Arens—Kelley result as given by G. Kdthe [19, p. 334]
to show that the functional av(r)d, e ext(B;) whenever te N(v) and aeK with
|| = 1. For the reverse inclusion, as well as to verify (ii), let T; denote Twith the
discrete topology, equip C(8T,) with the topology induced by the supremum
norm, and consider the continuous linear map [,: CVy(T)— C(BT,) defined by

L= vf where /vj\'is the (unique) continuous extension of uf from T, to the
Stone-Cech compactification BT,,. If we let B, denote the closed unit ball in the
normed space C(8T)), then I, 1(B,)= B, whence Bj = I,(B}), and therefore
ext(Bg) € {I,(ad,): pefTy, lof =1} (cf. [19, pp. 333-334]); we claim that
{I.@d)): peBT, |o| <1} < E, To see this, consider pefT\T such that
1,(8,) # 0. Choosing fe CVy(T) with 1,(f)(p) # 0, put

K= {seT: v@)f () = 3,(NG)}.

Next, taking a net (t,) in T which converges to p in BT, we note that (¢)) is
eventually in the compact set K since v(t,) f(t,) = I,(f)(t,) converges to I,(f)(p),
and therefore (t,) clusters to some ¢ € K. It thus follows that te N(v) and, given
any ge CVy(T), because v|g| is upper semicontinuous,

g, LG DI = 1L(9)@)| < v(@lg(6)l = Kg, v(t)5).

But this implies (cf. [17, p. 186]) that there is some aeK such that
1,(6,) = av(t)d,, as well as that |af < 1, which serves to establish our claim.
(Indeed, ae(0, 1], and we would even have that « = 1 in case v|K e C(K).)
Having now shown that

{av(t)d,: teN(v), |« = 1} S ext(B}) < E,,

we immediately conclude that (i) holds since a functional av(t)$, from E, clearly
fails to be an extreme point of B; whenever |a] < 1. Moreover, we have that E,
is the image under [, of {ad,: pe T, || < 1}, which means that (ii) must also
hold since this latter set is homeomorphic to {aeK: |o| < 1} x T, and so the
proof is complete. =

Remark. In the setting of Lemma 2.4, if v|N(v) happens to be continuous,
then the above argument shows that both ext(B))u{0} and
{v()d,: teN(v)}U{0} would also be weak-star compact subsets of CV,(TY.

At this point, in order to prove Theorem 2.2, we need only fit together the
collected pieces.
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Proof of Theorem 2.2. The equivalence of 1 and 2 follows from
Theorem 2.3 and the aforementioned extension of the Bourgain-Talagrand
result. Since 1 clearly implies 3, it will be enough to show that 3 implies 2. To
this end, assuming that 3 holds, let us fix a net (h,) in H. As follows from 3(ii),
there is a subnet of (h;,) which is ‘pointwise-weak convergent to a function
f: T—X. But then, according to 3(iii), fe CVy(T, X) whereby H is a point-
wise-weak relatively compact subset of CV,(T; X) so that 2(ii) holds, and this
serves to conclude the argument. =

Some aspects of Theorem 2.2 have been considered in [8]. There, for
example, it was shown that a bounded sequence in CV (T; X) is weakly
convergent to a function fe CV,y(T, X) if, and only if, f is the pointwise-weak
limit of the sequence [8, Theorem 4.2]. Moreover, the equivalence of conditions
1 and 3 from 2.2 was established in certain special cases [8, Theorem 4.3].

In bringing this section to a close, we pause to note one immediate
application of Theorem 2.2. When T is compact, C(T) = C1,(T) is reflexive
only if T is finite, and direct analogues of this standard fact have also been
established in the settings of the compact-open and strict topologies by S.
Warner [33] and H.S. Collins [7], respectively. By combining Theorem 2.2
with our characterization of the precompact sets in spaces of type CVy(T, X)
[25, Theorem 2.1], we can extend these results to any space of type CV,(T) in
the general class presently under consideration.

THEOREM 2.5, The following are equivalent:
1. CV,(T) is a semi-Montel space,
2. CVy(T) is semireflexive;
3. (i) T is discrete, and
(ii) if H is any bounded subset of CV,(T), then vH vanishes at infinity on
T for every veV.

Proof. Assume that CV,(T) is semireflexive. Fixing te7T, let % denote
a neighborhood base at ¢, and take fe CV,(T) with f(t) = 1. Next, for each
Ue4, choose ¢, eCy(T) such that 0 < ¢, < 1, ¢dy(t) =1, and ¢,(T\U) = 0.
Since CV,(T) is a module over C,(T), H = {¢,: Ue} = CV,(T). Moreover,
since H is clearly bounded in CV,(T), H is weakly relatively compact. Now, it is
obvious that the net (¢,f), converges pointwise on T to the characteristic
function I, of the singleton {t}, and thus, according to Theorem 2.2,
1,€ CV,(T) whereby {t} is open in T; i, T is necessarily discrete. At this
point, let us suppose that 3(ii) fails to hold. This being the case, there exists
veV, an infinite sequence (¢,) in T, and a bounded sequence (f,) in CV,(T) such
that o(t)|f,(t)] = 1 for each keN. Setting h(t) =f,(t), k€N, and putting
h(t) = 0 when te T\{t,: ke N}, let h, denote the (pointwise) product of h and
the characteristic function of the set {t;: j=1,..., k}fork =1, 2,... Since T is
discrete and each h, has compact support, (h,) is a sequence in CV,(T). Further,
this sequence is obviously bounded in CV,(T), as well as pointwise convergent
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on T to the function h. Another application of Theorem 2.2 thus yields that
heCV,(T), which means that F = {teT: v(t)h(t) > 1} must be compact.
However, sincé {t,: ke N} = F, we have reached a contradiction, whereby
3 does indeed follow from 2. The fact that 3 implies 1 is an immediate
consequence of [25, Theorem 2.1], and this certainly suffices to conclude the
demonstration. =

At least when T is a kg-space, Theorem 2.5 contains the above mentioned
result due to Warner [33, p. 274] since condition 3(ii) of Theorem 2.5 is trivially
satisfied in case ¥ = X (T). Similarly, since the §,-bounded subsets of C,(T) are
uniformly bounded (cf. [31, p. 320]), 3(ii) is likewise readily seen to hold when
V=U(T) so that the corresponding result by Collins [7, p. 365] for the strict
topology is also an immediate corollary of Theorem 2.5.

3. Weakly asymptotically almost periodic functions

Throughout the present section, we assume that X is a Banach space,
while we write J, to designate the subinterval [a, o) of R corresponding to an
arbitrary element a € R. Further, let us recollect that a subset P of R is said to
be relatively dense in R whenever there exists I > 0 such that [t, t+IJnP # O
for each teR; the relative density of a set P in a halfline J, is defined in
a completely analogous manner.

A function fe C(R, X) is termed almost periodic (a.p.) if, given any & > 0,
there exists a relatively dense set P = P(¢) in R such that || f(t+1)—f ()]l <&
for each Te P and every teR. Similarly, a function fe C(J,, X) is said to be
asymptotically almost periodic (a.a.p.) if, given ¢ > 0, there exist M = M(s) > a
and a relatively dense set P = P (¢) in J,, such that || f(t+1)—f (t)|| < & for each
7eP and all teJy, with t+1 > M. The set of all almost periodic members
of C(R, X) will be denoted by AP(R, X), and we put AAP(J,, X)
={feC(J,, X): f is a.ap.}.

As is well known, if fe AP(R, X), then f is uniformly continuous and f(R)
is relatively compact in X (cf. [1]), which is equivalent to the assertion that the
set H(f) = {f,: weR} of translates of f is relatively compact with respect to
the compact-open topology ¥ on C(R, X) (cf. [25]), but much more is true.
Indeed, the classical characterization by S. Bochner [4] asserts that a function
feC(R, X) is ap. if, and only if, H(f) is a relatively compact subset of
C1,(R, X), and therein lies the importance of the class AP(R, X) with regard to
questions of asymptotic behavior. We have recently shown [25, Theorem 3.1]
that a function feC(J,,X) is aap. if, and only if the set
H*(f)={f,: weR™} of translates is a relatively compact subset of
C1,(J,, X).

Two weak forms of almost periodicity have been extensively considered in
the literature. One notion (e.g., see [1], [21]) that has been used to advantage in
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the study of almost periodic equations in Banach spaces only enters into the
picture in more than a formal way in the setting of vector valued functions with
infinite dimensional range; we will say that a function f: R— X is weakly
almost periodic (w.a.p.) if x'ofe AP(R) for every x'€ X'. The second concept, on
the other hand, has heretofore been studied almost exclusively in the scalar
case. This alternative view, which derives from Bochner’s criterion for almost
periodicity, was introduced by Eberlein [10] in the context of scalar valued
continuous functions on an abelian locally compact topological group, and it
has since been considered in some detail in the more general framework of
scalar functions on topological semigroups (e.g., see [6], [9]). However, there is
no a priori reason for restricting attention to the scalar case; we will regard
a function fe C(R, X) as being weakly almost periodic in the sense of Eberlein
(E-w.a.p.) if H(f) is a weakly relatively compact subset of CI (R, X).

These two notions have the following obvious counterparts in the context
of functions defined on a halfline:

(3.a) a function f: J,—X is said to be weakly asymptotically almost
periodic (w.a.a.p.) if x'ofe AAP(J,) for every x'eX";

(3.b) afunction feC(J,, X) is (as well) said to be weakly almost periodic
in the sense of Eberlein (E.-w.a.p.) if H*(f) is a weakly relatively
compact subset of CI,(J,, X).

Of course, Eberlein weak almost periodicity can also be placed in the context of
vector valued continuous functions on topological semigroups. This view,
albeit subject to the additional requirement that the functions in question have
relatively compact range in the Banach space X, has been taken by S. Goldberg
and P. Irwin [14] in an investigation which closely parallels that in the scalar
case.

By definition, E.-w.a.p. functions enjoy a form of asymptotic behavior
which lies in the same direction as that exhibited by a.p. and a.a.p. functions,
but so also do w.a.p. and w.a.a.p. functions. Indeed, if we let X, denote
X under its associated weak topology o(X, X’), then f: R— X is w.a.p. if, and
only if, H(f) is a precompact subset of C1,(R, X ) (cf. [25, Theorem 3.3]); an
analogous statement holds for w.a.a.p. functions.

As mentioned above, a.p. functions are necessarily uniformly continuous
with relatively compact range, while the same is true for a.a.p. functions [25,
Lemma 3.2]. Clearly, the range of an E.-w.a.p. function is weakly relatively
compact in X. Also, it is known (cf. [6, p. 42]) that scalar valued E.-w.a.p.
functions on locally compact groups (and thus on R) are uniformly continuous,
and we next note that this is likewise the case for E.-w.a.p. functions on
a halfline.

LeMMA 3.1, For aeR, if fe C(J,) is weakly almost periodic in the sense of
Eberlein, then f is uniformly continuous.



16 Integration of asymptotically almost periodic functions

Proof. Supposing that f is not uniformly continuous, there exist & > 0
and sequences (s,) and (t,) in J, such that 0 < t,—s, < 1/nand | f(s)—f(¢,) > &
for all ne N. As in the corresponding argument in [9] for functions on R, let us
consider Gn = = f;,—a—Ss.-a» NEN. Since (g,) is a weakly relatively compact
sequence in CI,(J,), by going to a subsequence if necessary, we may assume
that (g,) is weakly convergent to some ge C,(J,)- Consequently, |g(a)| > &, and
we can thus choose 7 > 0 so that |j"' " g(u) du] > 0. Now, for he C,(J ), if we
put T,(h) = {2 " h(u)du, then T,eCI,(J,). Furthermore,

thtn Sntn

T,(9) = limT,(g,) =lim[ | f@du— [ f(u)du]

—llm[ f f(u)du If(u)du] 0,

n smtn

which provides the contradiction needed to complete the proof. m

The next result follows immediately from the foregoing lemma and the
comments that preceded it.

THEOREM 3.2. Given a€R, let Te{J,, R}, and assume that X is a Banach
space. If fe C(T, X) is weakly almost periodic in the sense of Eberlein, then f is
weakly uniformly continuous (i.e., f: T— X, is uniformly continuous). More-
over, weakly almost periodic functions from R into X and weakly asymptotically
almost periodic functions from J, into X are weakly uniformly continuous.

Remark. We do not know whether such functions must as well be
uniformly continuous as mappings into X. However, since thc topology of
X and the weak topology o(X, X’) induce the same uniformity on absolutely
convex compact subsets of the Banach space X (cf. [19, p. 386]), weak uniform
continuity implies uniform continuity in the case of functions which happen to
have relatively compact range in X. In particular, Theorem 3.2 immediately
yields that an E.-w.a.p. function with relatively compact range is necessarily
uniformly continuous (cf. [14, p. 11]).

Turning to sufficient conditions for weak almost periodicity in the sense of
Eberlein which will be helpful to us in the sequel, we first observe that the study
of vector valued E.-w.a.p. functions having relatively compact range actually
reduces to a consideration of the scalar case. A version of the following result
can also be found in [14], where it is stated without proof and attributed to M.
Powell,

LEMMA 3.3. Let T= R (respectively, T= J,, where a€R), and assume that
X is a Banach space. A function fe C (T, X) is then weakly almost periodic in the
sense of Eberlein if, and only if, x'of is weakly almost periodic in the sense of
Eberlein for every x'e X'.
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Proof. Obviously, even if f(T) were not relatively compact in X, if f is
E.-w.a.p., then so also is x'of for each x'e X". For the converse, we would
show that H(f) (respectively, H* (f)) is a weakly relatively compact subset of
C1,(T, X). Of course, since f(T) is relatively compact in X, H(f) (respectively,
H?*(f)) is 2 bounded subset of CI,(T, X). Moreover, since x'of is E.-w.a.p. for
every x'e X', each of the functions x'of is uniformly continuous by Theorem
3.2. Again using the fact that f(T) is relatively compact, this gives us that f is
uniformly continuous whence, as previously noted, H(f) (respectively, H* (1))
is relatively compact in C(T, X) with respect to the compact-open topology x.
At this point, let us choose sequences (w,) in R'(respectively, R*), (¢,) in T, and
(x}) in B} such that, for some a, feKkK,

imlim{f, (tw), Xm> =a and  limhim<{f, (), xn) = B;

m n n m
the desired conclusion will then follow from Theorem 2.1 if we show that o = §.
To this end, we may assume that (f, ) is x-convergent to a function ge C(T, X)
whereby g(T) is contained in the closure, call it K, of f(T) in X. Since K is
compact, we may further suppose that (x,,) converges uniformly on K to some
x'€ B}. Thus, through an application of Theorem 2.1. based on the Eberlein
weak almost periodicity of x'of, we see that

@ = lim{g(t,), Xm) = lim{g(t,), x>
= limlim f,, (¢,,), x> = limim {f,, (t,), x> = B,

and the proof is complete. m

To formulate the next result, we make use of a notion which derives from
the standard concepts of a- and w-limit sets for motions of dynamical systems:
if Te{J,, R}, fe C(T, X), and x is the compact-open topology on C(T, X), we
let A,(f) denote the set of all ge C(T; X) for which there exists a sequence (®,)
in R* with w,— + o0 or, in case T= R, a sequence (w,) in R with w,— —o0
such that (f,) is x-convergent to g. For future reference, moreover, if
JeC (T, X), we will let A (f) denote the corresponding collection of those
g€ C,(T, X) for which there exists a sequence (w,) in R* with w,— + o0 or, in
case T= R, a sequence (w,) in R with @, — — oo such that (f, ) is convergent to
g in the weak topology induced on C.(7; X) by the Banach space CI,(T, X).
Obviously, given feC (T, X), A, (f) < A,(f) in case f is E.-w.a.p., while
A, (f) = A,(f) whenever f is a uniformly continuous E.-w.a.p. function with
relatively compact range.

THEOREM 3.4. Given acR, let Te{J, R}, and assume that X is a Banach
space. If fe C(T, X) is uniformly continuous and f(T) is relatively compact
in X, then f is weakly almost periodic in the sense of Eberlein whenever
A (f) € Co(T, X)+{a,} for some xeX, where a(t) = x for each teT.

Oy
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Proof. According to Lemma 3.3, it will suffice to verify that x'of is
E.-w.a.p. for each x'e X', and so let us fix x’e X’. For the case T= R, the
problem then reduces to showing that H(x'of) is a weakly relatively compact
subset of C1,(R). Since H(x'of) is clearly bounded in CI,(R), however, this will
follow from Theorem 2.1 if H(x'of) can be shown to satisfy the corresponding
interchangeable double limits criterion. Thus, given sequences (w,) and (t,) in
R such that, for some a, feK,

limlim(x'of), (t,) =¢ and limlim(x'of),, (t,) = B,
m n n m
we only need to show that « = § in order to complete the argument in the
present instance. As one step in this direction, let us first recall that H(f) is at
least relatively compact in C(R, X) with respect to the compact-open topology
» since f is uniformly continuous and f (R) is relatively compact in X. Now, if
(w,) happens to be a bounded sequence, we may assume without loss of
generality that w,— e R. In this case, since we may further suppose that (f, )
is x-convergent to some ge C,(R, X), we deduce that

@ = lim(f, (@), ¥'> = (g(@), ¥'> = lIm{g(@,), ¥ = B.

Similarly, we have that « = § in case (¢, is a bounded sequence. Otherwise, if
(w,) and (t,) are both unbounded, we may assume that there exist
g, he Cy(R, X) and xe X such that (f, ) is »-convergent to g+« and (f ) is
x-convergent to h+a_, as well as that lim, |@,| = lim,, |¢,,| = + co. Under these
circumstances, we then have that
o =lim{g(t,)+x, x> =<{x, x') = lun(h(a) Y+x, x> =,

and this serves to conclude the proof in case T= R. The argument for the case
T=J, follows along similar lines. w

Remark. As one immediate consequence of the preceding result, we have
that each ¢eCy(R, X) is E.-wa.p. Therefore, given ge AP(R, X) and
$eCy(R, X),f = g+¢ is E-w.a.p., but such a function f will be a.p. only when
@ is identically zero on R. In the direction of a converse, moreover, we point
out that every E.-w.a.p. function has a related decomposition.

Indeed, from the general theory of weakly almost periodic semigroups of
operators as developed by K. de Leeuw and 1. Glicksberg [20, Section 4], it
follows that each E.-w.a.p. function feC,(R, X) can be uniquely represented as
the sum of a function ge AP(R, X) and a function ¢e W(R, X),, where we
write W(R, X), to indicate the set of all E.-w.a.p. functions y e C,(R, X) such
that 0eA,(¥); an analogous decomposition holds as well for E.-w.a.p.
functions on a halfline. Of course, there are classical precedents for such
a result (cf. [6, p. 30]), and we also mention that an extension to the case of
vector valued E.-w.a.p. functions has been obtained under special circumstan-
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ces in [4]. With regard to applications, however, the lack of an “external”
characterization of the members of W(T, X), for Te{R, J,} is a definite
shortcoming,.

The remainder of this section will primarily -be devoted to presenting
examples which either further serve to distinguish between the types of almost
periodicity under consideration or have import for our subsequent discussion
of integrals. In this latter direction, we construct a class of examples of E.-w.a.p.
functions in C(R) which are not perturbations of a.p. functions by functions in
C,(R), and thereby add to the extremely limited list of explicit instances that
have previously been developed in this canonical setting (cf. [9] and [23]).

To set the stage for our first example, recall that if fe C(J,, X) is E.-w.a.p,,
then f(J,) is weakly relatively compact in X and x'of is E.-w.a.p. for every
x'eX'. In contrast to Lemma 3.3, however, we next show that an assertion in
the converse direction does not hold even when x'cf vanishes at infinity on J,
(and thus belongs to AP(J)) for every x'e X’

ExAMPLE 3.5. Consider the function f: J, —I?*[1, o) defined by
FO6) = (/t/s)1569)

for 5, teJ; =[1, o). Then f is a uniformly continuous function with weakly
relatively compact range which is weakly asymptotically almost periodic, but
f is not weakly almost periodic in the sense of Eberlein.

Proof. As is obvious, || f(¢)l, = 1 for every teJ, whence f(J,) is weakly
relatively compact in L?[1, o). A direct computation also shows that

)= Dl3 < 2(\/2—\/5) for t,,t,eJ, with t; <t,, and thus f is
uniformly continuous. Next, for he I2[1, o) and ¢ > 0, choose M = 1 so that
(% h(s)I*ds < €*. Then, for teJ,, we have that

[<f @) byl = |°ff(t)(s)m)ds| = IT(\/E/s)@dsl

< IFOUL(] h)I? ds)'? < e,
]
whereby the continuous map {f(*), k): J, — K vanishes at infinity on J, and

therefore belongs to AAP(J,). In particular, this shows that f is w.a.a.p. To see
that f is not E.-w.a.p, note that, for m, neN, if m <n, then

{Solm), f(2m)) = ?f (n+m)(s) f (2m)(s)ds = /2m/(m +n)
1

whence

Hmd{f,(m), f2m)> =0 for a fixed meN,
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whereas
lim { f,(m), f(2m)y = lim\/(m+n)/2m = \/2/2  for each neN.

Since (f(2m)) is a sequence in the closed unit ball of L*[1, co), we can thus
conclude from Theorem 2.1 that H* (f) fails to be weakly relatively compact in
C1,(J,, I2[1, o0)

Remark 3.6. 1. An example to the same end as 3.5 was considered in [14].
However, as P. Milnes [MR 80¢:43010] has noted in his review, the example
presented in [14] does not work since the given function is not bounded.

2. In particular, Example 3.5 provides a negative response to the question
concerning a link between w.a.a.p. and E.-w.a.p. functions that had been raised
in [25, Section 3]

As noted earlier, concrete instances of E.-w.a.p. functions which do not also
satisfy yet stronger periodicity conditions are not exactly plentiful even in the
scalar case. We bring the present section to an end by presenting examples of
functions in this category which will help illustrate our results on integrals in
the following section.

ExaMpLE 3.7. Let I =(—11), fix yeCy(I), and consider o(y): R* =K
defined by
p(t—2%, te(@*—1,2%+1) for keN,
0, otherwise.

QM®={

(i) The function g(y) is weakly almost periodic in the sense of Eberlein.
However, ¢(y) is asymptotically almost periodic only if y(z) = 0 for every tel.
(i) The function o(y): R—K defined by

e(p(®), teRY,
0, teR\R*,

is weakly almost periodic in the sense of Eberlein, but &(y) is not almost
periodic unless y(t) = 0 for all tel.

o()() = {

Proof. In view of Theorem 3.4, since g(y) is clearly bounded and uniformly
continuous, we need only verify that A, (¢(y)) S Co(R*) in order to conclude
that o(y) is E.-w.a.p., and so let us assume that (w,) is an increasing sequence in
R* with w,— + oo such that (g(), ) is x-convergent to a function ge C,(R™).
Further, suppose that g(t) # 0 for some teR". In this case, there exists n,e N
such that e (y)(t+w,)| = |g(t)/2 for all ne N with n = n,, and hence there exist
0€(0,1) and an increasing sequence (k,) in N such that k,— +o and
t+w,e[2*—6, 2% 4] for all neN with n > n, Fixing ae[2, c0), we put
u = t+o and suppose that g(u) > 0. As before, there exist n,e N, n¢e(0,1), and
an increasing sequence (j,) in N such that j, —» + oo and, for each ne N with
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n > n, u+w,e[2"—n, 2"+ 1. Now, choose ne N so that n > max{n, n,} and
2' > a+2. From the facts just noted, the following pair of relationships must
then hold:
—d—w,taSug2"+é—w,+ua,

<

(3.c)
e p~w, S ug 2 tn—o,.

Suppose that k, <j,. From (3.c), we would then have that
02" +d—w,ta—r—n—w,) =212 "") 4+ §+n+a
S a+(5+n)—2%,

which is impossible since 2** > a+2. Thus j, < k,, in which case we conclude
from (3.c) that

0< 2" tn—w,—(2*"—b6—w,+a) =2"(1-2""M)tn+5—a
< (n+d)—a.

But this contradicts our choice of «, and so we have shown that g(s) = O for all
se[t+2, oo); indeed, we can even conclude that there exists aeR* such that
the support of g is contained in [g, a+2].

Suppose, on the other hand, that g(y) is a.a.p. and y(s) # 0 for some
se(—1,1). Then, given & = [y(s)|/2, there exist M > 0 and a relatively dense set
P in J,, such that |o(y)(t+1)—e()(t)| < & for each te P and all teJ,,; we let
I>0 be a measure of the density of P in J,. Taking neN so that
2" > max{M +1, I+ 3}, we choose t€[2"+2, 2"+2+l]nP and put ¢t =.s+2"
For this choice, however, g(y)(t) = y(s) and teJ,, while g(y)(t+1) =0 since

7ML 1€t < 2" 43 < (22 -2 g 2m e,

and this contradiction completes the final step in our argument to establish
3.7(3i).

Turning to 3.7(ii), since &(y) is obviously not a.p. unless y(t) = 0 for each
te(—1,1), we need only show that o(y) is E.-w.a.p., and here, again invoking
Theorem 3.4, it will suffice to show that A,(c(y)) = Co(R). To this end, fix
ge A,(a(y)), let (w,) be a sequence in R such that (5(y),,) is %-convergent to g,
and suppose that there exist s, teR with s < ¢ such that g(s) # 0 and g(¢) # 0.
Since lim, o(y)(t + ®,) = g(t) # 0, we may assume that (w,+s) is a sequence in
R* with w,+s— + co. Moreover, because H*(o(y)) is relatively compact in
(C(R™), x) (as can readily be seen from [25, Corollary 2.5.1], for instance), there
exists a subsequence (w, ) of (w,) such that (g Veon, ..) is x-convergent to
a function heA,(e(y)). This being the case,

g(s) = imo (p),,,(s) = im @ (y), +5(0) = A(0),

while
g(t) = lima(y),, (t) = limg(y)w,+s(t—5) = h(t—s).
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As demonstrated above, however, the support of 4 is contained in an interval of
length at most two, and so we see that 0 < t—s < 2. Since it is now apparent
that the support of g must also be contained in an interval of length two, the
proof is complete. =

For the function g: Cy(I)—C,(R™) as described in Example 3.7, unless
y€ C,y(1) is chosen so that j'l_ . ¥(1)du = 0, the corresponding indefinite integral
P(y): R* =K defined by

PO)) = ge(v)(u)du, teR™,

is not bounded. However, as we next note, ¢ can be modified so as to remedy
this defect without affecting other pertinent properties.

ExaMpLE 3.8. Let I =(—1,1), fix yeCy(I), and define ¢,(y): R* - K by

p(t—2%%, te(2¥*—1,2%*+1) for keN,
0, otherwise.

mm®={

Further, set go(y) = e(y)—a.(y), where g: C,(I)> C,(R*) is the function
defined in Example 3.7.

(i) The function a(y) = go(y)—¢.(y) on R* is weakly almost periodic in the
sense of Eberlein, but a(y) is asymptotically almost periodic only if y(t) = O for
every tel.

(ii) The function B(y): R— K defined by

R,
R

is weakly almost periodic in the sense of Eberlein, but f(y) is not almost
periodic unless y(t) =0 for all tel.

Proof. Since |a(y)| = lgo ) +le. () = e (|yl), «(p) is clearly not a.a.p. when
0(y) is not a.a.p. Further, since each geA,(¢(y)) has support contained in an
interval of length two and H™* (¢ (y)) is a relatively compact subset of (C(R™), ),
the fact that |a(y) =o(|y]) immediately allows us to conclude that each
geA,(x(y)) also has support contained in an interval of length two, and so
Theorem 3.4 applies to show that a(y) is E.-w.a.p. Except for using o(y) of
Example 3.7 in the place of g(y), the same argument will serve to establish (ii).

4. Integrals of asymptotically almost periodic functions

One striking indication of the difference between a.p. functions on R and
their counterparts on a halfline lies in the failure of the Bohl-Bohr theorem to
carry over to AAP(J,). Indeed, as the following example shows, bounded
integrals of a.a.p. functions can even fail to be E.-w.a.p.
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ExaMpPLE 4.1. Consider the function f: J, =R defined by
1
J@t)= ;cos(logt), tel,.

Then feCy(J,) (whereby fe AAP(J,)) and the corresponding indefinite inte-
gral

F() = j'f(u)du =sin(logt), teJ,,
1

defines a bounded function on J,, but F is not weakly almost periodic in the
sense of Eberlein.

Prool We need only verify that F is not E.-w.a.p., and so, for m, ne N, let
us put ¢, = exp(mn) and o, = exp{}(4n—3)x}. Then

F(t,+w,) = sin (log [exp (mm)(1 +exp{[3(4n—3)—m]n})] )
= cos(mm)sin(log[ 1+ exp {[3(4n—3)—m]n}])
whence lim, lim,, F,, (¢,) = 0. On the other hand, since we also have that
F(t,,+,) = sin(3(4n—3)n)cos(log[1 +exp {[m—4(4n—3)]xn}]),

lim,, lim, F, (t,) = 1, whereby the interchangeable double limits condition does
not hold. In view of Theorem 2.1, the proof is therefore complete. =

The function f defined in the preceding example is obviously not
(improperly) Riemann integrable on J, (which is the same as to say that
lim,., j'1 f(u)du does not exist). As one direct step toward resolving (0.b), we
next show that this is precisely why the indefinite integral of f fails to be
E.-w.a.p. In the process, we reveal an unexpected connection between the
notions of weak almost periodicity in the sense of Eberlein and asymptotic
almost periodicity.

THEOREM 4.2. Given ac R and a Banach space X, let ¢ € Cy(J,, X), and define
&: J,—»X by

P(t) = j'gb(u)du Jor ted,.

Then the following are equivalent:

1. & is asymptotically almost periodic;

2. & is weakly almost periodic in the sense of Eberlein;

3. ¢ is (improperly) Riemann integrable on J,,

Proof. Assume, first of all, that @ is E.-w.a.p. Choosing a sequence (e,) in
R* with w,— + 0, since P(J,) is weakly relatively compact in X, the
Eberlein-Smulian theorem allows us to assume that (®(a+w,) is
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o(X, X')-convergent to some x € X. Suppose, at this point, that there exist ¢ > 0
and a sequence (t,) in J, such that ¢, — +c0 and ||x—®(t,)|| = ¢ for each
meN. This being the case, we can choose x,€Bj for each meN so that
[(x—®(t,), xmp| = ¢ and there is no loss of generality in assuming that there
exist «, feK such that

lim{x, xp» =a and Lm<{P(t,), x,,) = B.

m

Now,
lim lim (@, (t,), Xpm> = limlim{P(a+w,)+ T G, (W) du, xm)
=limd{x, x>y = a,
while
lim lim{®,, (), Xm) = limlim {(®(t,)+ ”jw" &1, —a(W)du, xp,) = B,

from which, through an appeal to Theorem 2.1, we conclude that o =f.
However, taking me N so that ja—{x, x;,>| < &2 and |f—<{D(t,), xm)| < &/2,
we then have

(X — P (tn)y Xm| < <X, Xp) — ] +|a— Bl +]|B— (P (L), Xm)| <&,

which contradicts our choice of x, and thereby shows that
lim, . + o |, §(u)du = x; ie., ¢ is necessarily Riemann integrable on J,. This
shows that 2 implies 3. All other implications in Theorem 4.2 are straightfor-
ward. =

Obviously, if #eC,(J,, X) and & is Riemann integrable on J, the
corresponding indefinite integral must be a.a.p. As a sufficient condition for the
integral of an arbitrary function fe AAP(J,, X) to also be a.a.p., however,
Riemann integrability of fon J, is clearly much too restrictive since a uniformly
continuous Riemann integrable function on J, with values in a Banach space
must necessarily vanish at infinity on J,. Nonetheless, it will shortly become
evident that Theorem 4.2 does have an important bearing on the solution of
(0.b).

Before stating our main result, we pause to recall the following basic fact
from [25, Theorem 3.4] concerning the decomposition of a.a.p. functions: If
X is a Banach space and fe A4P(J,, X), then there are unique functions
geAP(R, X) and ¢eC,y(J,, X) such that

(4.2) f=gl,+¢;
we will refer to ¢ as the critical part of f.
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THEOREM 4.3. Given acR and a Banach space X, fix fe AAP(J,, X), and
define F: J,—» X by

F(t) = _l[f(u)du for teJ,.

In case either

(4.b) F(J,) is bounded in X and X does not contain an isomorphic copy of ¢,,
or

(4.0 F(J) is weakly relatively compact in X,

then the following are equivalent:
(i) F is asymptotically almost periodic;
(i) F is weakly almost periodic in the sense of Eberlein,
(iii) the critical part of f is (improperly) Riemann integrable on J,

In our approach to proving 4.3, Theorem 4.2 gives us a hold on the critical
part of an a.a.p. function. The following sequence of technical lemmas will
allow us to utilize the work of Kadets [18] in treating the a.p. part of the
decomposition (4.a). Moreover, the added generality built into the first of these
lemmas will be helpful to us later in this section when the discussion turns to
integrals of E.-w.a.p. functions.

LEMMA 4.4. Given aeR and a Banach space X, fix feC({J,, X), and let
ge AP(R, X). Setting

F(t)=j'ﬂu)du and G,(t)=_lfg(u)du for teJ,,

if¢=f—glJ, is weakly almost periodic in the sense of Eberlein and Oe A (9),
then G,(J,) < 2ac(F(J,).
Proof. Certainly, G, (@) = 0 belongs to the closed absolutely convex hull

ac(F(J,) of F(J,), and so let us consider teJ, with t > a. Now, let ¢ > 0, fix
a finite set {x;: i=1,...,m} in X', and put a = max{||x{|: ie{l,...,m}}+1.
For n = ¢f(2(t —a)a), we can then choose a relatively dense subset P of R with
density constant ! > 0 such that |g(u+1)—g(u)| < n for every ueR and all
teP. At this point, we would show that there exists weR* so that
[{$o(5), xiDl <n for each ie{l,...,m} and every se[a, t+I]. Since ¢ is
E.-w.a.p., however, ¢ is weakly uniformly continuous by Theorem 3.2 and the
range of ¢ must as well be weakly relatively compact in X. Thus, as readily
follows from [25, Corollary 2.5.1], H*(¢) is relatively compact in C(J,, X )
with respect to the compact-open topology. Moreover, since 0 A,,(¢), there
exists a sequence (w,) in R (with @, — + oo) such that (¢, ) converges weakly
to zero in C1,(J,, X), and we need only note that some subnet of (¢, ) will
therefore converge to zero in (C(J,,, X, x) in order to establish our claim and
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thereby obtain weR* with the desired property. Consequently, choosing
tePn[w, w+I] and putting ¢ = 1—w, whence a€[0, [], if ie{1,...,m}, we
have that

[{G,(t)—(F(t +7)—F(a+1)), x;)|

<G, (- ig(u+t)du, x|+ |{f g(u+7)du— [tf(u)du, x|

att

< 141 [ lg () — g+l duu+ [ <] Slu-+7) s, )|

< Xl t—ayn+ [[Kbo(u+a), xiDldu < e,

which is to say that G,(t) belongs to the weak closure of 2ac(F(J,)). For
a convex set, however, the weak closure coincides with the closure in X, and so
the proof is complete. =

LEMMA 4.5. Given aeR and a Banach space X, let ge AP(R, X), put
t
G,(0) = [gu)du for teJ,,

and set

ig(u)du, teR*,
G() = {° 0
—fgu)du, teR\R*

Then G(R) < G([0, |al])+2ac(G,(J,).

Proof. Fixing teR, first assume that t>|a. If a>=0, then
G(f) = G(a)+G,(t), while G(t) = G,(t)— G,(0) in case a < 0. Consequently, we
may suppose that t < 0. For this case, given ¢ > 0, take P to be a relatively
dense subset of R such that ||g(u+1)—g(u)]| < ¢/|t| for each ueR and all teP.
Choosing t€P so that t+7 > a, we then have

160 ~(Gult+)—G,@)| = 6O+ | g0 du
0 0
= ||f glu+7)du— [ g(u)dul|

< flgu+v)—gw)lldu <e,

which completes the proof. =
Taken together, Lemmas 4.4 and 4.5 yield the following result.
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LEMMA 4.6. Given aeR and a Banach space X, fix feC(J,, X), let
ge AP(R, X), and assume that f—g|J,e Cy(J,, X). Setting

F(t)=j'f(u)du for teJ, and G(t)=j'g(u)du for teR,

if F(J,) is bounded, or weakly relatively compact, or relatively compact in X, then
the same is true for G(R).

Proof of Theorem 4.3. Since fe AAP(J,, X), there are unique functions
ge AP(R, X) and critical part ¢ € C,(J,, X) such that f = g|J,+ ¢ [25, Theorem
34]; we put &(t)= _ﬂ, ¢(u)du, teJ, and define the indefinite integrals
G,: J,» X and G: R— X of g as in Lemma 4.5. At this point, assume that F is
E.-w.a.p. Since F(J,) is then weakly relatively compact in X, G(R) is weakly
relatively compact in X by Lemma 4.6. According to [18, Theorem 2], this
means that Ge AP(R, X) whence G, = G|J,—G(a)e AAP(J,, X). Consequent-
ly, ® = F—G, is E.-w.a.p, and so Theorem 4.2 applies to give us that ¢ is
Riemann integrable on J,. Suppose, on the other hand, that the critical part
¢ of fis Riemann integrable on J,. As follows from another application of
Theorem 4.2, @ is then a.a.p. Moreover, since either (4.b) or (4.c) is satisfied,
Lemma 4.6 shows that either G(R) is weakly relatively compact in X or, in case
co & X, G(R) is at least bounded. Again by [18, Theorem 2] in the first instance,
or from [18, Theorem 1] in the second, G must necessarily be a.p. in either
event. Hence, G, is a.a.p., and therefore so also is F = G,+ &. Since (i) clearly
implies (ii), the proof is now complete. =

Remark. 1. The surprising aspect of Theorem 4.3, to us, is the equivalence
between propositions (i) and (ii). It is the proof of this equivalence that took all
the preparation on weak compactness and E.-w.a.p. functions in the preceding
sections. At this point, one might wonder about the practical importance of the
concept of E.-w.a.p. functions in general. In a forthcoming publication [28], we
shall show that functions of this type occur naturally in the context of the
abstract Cauchy problem: Assuming that a linear operator 4: D(A)c X - X
on a Banach space X is the infinitesimal generator of a uniformly bounded
C,-semigroup (S(t)»o of continuous linear operators on X, consider the
abstract Cauchy problem

x(t) = Ax(t), teR*,
x(0) = x,

associated with 4. We show in [28] that, for x,€D(A), the (unique) strong
solution x(t) = S(t)x, of (CP) is E.-w.a.p. provided it has weakly relatively
compact range. In particular, whenever, in addition to the above assumptions,
X is a reflexive Banach space, all solutions to (CP) are necessarily E.-w.a.p.
Teamed with the Jacobs—De Leeuw-Glicksberg theory of weakly almost
periodic semigroups of operators, this automatically implies the existence of
classically almost periodic solutions to (CP). For details and further results on
the concept of E.-w.a.p. motions of semigroups of operators, we refer to [28].

(CP)
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2. Since functions encountered in practice tend to be integrals, the
equivalence of (i) and (ii) in Theorem 4.3 provides some insight into the
difficulty (even in the scalar case) of finding examples of functions on a halfline
for which the set of translates forms a weakly relatively compact set that is not
already relatively compact in the topology of uniform convergence. As we point
out in the following example, however, this equivalence can fail if the integrand
only happens to be E.-w.a.p. instead of a.a.p.

ExAMPLE 4.7. Let I =(—1,1), and choose ye C,(I) such that y is not
identically zero on I but j'l_ ; Y(u)du = 0. Now, consider the corresponding
Eberlein weakly almost periodic function g(y) from Example 3.7, and put
P(y)(t) = §, e(y)(u) du for each te R* The indefinite integral P() is then weakly
almost periodic in the sense of Eberlein on R*, but P(y) is not asymptotically
almost periodic.

Proof. Setting I'(t) = [*_, y(u)du for tel, it suffices to note that I'e Cy(])
and g(I') = P(y); the requisite properties were established for o(I") in Example
37. =

We next turn our attention to integrals of w.a.a.p. functions. As our point of
departure, we note that, under reasonable circumstances, a decomposition in
the spirit of (4.a) can as well be obtained in this setting.

LeMMA 4.8. Assume that X is a Banach space, and fix aeR. A function
f: J, =X with weakly relatively compact range is then weakly asymptotically
almost periodic if, and only if, there is a unique weakly almost periodic function
g: R—X and a unique function ¢ Cy(J,, X,) such that

4d) f=g1J.+0.

Proof. If the decomposition (4.d) holds for some ge AP(R, X,) and
$eCo(J,, X,), then f is clearly w.a.a.p. For the converse, assuming that
feAAP(J,, X ), we put C = ac(f(J,)), let X'* denote the algebraic dual of X,
set Y= (X"*, o(X"* X)), and consider fas a mapping from J, into Y. Since Yis
complete and fe AAP(J,, Y), [25, Theorem 3.4] asserts that there are unique
functions ge AP(R, Y) and ¢pe Cy(J,, Y) such that f= g|J, +¢. Fixing teR,
suppose that g(t) ¢ C. Since C is ¢(X, X')-compact, whence o(X'*, X')-compact,
there then exists x'e X’ such that {g(t), x'> > 1 and |[(x, x'>| < 1 for all xeC.
Now, setting ¢ = {g(t), x> —1, let P be a relatively dense subset of R such that
I{g(s+1)—g(s), x'D| < /2 for every seR and all te P. Further, choose M > a
so that |{¢(s), x')| <e/2 in case seJ, with s> M. For t1eP such that
t+1 > M, we would then have that

[<g(®), x> < Kg(()—g(t+7), xD+I{f(t+1)—p(t+7), XD < L+,

which is an obvious contradiction. Consequently, g(R) < C, whereby
geAP(R, X ) and ¢eCy(J,, X,), and the proof is complete. =
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In keeping with our terminology for a.a.p. functions taking values in
a Banach space, if £ J,—X is w.a.a.p. and has weakly relatively compact
range, we will also refer to the unique function ¢eC,(J,, X,) from the
decomposition (4.d) as the critical part of f.

THEOREM 4.9. Given ae R and a Banach space X, assume that fe C(J,, X) is
a weakly asymptotically almost periodic function with weakly relatively compact
range, and define F:. J,—» X by

F() = jt'f(u)du Jor telJ,.

Then F is weakly asymptotically almost periodic if, and only if, F(J,) is
bounded in X .and the critical part ¢ of f satisfies the following condition:
(4.€) for each x'eX’, x'o¢ is (improperly) Riemann integrable on J,.

Proof. Given x'eX’, we note that x'oF(f) = [,x'of (wdu for telJ,

x'ofe AAP(J,), and x'o¢ is the critical part of x'of. The conclusion is now an
immediate consequence of Theorem 4.3. =

Remark. In view of the classical Bohl-Bohr theorem, of course, if
feC(R, X)is w.a.p. and F(f) = [f (4)du for teR, then F is w.a.p. exactly when
F(R) is bounded in X (cf. [1, p. 59]).

We close this circle of ideas by giving a further curious example of an a.a.p.
function with an integral that is not E.-w.a.p. Contrary to the situation in
Example 4.1, however, the integral in this case is w.a.a.p.

ExamPLE 4.10. Taking X = C14(J,), consider the function f: R* - X
defined by

1 1
£)(s) = sin| — |—t(t+s)~2 —
1(06) sm<t+s) (t+s) °°S(t+s>
for teR* and seJ,. Then
(i) feCo(R*, X) so that, in particular, fe AAP(R*, X), but f is not
Riemann integrable on R*
Moreover, setting

F@t)= jf(u)du for teR*,
0

(i) FeC,(R*, X), but F(R™) is not weakly relatively compact in X;
(i) F is weakly asymptotically almost periodic, but F is not weakly almost
periodic in the sense of Eberlein.

Proof. As is straightforward to check, f is a well defined continuous
function from R™* into X. Thus, since

1 t
<sinl — |+—3 h teR*, fe Co(R, X).
IOl < s111<t_'_1>+(t+1)2 for each te JeCyl )
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Next, observe that

F(t)(s)=tsin<t:_—s) for all teR* and each seJ,.
From this, we see that

. 1 +
[F@)I = tsm(H_l) for each teR™,
and therefore F(R*) is indeed a bounded subset of X. Be that as it may, since
lim,_, , , F(t)(s) = 1 for each seJ,, f is obviously not Riemann integrable on
R* so that, as a consequence of Theorem 4.2, F is not E.-w.a.p. More to the
point, however, a glance at Condition 3(iii) of Theorem 2.2 immediately shows
that F(R™) is not even weakly relatively compact in X. To see that F is w.a.a.p.,
first note that, given £6>0 and MeJ,, there exists t,eR* such that
|[F(t)(5)—1] < ¢ for all se[1, M] whenever teR* with t > t,. Consequently,
taking pe Cl1,(J,), since p is a bounded Radon measure on J,, we have that

t

lim [pof(wydu= lim [u(J)+ §(F@t)—1)du] = u(J,);
t*+w 0 t=++mw J1

i, pof is Riemann integrable on R* An application of Theorem 4.9 now

completes the argument. w

Some observations concerning integrals of E.-w.a.p. functions will bring the
section to an end. Our first result, a version of Theorem 4.3 for functions
defined on the entire real line, clarifies the extent to which a function in
AP(R, X) can be perturbed by a member of C,(R, X) and yet have an integral
that is at least E.-w.a.p.

THEOREM 4.11. Given a Banach space X, take ge AP(R, X) and ¢ € C,(R, X),
put f=g+¢, and set

F(t) = _‘[f(u)du Jor teR.
0

Then F is weakly almost periodic in the sense of Eberlein if, and only if, either
(i) F(R) is weakly relatively compact in X, or
(i) co& X and F(R) is bounded in X,

and ¢ is (improperly) Riemann integrable on R with

t 4
(4.0 lim [$(u)du= lim |¢(u)du.
t++w0 t*—o0
Proof. To begin, let us put &(t) = [ ¢(u)du for teR. In either direction,
since (i) certainly holds if F is E.-w.a.p., Lemma 4.6 can again be combined with
the generalized Bohl-Bohr theorems due to Kadets [18] to show that F—@ is
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a.p. At this point, suppose that F is E.-w.a.p. Setting 8(t) = —t for teR, both
F|R* and ¢of|R* are therefore Riemann integrable on R* by Theorem 4.3,
we have that ¢ is Riemann integrable on R. Moreover, as a consequence of our
earlier observation that F—d& is a.p., ¢ is E.-w.a.p., and a straightforward
application of the interchangeable double limits criterion (Theorem 2.1) now
shows that (4.f) must also be satisfied. For the converse, in view of the
integrability conditions on ¢, we have from Theorem 3.4 that & is E.-w.a.p.
Again using the fact that F—& is a.p., we thus reach the desired con-
clusion. m

From Example 4.7, we know that there do exist E.-w.a.p. functions on
a halfline which are not a.a.p. and yet which have an integral that is E.-w.a.p.
Similarly, choosing ye C,(I) as in Example 4.7 and using ¢ from Example 3.7
(ii) in place of g, o(y) is an E.-w.a.p. function on R which is not covered under
Theorem 4.11, but the indefinite integral of a(y} is nonetheless E.-w.a.p. An
examination of the proofs for Examples 4.7 and 3.7 will show that, in each of
these two instances, the integral is necessarily E.-w.a.p. because it satisfies the
sufficient conditions given in Theorem 3.4, and the same is true for E.-w.a.p.
integrals of functions in either C,(R, X) or C,(J,, X) as can be ascertained
from the arguments for Theorems 4.11 and 4.2, respectively. As we next
demonstrate, at least the limit set condition from 3.4 can also be necessary in
the case of integrals.

THEOREM 4.12. Assume that X is a Banach space, let T= R (respectively,
T=J, where aeR), take fe C(T, X) to be a weakly almost periodic function in
the sense of Eberlein such that A (f) < Co(T, X), and put

F(t) = jt'f(u)du for teR

(respectively, F(t) = [}, f(u)du for teJ,). If F is weakly almost periodic in the
sense of Eberlein, then A (F) € Co(T; X)+ {a,} for some xe X, where a(t) = x
Jor each teT.

Proof. We consider the case T= R; the argument will follow the same
pattern when T=J,. Now, given Ge A (F), there exists a sequence (w,) in
R with either w,— + or w,—» — oo such that (F, ) is weakly convergent to
G in C1,(R, X), and we may further assume that (f,, ) is weakly convergent to
a function ¢eCy(R, X). Fixing teR, since

t+op

Fo®= (fG)dut | fu)du=F, O+ [f, @)du
0 ®n 0

for each neN, we then conclude that G(t) = G(0)+ [, ¢(u) du. Thus, setting
®(t) = f, ¢(u)du for each teR, we have that & = G—G(0) is E.-w.a.p. since
G has this property. By Theorem 4.11, therefore, ¢ is Riemann integrable on
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R and there exists ze X such that z = lim,., , o, @(f) = lim,_, _, P(t); we put
x = z+G(0). At this point, because |G(t)—x| = [|P(t)—z| for each teR, it is
obvious that G—a, e C,(R, X). Suppose, an the other hand, that H is any other
member of A, (F), let (t,) be a sequence in R with either ¢, - + o0 or ¢, - — 0
such that (F, ) is weakly convergent to H in CI,(R, X), and choose yeX so
that H—a,eC,(R, X). Given x'e X’, we would then have

lim im (F,, (£,), x'> = Eim{G (t,), X' = <x, X7,

m n m

while
limlim<{F, (t,), x> = lim{(H(w,), x> = {3, x>.

n m
Since F is E.-w.a.p., however, Theorem 2.1 then gives us that (x, x') = (y, y'>,
whereby x =y, and the proof for the case T= R is thus complete. =

COROLLARY 4.13. Assume that X is a Banach space, and let T=R
(respectively, T=J,, where acR). Further, taking ¢ C(T, X) to be a weakly
almost periodic function in the sense of Eberlein such that A (¢) = C,(T, X), fix
geAP(R, X), and put f=g+¢ (respectively, f=g|J,+¢). Setting

F(t) = .‘[f(u)du and O() = j'qb(u)du Jor teR
0 0

(respectively, F(t) = [.f W) du and &(t) = [, p(u)du for teJ,), the following are
then equivalent in case F(T) is relatively compact in X:

(1) F is weakly almost periodic in the sense of Eberlein;

(i) A, (P) = Co(T, X)+{a,} for some xe X, where a.(t) = x for each teT.

Proof. To begin, let us set G(f) = [, g(u)du for teR. Now, whether T=R
or T=J, if { belongs to the weak closure cl, (H" (¢)) of H* () in C1(T, X),
then H*@) < d,(H"(¢4)). Thus, since A,(d) < Co(T, X), we see that
Oecl,(H*(¢)). From this, it then readily follows that OeA,(¢$), and we can
even conclude that 0e A, (¢|R*) in case T= R. Since 'Lemma 4.4 therefore
applies in the present setting, this result together with Lemma 4.5 gives us that
the range of G is relatively compact in X whereby Ge AP(R, X) (cf. [1, p. 53]).
In turn, & = F—G must as well have relatively compact range in X, and &,
moreover, will be E-w.a.p. if, and only if, F is E.-w.a.p. Hence, we need only
apply Theorem 3.4 to see that (ii) implies (i), while the converse follows as an
immediate consequence of Theorem 4.12. w

Our concluding result shows that the necessary condition of Theorem 4.12
is not automatic.

EXAMPLE 4.14. For I = (—1, 1), choose y& Co(I) so that | | y(u)du # 0, and
consider the corresponding functions a(y) on R* and B(y) on R from Example
3.8. Then a(y) and f(y) are uniformly continuous (indeed, Eberlein weakly
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almost periodic) functions with compact range, and each member of both
A, () and A,(B(y)) even bas compact support. Moreover, setting

t

AW = [a(y)(w)du for teR* and BE)r) = _l[ﬁ(y)(u)du for teR,
0

0
the indefinite integrals 4(y) and B(y) also have compact range, but neither A(y)
nor B(y) is weakly almost periodic in the sense of Eberlein.

Proof To see that A(y) is not E-w.a.p. on R*, let @, = 22"*!, neN,
and put t,=2*", meN. For m,neN, if m<n, then 22"*'+1
231422 22 g0 that A()(2T!1+22™) = |1 p(u)du. On the
other hand, if m>n+1, then 22m41 2%+1422m £ 22m+1 1 whence
A(y)2¥"*1+22") = 0. Thus,

LimlimA(y),, (¢ = jl' yw)du and limlim A(y),, (t,) = 0,
m -1

n n m

which suffices to establish our claim concerning A(y) and also shows that B(y)
is not E.-w.a.p. on R. The remaining assertions are either obvious or were
considered in connection with Example 3.8, =

Final remarks. Theorem 4.3 appears to offer a satisfactory solution to
problem (0.b), and the same can be said for Theorem 4.9 with regard to the
corresponding problem for integrals of w.a.a.p. functions. Except in the special
case covered by Theorem 4.11, however, we have not been successful in
determining exactly when the integral of an E.-w.a.p. function will again be
E.-w.a.p.

One missing factor, seemingly, is an appropriate description of the critical
part in the decomposition of E.-w.a.p. functions. As we have seen in this case, if
Te{R, J,}, then the critical part is taken by an E.-w.a.p. function ¢ € C, (T, X)
for which Oe A, (¢). The question then arises as to whether these functions
might coincide with the class treated in Theorem 4.12, but this is apparently
not even known in the scalar case. Nonetheless, Theorems 4.11 and 4.12 do
represent a positive step toward a conclusive solution of the basic problem.

Added in Proof

1. In this paper, the concept of Eberlein weak almost periodicity turned up
naturally in our main problem of determining the analog of the Bohl-Bohr
integration theorem for asymptotically almost periodic functions. However,
this concept has its importance as well in the theory of semigroups of operators
and the associated Cauchy problem. For the case of linear operators, this has
been pointed out in Remark 1 following Lemma 4.6. In the nonlinear case, we
have shown that the known strong ergodic limit theorems for noalinear
contraction semigroups in uniformly convex Banach spaces are consequences
of the fact that the respective motions and almost-orbits of the semigroups in
question actually are Eberlein weakly almost periodic [W. M. Ruess and
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W. H. Summers, Weak almost periodicity and the strong ergodic limit theorem
Jfor contraction semigroups, Israel J. Math., to appear; and Presque-périodicité
Saible et théoréme ergodique pour les semi-groups de contractions non linéaires,
C. R. Acad. Sci. Paris 305 (1987), 741-744].

2. The concept of vector valued Eberlein weakly almost periodic functions,
the corresponding special case of Theorem 2.1 for C1,(T, X), and a version of
Lemma 3.3 have also been given by P. Milnes [J. London Math. Soc. 22 (1980),
467-472].

3. Since the submission of the manuscript, some of the problems left open
in the text have been solved:

a. Uniform continuity of E.-w.a.p. functions (Lemma 3.1 and Remark
following Theorem 3.2):

Given any Banach space X, every X-valued Eberlein weakly almost
periodic function defined on R, respectively on J,, a€R, is (norm-) uniformly
continuous [W. M. Ruess and W. H. Summers, Ergodic theorems for
semigroups of operators, to appear].

b. Structure of the weak -limit set of an E.-w.a.p. function (Final remarks,
second paragraph):

Even in the scalar case, there exist Eberlein weakly almost periodic
fuhctions f defined on R* such that 0e A, (f) but A,(f) & C,(R*) [W. M.
Ruess and F. D. Sentilles, Weak mixing versus strong mixing, and a special
class of weakly almost periodic functions, to appear].
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