ANÁLISE PROTEÔMICA EM BACTÉRIAS DO INTESTINO MÉDIO DO MOSQUITO Aedes aegypti RESISTENTES AO ESTRESSE OXIDATIVO

SÂMELLA DA HORA MACHADO

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO – UENF CAMPOS DOS GOYTACAZES – RJ

JUNHO - 2018

ANÁLISE PROTEÔMICA EM BACTÉRIAS DO INTESTINO MÉDIO DO MOSQUITO Aedes aegypti RESISTENTES AO ESTRESSE OXIDATIVO

SÂMELLA DA HORA MACHADO

Tese de doutorado apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutora em Biociências e Biotecnologia.

CAMPOS DOS GOYTACAZES – RJ

JUNHO – 2018

ANÁLISE PROTEÔMICA EM BACTÉRIAS DO INTESTINO MÉDIO DO MOSQUITO Aedes aegypti RESISTENTES AO ESTRESSE OXIDATIVO

SÂMELLA DA HORA MACHADO

Tese de doutorado apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro, como parte das exigências para obtenção do título de Doutora em Biociências e Biotecnologia.

Aprovada em 08 de junho de 2018. Comissão Examinadora:

Dr. José Roberto da Silva - UFRJ/Macaé

Dr^a. Desiely Silva Gusmão - IFF/Campos

Dr^a. Marília Amorim Berbert de Molina - LBT/UENF

Dr. Francisco José Alves Lemos - UENF - Orientador

Dedico,

Aos meus pais, José Carlos Machado (in memorian), e Edenir Machado, pelo amor e exemplo de vida e por nunca terem poupado esforços para que meus sonhos se realizassem.

Porque d'Ele e por Ele, e para Ele, são todas as coisas; glória, pois, a Ele eternamente. Amém.

Romanos 11:36

Agradecimentos

A Deus, autor da minha vida e consumador da minha fé, o meu muito obrigada por me conceder forças para o término deste trabalho.

À Universidade Estadual do Norte Fluminense Darcy Ribeiro, ao Programa de Pós-Graduação em Biociências e Biotecnologia e ao Laboratório de Biotecnologia, por contribuírem para o meu crescimento profissional.

À FAPERJ e ao CNPq pelo suporte financeiro para realização deste trabalho.

Ao Prof. Franciso José Alves Lemos, por confiar a mim este trabalho, obrigada pela paciência e pelos ensinamentos ao longo desses anos.

Aos professores José Roberto da Silva, Desiely Silva Gusmão, Marília Amorim Berbert de Molina, por dedicarem o seu tempo na avaliação deste trabalho.

À minha mãe Edenir Machado, por todo apoio e incentivo para que eu chegasse até aqui.

Aos meus irmãos e irmãs, por todo apoio, carinho e por todas as palavras de encorajamento vindo de cada um.

Aos meus sobrinhos e sobrinhas, pelo amor, carinho, gargalhadas e por me darem tantos momentos alegres em meio a tantos momentos de tensão.

Às minhas amigas Viviane Almeida, Karina Bernardo e Leidiane Fernandes, que estiveram ao meu lado, mais do que nunca, nesses últimos momentos, por todas orações, incentivos e palavras de encorajamento.

À Célula Mulheres Virtuosas por entenderem minha ausência em muitos momentos e pelo carinho ao longo desse tempo, muito obrigada.

À Técnica e amiga Rívea Custódio Rodrigues, não só pelos auxílios nos experimentos, mas, pela amizade e companhia desenvolvida ao longo dos anos.

Ao Ricardo Reis, pelo auxílio nos experimentos de proteômica e por ser sempre solicito a tirar todas as minhas dúvidas, muito obrigada.

Aos amigos e companheiros de Laboratório, Gabriela Petroceli, Josiane Pessanha, Nathália Duarte, Dalvânia Pinho e Leandro Fernandes, obrigada pelo companheirismo ao longo dos anos.

A todos que, direta ou indiretamente, contribuíram para realização deste trabalho e deste sonho, o meu muito obrigada.

Sumário

Índice de figuras	ix
Índice de tabelas	x
Lista de abreviaturas	xi
Resumo	xiii
Abstract	xiv
1. Introdução	1
1.1. Aedes aegypti	1
1.2. Principais doenças transmitidas por A. aegypti	2
1.2.1. Dengue	2
1.2.2. Zika	4
1.2.3. Chikungunya	6
1.3. Canal alimentar e digestão em mosquitos	6
1.4. Bactérias intestinais	8
1.4.1. Mecanismo de captação de ferro e heme por bactérias	11
2. Objetivos	14
2.1. Objetivo geral	14
2.1.1. Objetivos específicos	14
3. Material e métodos	15
3.1. Microrganismos utilizados no trabalho	15
3.2. Sequenciamento genômico	15
3.3. Meios e condição de cultivo	16
3.4. Análise proteômica	17
3.4.1. Obtenção de biomassa bacteriana	17
3.4.2. Extração de proteínas	17
3.4.3. Digestão proteica	

3.4.4. Análise LC-MS/MS	. 18
3.4.5. Bioinformática	. 20
4. Resultados e discussão	. 21
4.1. Serratia plymuthica	. 21
4.1.1. Identificação de proteínas por LC-MS / MS de S. plymuthica	. 24
4.1.2. Classificação funcional das DAPs	. 25
4.2. Kosakonia sacchari	. 38
4.2.1. Identificação de proteínas por LC-MS / MS de K. sacchari	. 41
4.2.2. Classificação funcional das DAPs	. 45
5. Conclusões	. 54
6. Referências Bibliográficas	. 55
Apêndice	. 66

Índice de figuras

Figura 1. Ciclo de vida de <i>A. aegypti.</i>	2
Figura 2. Número de casos prováveis de dengue de 2011 a 2017	4
Figura 3. Casos prováveis de dengue	4
Figura 4. Casos prováveis de febre pelo Zika vírus	5
Figura 5. Casos prováveis de febre de Chikungunya	6
Figura 6. Esquema geral do canal alimentar dos mosquitos	7
Figura 7. Mecanismos de utilização de heme por bactérias	. 13
Figura 8. Crescimento de S. plymuthica em meio sólido	. 21
Figura 9. Coloração das colônias de <i>S. plymuthica</i>	. 22
Figura 10. Crescimento de <i>S. plymuthica</i>	. 23
Figura 11. Cinética de crescimento de <i>S. plymuthica</i>	. 24
Figura 12. Classificação funcional das proteínas diferencialmente acumula	das
em <i>S. plymuthica</i> cultivada na presença de heme	. 30
Figura 13. Localização celular das proteínas diferencialmente acumuladas	S.
<i>plymuthica</i> cultivada na presença de heme	. 32
Figura 14. Análise filogenética do sequenciamento da região do gene 16S rR	NA
do isolado bacteriano de <i>A. aegypti</i>	. 38
Figura 15. Crescimento de <i>K. sacchari</i> em meio sólido	. 39
Figura 16. Coloração das colônias de <i>K. sacchari</i>	. 39
Figura 17. Crescimento de <i>K. sacchari</i> em meio sólido	. 40
Figura 18. Cinética de crescimento de <i>K. sacchari</i>	. 41
Figura 19. Classificação funcional das DAPs classificadas em processo biológ	jico
em <i>K. sacchari</i> cultivadas na presença de heme	. 46
Figura 20. Classificação funcional das DAPs em K. sacchari em compone	nte
celular e função molecular	. 48

Índice de tabelas

Tabela 1. Proteínas diferencialmente acumuladas em S. plymuthic	a com
localização subcelular	26
Tabela 2. Proteínas diferencialmente acumuladas em K. sacchari con	n suas
respectivas localizações subcelular.	42

- °C Grau Celsius
- **µL** Microlitros
- **µM –** Micromolar
- D.O Densidade óptica
- **DAPs -** Differentially Accumulated Proteins
- **DTT Ditiotreitol**
- g Gramas
- h Horas
- L Litros
- M Molar
- min Minutos
- mL Mililitros
- mm Milímetros
- **mM –** Milimolar
- NaCI Cloreto de sódio
- NaH₂PO₄ Fosfato de sódio monobásico
- ng Nanogramas
- pb Pares de base
- PCR Reação em Cadeia da Polimerase
- pH Potencial hidrogeniônico
- PMSF Fenilmetanosulfonilfluorídrico
- ppm Partes por milhão

- rpm Rotações por minuto
- **s –** Segundos
- SE Semana epidemiológica
- sp. Espécie não identificada
- TCA Ácido tricloroacético
- TFA Ácido trifluoroacético
- UV Ultravioleta
- V Volts

Resumo

Os mosquitos enfrentam um desafio fisiológico importante durante a digestão sanguínea que é a liberação de grande quantidade de heme no lúmen intestinal. Heme, na sua forma livre, é tóxico e tem a capacidade de gerar radicais livres e promover a oxidação de biomoléculas tais como ácidos nucléicos, proteínas e lipídios. Os mosquitos desenvolveram uma série de mecanismos adaptativos para enfrentar o estresse oxidativo causado por ferro-heme. Ao longo da digestão também ocorre um crescimento exponencial das bactérias presentes no intestino médio desses insetos coincidindo com o aumento da concentração de heme no lúmen intestinal. Bactérias intestinais de mosquitos, em geral, são muito resistentes a altas concentrações de heme. Nossa hipótese é que essas bactérias intestinais tenham um papel auxiliar no bloqueio da atividade tóxica deste grupo prostético. Serratia plymuthica e Kosakonia sacchari, foram previamente isoladas de intestino médio de Aedes aegypti. Estas bactérias foram cultivadas em meio de cultura suplementado com três fontes de heme: sangue humano, hemina ou hemoglobina bovina. Ambas foram capazes de crescer nestes meios. Colônias de S. plymuthica escurecem e apresentam um halo translúcido ao seu redor quando cultivada na presença de hemina, evidenciando sua capacidade de incorporar heme. As bactérias também foram capazes de crescer em meios de cultivo sólido contendo sulfato ferroso ou cloreto férrico. Análise proteômica comparativa da biomassa dessas bactérias cultivadas em meio suplementado com 5 mM de hemina foi realizada através da técnica LC-MS/MS. Esta abordagem permitiu a identificação de 436 proteínas de S. plymuthica. Dentre essas proteinas, 28 foram DAPs (Differentially Accumulated Proteins) aumentadas destacando-se as proteínas de estresse universal, transportador ABC e um regulador transcricional. Também observou-se 54 DAPs diminuídas sendo as mais relevantes uma proteína ribossomal 50S, superóxido dismutase e uma aldolase. Em K. sacchari foram identificadas 749 proteínas, destas 18 foram DAPs aumentadas, se destacando a proteína catalase dependente de manganês e uma metaloproteínase. Entre as 39 DAPs reduzidas na presença de heme se destacam duas flagelinas, liase, galactoquinase, 50S ribossomal e peroxirredoxina. Nossos resultados mostraram, que as proteínas das bactérias S. plymuthica e K. sacchari são moduladas nas condições de cultivo estudada. A maioria das proteínas diferencialmente abundantes está envolvida no metabolismo energético, síntese proteica e de resposta ao estresse. S. plymuthica e K. sacchari necessitaram reprogramar suas redes metabólicas para lidar com o estresse, e também eliminar as espécies reativas de oxigênio causadas pelo heme. O estudo da microbiota revela a importância das bactérias para a fisiologia do inseto vetor o que pode possibilitar a descoberta de novas estratégias de controle de doenças transmitidas por insetos.

Palavras chaves: Aedes aegypti, intestino médio, bactérias, heme, estresse oxidativo.

Abstract

Mosquitoes face an important physiological challenge during blood digestion which is the release of large amounts of heme into the intestinal lumen. Heme, in its free form, is toxic and has the ability to generate free radicals and promote the oxidation of biomolecules such as nucleic acids, proteins and lipids. Mosquitoes have developed a number of adaptive mechanisms to cope with the oxidative stress caused by iron-heme. Throughout the digestion also occurs an exponential growth of the bacteria present in the midgut of these insects coinciding with the increase of heme concentration in the intestinal lumen. Intestinal mosquito bacteria, in general, are very resistant to high concentrations of heme. Our hypothesis is that these intestinal bacteria have an auxiliary role in blocking the toxic activity of this prosthetic group. Serratia plymuthica and Kosakonia sacchari, were previously isolated from the midgut of Aedes aegypti. These bacteria were cultured in culture medium supplemented with three sources of heme: human blood, hemin or bovine hemoglobin. Both were able to grow in these media. Colonies of S. plymuthica darken and present a translucent halo around them when cultured in the presence of hemin, evidencing their ability to incorporate heme. Bacteria were also able to grow in solid culture media containing ferrous sulfate or ferric chloride. Comparative proteomic analysis of the biomass of these bacteria cultured in medium supplemented with 5 mM hemin was performed using the LC-MS / MS technique. This approach allowed the identification of 436 proteins of S. plymuthica. Among these, 28 were increased DAPs (Differentially Accumulated Proteins), with emphasis on the universal stress proteins, ABC transporter and a transcriptional regulator. We also observed 54 decreased DAPs, the most relevant being a 50S ribosomal protein, superoxide dismutase and an aldolase. In K. sacchari, 749 proteins were identified, of which 18 were increased DAPs, highlighting the manganese-dependent catalase protein and a metalloproteinase. Among the 39 reduced DAPs in the presence of heme are two flagellins, lyase, galactokinase, 50S ribosomal and peroxiredoxin. Our results showed that the proteins of S. plymuthica and K. sacchari are modulated under the conditions studied. Most differentially abundant proteins are involved in energy metabolism, protein synthesis and stress response. S. plymuthica and K. sacchari needed to reprogram their metabolic networks to deal with stress, as well as to eliminate the reactive species of oxygen caused by heme. The study of the microbiota reveals the importance of the bacteria to the physiology of the insect vector, which may allow the discovery of new insect control strategies.

Keywords: Aedes aegypti, midgut, bacteria, heme, oxidative stress.

1. Introdução

1.1. Aedes aegypti

O mosquito Aedes aegypti (Linnaeus) pertence ao Filo Arthropoda, Subfilo Hexapoda, Classe Insecta, Ordem Diptera, Família Culicidae, Grupo Scutellaris, Gênero Aedes, Subgênero Stegomyia (Consoli e Oliveira, 1994). Mosquitos do gênero Aedes possuem uma ampla distribuição, sendo encontrados em regiões com climas tropicais e subtropicais, onde as condições do clima favorecem a sua proliferação.

O mosquito *A. aegypti* tem preferência acentuada por sangue humano e a ingestão de sangue está relacionada com o desenvolvimento de ovos que são ovipostos entre 3 a 5 dias após a alimentação. O repasto sanguíneo também contribui para aumentar a longevidade das fêmeas (Consoli e Oliveira, 1994; Tauil, 2001). *A. aegypti*, como os demais dípteros, são holometábolos, ou seja, apresentam em seu ciclo de vida quatro estágios de desenvolvimento distintos: ovo, larva, pupa e adulto (Matheson, 1930), como mostrado na Figura 1. Durante seu desenvolvimento o mosquito passa por quatro estádios larvais. No final de cada estádio, a larva troca seu exoesqueleto e aumenta em tamanho. Assim sendo, os mosquitos sofrem uma completa metamorfose, isto é, do ovo eclode uma larva que se alimenta e cresce; e a larva quando madura, transforma-se em pupa da qual irá emergir o adulto.

Figura 1. Ciclo de vida de A. aegypti. Adaptado: https://dengue.cecom.unicamp.br/?page_id=215.

Como nos demais insetos, os mosquitos têm seu corpo segmentado e revestido pelo exoesqueleto ou cutícula, formado principalmente por quitina. Tais segmentos endurecidos e as membranas que os unem delimitam a cavidade chamada hemocele, repleta de hemolinfa, líquido que banha os órgãos em geral. O corpo do adulto é nitidamente dividido em cabeça, tórax e abdômen. Na cabeça encontram-se os principais órgãos dos sentidos e no tórax estão os apêndices especializados na locomoção (as patas e as asas). O abdômen inclui a maior parte dos órgãos internos, dos aparelhos reprodutor, digestivo e excretor (Consoli e Oliveira, 1994).

1.2. Principais doenças transmitidas por A. aegypti

1.2.1. Dengue

A dengue é uma doença viral sistêmica transmitida entre humanos por mosquitos do gênero *Aedes* (Bhatt *et al.*, 2013). A dengue ocorre em áreas tropicais e subtropicais cujas condições climáticas favorecem a proliferação do inseto vetor.

A dengue é causada por um arbovírus (**a**rthropode **b**orne **v**iruses) do gênero *Flavivirus* da família Flaviviridae. Existem quatro sorotipos distintos, mas intimamente relacionados, do vírus causador da dengue (DEN-1, DEN2, DEN-3 e DEN-4). Ainda não existe tratamento especifico para dengue. A prevenção e o controle da dengue dependem apenas de medidas efetivas de controle do vetor (WHO, 2012). A transmissão da dengue ocorre por meio da interação "humano infectado - *Aedes sp.* - humano suscetível" (Gubler e Clark, 1995).

Nos últimos anos, a incidência de dengue aumentou de forma significativa ao redor do mundo, tornando-se uma grande preocupação internacional em saúde pública. As manifestações da dengue variam desde uma infecção assintomática até uma doença grave, a dengie hemorrágica. Os sintomas da dengue incluem febre alta, dores no corpo principalmente nas articulações, dor de cabeça, dor no fundo dos olhos dentre outros. Na dengue hemorrágica o quadro clínico pode se agravar rapidamente, os sintomas iniciais são os mesmos de uma dengue clássica, após o período febril podem surgir manifestações como dor abdominais, vômitos persistentes, pele pálida, fria e úmida, sangramento pelo nariz, boca e gengivas, manchas vermelhas na pele, sonolência, agitação e confusão mental, sede excessiva e boca seca, pulso rápido e fraco, dificuldade respiratória, perda de consciência, o quadro pode se agarvar e levar a insuficiência respiratória e choque o que pode levar ao óbito.

O tratamento da dengue ainda é restrito em amior parte pelo controle do inseto vetor. No ano de 2015 foi aprovada no Barsil a vacina Dengvaxia produzida pelo laboratório Sanofi-Aventis. A ANVISA recomenda que pessoas soronegativas, ou seja, aquelas pessoas que nunca tiveram contato com o vírus.

Com os dados obtidos dos boletins do Ministério da Saúde, é possível obervar o número de casos prováveis de dengue nos anos de 2011 a 2017, esses dados podem vistos na Figura 2. Segundo o boletim epidemiológico do Ministério da Saúde, em 2017 foram registrados 251.711 casos prováveis de dengue, e em 2016, 1.483.623. Em 2018, até a semana epidemiológica (SE) 8 (31/12/2017 a 24/02/2018), foram registrados 38.043 casos prováveis de dengue no país, como pode ser visto na Figura 3.

Figura 2. Número de casos prováveis de dengue de 2011 a 2017. Fonte: Ministério da Saúde.

Figura 3. Casos prováveis de dengue. Agrupados por semana epidemiológica de início de sintomas, Brasil, 2016, 2017 e 2018. Fonte: Ministério da Saúde.

1.2.2. Zika

O vírus Zika, pertencente ao gênero *Flavivirus*, família Flaviviridae e foi isolado pela primeira vez em macacos Rhesus no ano de 1947 (Dick *et al.,* 1952). Por muito tempo o vírus foi descrito como causador de infecções humanas esporádicas na África e Ásia, até o ano de 2007 quando ocorreu uma epidemia

de febre Zika na Ilha Yap, na Micronésia (Duffy *et al.,* 2009). Os sintomas de Zika incluem febre baixa, dor de cabeça, dores leves nas articulações, manchas vermelhas na pele, coceira e vermelhidão nos olhos.

No Brasil, foi confirmado em abril de 2015 o primeiro caso autóctone de febre pelo vírus Zika. Dezoito dos 27 estados brasileiros relataram casos de Zika (WHO, 2015). Em setembro de 2015 iciaram-se os registros de bebês nascidos com microcefalia em áreas afetas por Zika vírus, este número aumentou cerca de 20 vezes. O Ministério da Saúde confirmou a relação entre infecção do vírus Zika e microcefalia em novembro de 2016. Nos exames realizados em amostras de sangue e tecidos de um bebê nascido no Ceará, com microcefalia foi detectada a presença do vírus Zika (Ministério da Saúde., 2018).

No primeiro boletim epidemiológico do Ministério da Saúde, no qual a febre por Zika foi incluída, foram notificados até a semana 13 de 2016, 91.387 casos prováveis distribuídos em 1.359 municípios. Também foram confirmados três óbitos por vírus Zika no país em três municípios diferentes: São Luís/MA, Benevides/PA e Serrinha/RN. Ao final de 2016, foram notificados um total de 216.207 casos e, em 2017, foram registrados 17.594 casos, como pode ser observado na Figura 4.

Figura 4. Casos prováveis de febre pelo Zika vírus. Agrupados por semana epidemiológica de início de sintomas, Brasil, 2017 e 2018. Fonte: Ministério da Saúde.

1.2.3. Chikungunya

A febre Chikungunya é causada por um arbovírus pertencente ao gênero *Alphavirus*, família Togaviridae. O vírus foi isolado pela primeira vez em 1953 na Tanzânia (Pialoux *et al.,* 2007). Os sintomas da febre Chikungunya incluem febre, dores nas articulações dos pés e mãos, também podem ocorrer dores de cabeça, dores musculares e manchas vermelhas na pele.

No Brasil, o primeiro caso ocorreu no Amapá em 2014, desde então a doença se alastrou de forma rápida. No mesmo ano, foram registrados 3.655 casos autóctones suspeitos de febre de Chikungunya, sendo confirmados 2.753 casos. Em 2015, foram 20.661 casos suspeitos e 7.823 confirmados. Em 2016, foram 277.882 casos prováveis, e em 2017, 185.854 casos e em 2018 já foram registrados 9.493 casos prováveis de febre Chikungunya no país. A Figura 5 mostra os dados dos casos de febre Chikungunya nos anos de 2016 a 2018 no Brasil (Ministério da Saúde, 2018).

Figura 5. Casos prováveis de febre de Chikungunya. Agrupados por semana epidemiológica de início de sintomas, Brasil, 2016, 2017 e 2018. Fonte: Ministério da Saúde.

1.3. Canal alimentar e digestão em mosquitos

O canal alimentar dos mosquitos é um tubo que se estende da boca até o ânus e é formado por uma camada de células contendo uma lâmina basal acelular, voltada para a hemocele. As três regiões do canal são: intestino anterior, intestino médio e intestino posterior (Romoser, 1996), como pode ser visto na Figura 6. Cada uma das regiões possui funções diferentes. O intestino anterior é responsável pela ingestão do alimento. O intestino médio é altamente elástico e está adaptado à secreção e absorção. O intestino médio é sítio da digestão do sangue em insetos hematófagos, a cor vermelha está representando o sangue no intestino médio, um processo que dá início a eventos fisiológicos importantes, tais como a vitelogênese e a reprodução, e é também considerado o principal sítio de interação entre o inseto e os patógenos que ele transmite. É longitudinalmente dividido em uma região anterior, em forma de tubo, e uma região posterior, em forma de saco (Billingsley e Lehane, 1996). O intestino médio e dos túbulos de Malpighi (Consoli e Oliveira, 1994). Os divertículos são resposáveis pelo armazenamento das soluções açucaradas de origel vegetal, mostrado em destaque amarelo na Figura 6.

Figura 6. Esquema geral do canal alimentar dos mosquitos. O trato intestinal é dividido em: intestino anterior, intestino médio e intestino posterior. Adaptado de Gusmão *et al.*, (2007).

O sangue é constituído por duas proteínas majoritárias, a albumina e a hemoglobina que, juntas, correspondem a mais de 90% do seu total de proteínas. A albumina apresenta-se solúvel no plasma e a hemoglobina compartimentalizada no interior das hemácias. A hemoglobina é a proteína mais

abundante do sangue e sua degradação resulta na liberação gradual de heme no lúmen intestinal o qual no final da digestão, pode atingir a concentração de 10 mM (Pascoa *et al.,* 2002).

Este grupo prostético é um poderoso gerador de espécies reativas de oxigênio por possuir um átomo de ferro no centro de seu anel porfirínico (Graça-Souza *et al.,* 2006). Este metal de transição catalisa a formação do radical hidroxila que é altamente reativo e pode oxidar de forma indiscriminada e irreversível as diferentes moléculas biológicas (Sadrzadeh *et al.,* 1984). Em concentrações elevadas o Ferro-heme é capaz de comprometer a integridade das membranas celulares, pela peroxidação de seus fosfolipídios constituintes (Schmitt *et al.,* 1993).

Muitos artrópodes possuem mecanismos de detoxificação de heme. As principais defesas de concentram no intestino, dentre eles incluem, agregação, degradação e ação de enzimas antioxidantes. No hemíptero *Rhodnius prolixus*, vetor da doença de Chagas, a detoxificação do heme ocorre basicamente por três mecanismos distintos: através de uma proteína capaz de ligar o heme denominada RHBP (Dansa-Petretski *et al.,* 1995; Oliveira *et al.,* 1995), através de uma enzima que degrada o heme, denominada heme oxigenase (Paiva-Silva *et al.,* 2006) e principalmente através de um agregado cristalino de heme intestinal conhecido como hemozoína (Oliveira *et al.,* 1999).

Nosso grupo demostrou que em *A. aegypti* o heme gerado durante o processo digestivo se liga à matriz peritrófica, que é capaz de reter, no lúmen intestinal, praticamente todo heme gerado durante a digestão sanguínea (Pascoa *et al.,* 2002).

1.4. Bactérias intestinais

Um fato biológico marcante durante a digestão do sangue é a paulatina colonização do intestino médio dos mosquitos por bactérias intestinais que se apresentam livres ou associadas à matriz peritrófica e ao epitélio intestinal (Gusmão *et al.,* 2010). Desta forma, as bactérias intestinais de mosquitos precisam enfrentar os mesmos desafios metabólicos de seus hospedeiros para a utilização do sangue como fonte nutricional para a sua multiplicação. Estes microrganismos são muito bem-sucedidos ao longo deste processo, visto que

crescem exponencialmente no fim da digestão, preenchendo todo o lúmen intestinal (Gusmão *et al.,* 2010).

As interações entre insetos e bactérias intestinais mostram importantes benefícios relacionados a nutrição, reprodução, desenvolvimento e proteção contra inimigos (Engel e Moran, 2013). Em mosquitos, diversos artigos mostraram que a microbiota intestinal tem também grande importância na capacidade vetorial (Dennison *et al.,* 2014, 2016). Gaio e colaboradores (2011b) demonstraram que a redução da microbiota intestinal de *A. aegypti* reduz sobremaneira a digestão e fertilidade deste inseto.

Três fatos importantes ocorrem no intestino médio de *A. aegypti* ao final da digestão do sangue: a degradação da matriz peritrófica com a liberação de seus constituintes, uma maior concentração de ferro-heme livre e a completa colonização por parte das bactérias intestinais. Assim, podemos inferir que as espécies de bactérias que estão presentes durante esta fase, são altamente adaptadas ao estresse oxidativo e, como consequência, teriam papel auxiliar importante para a homeostase oxidativa do mosquito. Vale ressaltar que a diversidade bacteriana é reduzida durante a digestão sanguínea (Wang *et al.,* 2011).

A classe Gammaproteobacteria é predominante em todas as espécies de mosquitos já estudadas (Ramirez *et al.*, 2012; Moro *et al.*, 2013; Coon *et al.*, 2016; Muturi *et al.*, 2016; Sterkel *et al.*, 2017). Diversas espécies bacterianas já foram isoladas de *A. aegypti*, como *Asaia, Aeromonas, Pantoea, Serratia, Enterobacter, Klebsiella, Cryseobacterium* dentre outras (Gusmão *et al.*, 2010; Ramirez *et al.*, 2012; Terenius *et al.*, 2012; Yadav *et al.*, 2015; Audsley *et al.*, 2017).

Neste trabalho utilizamos duas espécies bacterianas isoladas do intestino médio de *A. aegypti: Serratia plymuthica* e *Kosakonia sacchari.* Elas pertencem ao filo Proteobacteria, classe Gammaproteobacteria, ordem Enterobacteriales e família Enterobacteriaceae.

Bactérias do gênero *Serratia* são bacilos Gram-negativos e são considerados patógenos oportunistas do homem, plantas e insetos (Harris *et al.,* 2004). *Serratia sp.* já foram isoladas de solo, água, plantas e ar (Grimont e Grimont, 2006). A capacidade de algumas cepas de *S. marcescens* em colonizar uma vasta gama de nichos ecológicos foi associada à produção de uma série de

moléculas que são secretadas por esta bactéria, incluindo quitinases, proteases, lipases, nucleases, bacteriocinas e surfactantes (Braun e Schmitz, 1980; Clegg e Allen, 1985; Yanagida et al., 1986; Hines et al., 1988; Matsuyama et al., 1995). Algumas espécies de Serratia são importantes por causarem infecções em pacientes debilitados. Serratia marcescens é umas das mais importantes do gênero, e tem sido frequentemente relatados casos de infecções em unidades de terapia intensiva, pneumonias, infecções nosocomiais e até mesmo endocardites (Eisenstein, 1990). É incomum casos de infecções graves em humanos por Serratia plymuthica, mas existem relatos de casos de infecções nosocomiais e algumas infeções associadas ao catéter venoso e infecção urinária (Carrero et al., 1995; Jain et al., 2017). Espécies de S. plymuthica têm sido estudadas para identificação e caracterização de quitinases (Frankowski *et* al., 2001; Jankiewicz e Brzezinska, 2015). S. plymuthica MP44 isolada da rizosfera, produz duas quitinases. Os autores propuseram que estas quitinases podem indicar um efeito fungicida e também propriedades fungistáticas, e que esta cepa de S. plymuthica pode ser um agente de biocontrole eficaz (Jankiewicz e Brzezinska, 2015).

Espécies de *Serratia* já foram isoladas do intestino de espécies de insetos hematófagos, tais como flebotomíneos e triatomíneos (Moraes *et al.,* 2008). Espécies deste gênero também já foram identificadas em mosquitos anofelinos (Rani *et al.,* 2009) e foi a bactéria predominante do intestino médio de *A. aegypti* (Gusmão *et al.,* 2007).

Cinco isolados bacterianos, promotores de crescimento de cana-deaçúcar, foram descritos e classificados como uma nova espécie: *Enterobacter sacchari* (Zhu *et al.*, 2013). Posteriormente, a espécie foi renomeada como *Kosakonia sacchari* (Chen *et al.*, 2014). Estas bactérias são bastonetes móveis, Gram-negativos, não formadores de esporos e fixadoras de nitrogênio. Por ser uma bactéria recentemente descrita. Não há relatos, até o momento, de sua presença em insetos. No entanto, *Enterobacter sp.* já foi descrita em intestino de larvas de *Anopheles stephensi* (Chavshin *et al.*, 2012), *Culex quinquefasciatus* (Alves *et al.*, 2010), *Aedes albopictus* (Moro *et al.*, 2013) e de intestino médio de *A. aegypti* (Gusmão *et al.*, 2007).

1.4.1. Mecanismo de captação de ferro e heme por bactérias

O ferro é abundante na Terra e o metabolismo celular depende deste elemento. Na literatura, relatam-se concentrações na faixa de 0,3 a 6 µM de ferro para o crescimento ótimo de um microrganismo (Vasil e Ochsner, 1999; Zhu *et al.,* 2013; Seo *et al.,* 2014; Roy e Griffith, 2017). É necessário que os níveis de ferro e de outros elementos essenciais ao crescimento bacteriano sejam mantidos em níveis intracelulares adequados de forma a evitar a privação ou excesso destes metais (Klein e Lewinson, 2011).

Algumas bactérias, em geral bactérias patogênicas, usam heme como fonte de ferro (Lee, 1995; Ratliff *et al.,* 2001). Alguns mecanismos foram desenvolvidos por algumas bactérias para absorção de ferro do ambiente, como, por exemplo, a secreção de sideróforos para quelação do ferro do ambiente (Raymond *et al.,* 2003). Um segundo mecanismo encontrado somente em bactérias patogênicas é a captura de ferro do hospedeiro, através da captura do ferro presente na ferritina e lactoferrina, por exemplo, (Braun, 2001). O terceiro mecanismo também identificado na sua maior parte em bactérias patogênicas, é a assimilação de ferro através de heme e do heme ligado a proteínas, como hemoglobina e hemopexina (Tong e Guo, 2009).

Na maior parte das bactérias Gram-negativas a utilização de heme é mediada por receptores de membrana específicos, que hospedam proteínas que são capazes de sequestrar o heme. Algumas bactérias Gram-negativas produzem proteínas extracelulares que ligam heme. Essas proteínas conseguem "extrair" o heme da hemoglobina, passam para uma outra proteína que transporta o heme para dentro da célula. A Figura 7 mostra o processo de captação de heme por bactérias Gram-negativas (A) e Gram-positivas (B) segundo Huang e Wilks (2017).

O sistema de captação de heme melhor caracterizado é o de Serratia marcescens. Serratia marcescens secreta a proteína Hasa (sistema de aquisição de heme) que capta heme da hemoglobina e entrega a HasR (receptor de mebrana externa) (Ghigo *et al.,* 1997; Létoffé *et al.,* 1999). Uma vez dentro da célula o anel tetrapirrólico do heme é clivado pela heme oxigenase a fim de liberar o ferro (Tong e Guo, 2009).

O sistema Hasa (sistema de aquisição de heme) já foi encontrado em Serratia marcescens (Letoffe et al., 1994; Arnoux et al., 2000), Pseudomonas aeruginosa (Letoffe et al., 1994; Létoffé et al., 2000), Pseudomonas fluorescens (Idei et al., 1999; Létoffé et al., 2000), Yersinia enterocolitica (Rossignol et al., 2001).

Nas bactérias Gram-positivas, sabe-se que a bactéria *Staphylococcus aureus* possui um sistema de aquisição de heme, para adquirir ferro durante o processo de infecção, através da secreção de hemolisina (moléculas que são capazes de formar poros na membrana do eritrócito, causando lise) para liberação da hemoglobina (Mazmanian *et al.,* 2003). Após a liberação da hemoglobina o transporte do heme e do ferro é feito por proteínas de membrana e proteínas citoplasmáticas.

Em *Staphylococcus aureus* o transporte de heme é mediado por seis proteínas, três delas de superfície exposta. IsdA, IsdB e IsdC estão ancoradas as mureínas presentes na parede celular, as proteínas IsdE, são lipoproteínas, IsdD são permeases e IsdF que são ATPases, juntas elas formam um complexo transportador citoplasma-membrana (Marraffini *et al.*, 2006). A IsdB se liga a hemoglobina, libera o heme e entrega-o ao IsdA que está mais interna à parede celular. A partir daí o heme é transportado para IsdC que está dentro da parede celular, posteriormente passa para IsdE que está ancorada à membrana e a partir daí passa para IsdD e IsdF que disponibilizam o ferro para a célula (Marraffini *et al.*, 2006). Estudos mostram que é possível que outras bactérias Gram-positivas, como *Listeria monocytogenes, Bacillus halodurans, e Bacillus anthracis,* também possuam genes que codifiquem para heme-proteínas de ligação (Cabanes *et al.*, 2002).

Figura 7. Mecanismos de utilização de heme por bactérias. Visão geral do transporte de heme em bactérias Gram-positivas e Gram-negativas. Em a Pseudomonas aeruginosa como modelo para o transporte do heme em bactérias Gram-negativas. O heme é ligado por HasA ou extraído da hemoglobina (Hb) para o transporte através da membrana externa (OM) pelos receptores dependentes de TonB, HasR e PhuR, respectivamente. O heme é então transportado para o transportador ABC (PhuUV) pela proteína de ligação periplasmática (PhuT) e transportado ativamente através da membrana interna (IM) por PhuUV. O heme é seguestrado pela proteína de ligação heme citoplasmática (PhuS) para transferência para heme oxigenase (HemO). Heme é oxidativamente clivado por HemO, liberando ferro, monóxido de carbono (CO) e biliverdina IX β / δ . Em **b** Staphylococcus aureus como um modelo para transporte de heme em bactérias Gram-positivas. O heme é transferido através do parede celular pelas lipoproteínas, IsdB, IsdH, IsdA e IsdC (representadas pelas linhas vermelhas traceiadas). Os receptores IsdB / IsdH expostos à superfície retiram heme de Hb ou Hbhaptoglobina (Hp), respectivamente, e o heme é sequencialmente transferido para IsdA e IsdC. O IsdC transfere heme para o IsdE próximo a membrana para transporte através da membrana periplasmática pelo transportador ABC IsdDF. O heme transportado para o citoplasma é degradado pelas hemagenases não-canônicas da IsdG / I para liberar ferro, estafilomina IX β / δ e CH2O. Adaptado de Huang e Wilks (2017).

Alguns autores acreditam que a incorporação de heme por bactérias esteja ligada a sua virulência (Litwin e Calderwood, 1993; Olczak *et al.,* 2001). Acredita-se que o heme pode fornecer as quantidades de ferro necessários para que fatores de virulência, como as citotoxinas, possam se expressar (Litwin e Calderwood, 1993).

Embora o heme tenha sido reconhecido como um "marcador" de virulência (Perry e Brubaker, 1979; Kay *et al.*, 1985; Daskaleros e Payne, 1987; Stugard *et al.*, 1989; Perry *et al.*, 1993) a base molecular para esta característica ainda é desconhecida.

2. Objetivos

2.1. Objetivo geral

Este trabalho teve como objetivo avaliar o crescimento de Serratia plymuthica e Kosakonia sacchari em meio de cultivo contendo diferentes concentrações ferro e heme e verificar quais proteínas seriam alteradas nestas bactérias cultivadas em meio de cultura contendo elevada concentração de hemina.

2.1.1. Objetivos específicos

• Verificar a atividade hemolítica dos isolados bacterianos utilizando-se meio de cultivo sólido suplementado com sangue;

• Verificar o crescimento das células bacterianas em meio de cultura líquido contendo diferentes concentrações de hemina

 Analisar o crescimento das células bacterianas em meio de cultivo sólido contendo cloreto férrico e sulfato de ferro;

• Avaliar o crescimento em meio de cultura contendo sangue, heme e hemoglobina;

• Analisar as proteínas diferencialmente abundantes nas células bacterianas quando cultivadas em meio de cultura contendo 5 mM de heme.

3. Material e métodos

3.1. Microrganismos utilizados no trabalho

Foram utilizadas duas espécies de bactérias isoladas do intestino médio de *A. aegypti* isoladas e identificadas por Gaio (2011a).

A fim de confirmar a identificação molecular destas bactérias, realizamos uma nova análise no *Blast* com as sequências de DNA obtidas por Gaio (2011a). A bactéria *S. plymuthica* teve a sua identidade confirmada, ao passo que o isolado 17 não se identificava mais como *Aeromonas hydrophila*. Desta forma, realizou-se um novo processo de sequenciamento deste último isolado, como descrito abaixo.

3.2. Sequenciamento genômico

Células bacterianas foram enviadas para sequenciamento na Empresa GenOne Soluções em Biotecnologia. Para extração de DNA foi utilizado o Bacterial Genomic Miniprep Kit - Sigma Aldrich - NA2120. Os ciclos de PCR foram: 96 °C 5 min, (96 °C 30s, 55 °C 30s, 72 °C 1min30s) 25 ciclos e desnaturação final por 72 °C 5min. Os *primers* utilizados foram 27f (AGAGTTTGATCCTGGCTCAG) e 1492r (GGTTACCTTGTTACGACTT). Para purificação dos produtos de PCR foi utilizado o GFX[™] 96 PCR Purif Kit - GE Healthcare, 28-9034-45. O sequenciamento foi realizado no ABI 3730xl DNA Analyzer com reagentes ABI Bigdye3.1. Para geração do *contig* foi utilizado o *software* DNA baser Assembler (http://www.dnabaser.com/).

As sequências obtidas pelo sequenciamento foram analisadas e alinhadas utilizando o *software* Bio Edit (Hall, 2001) para a geração de sequências consenso. As sequências consenso foram analisadas e comparadas pelo banco de dados do NCBI (*National Center for Biotechnology Information*) utilizando o programa BLASTn (*Basic Local Alignment Searrch Tool*) (Altschul *et al.*, 1997) para verificar a similaridade entre as sequências.

Para análise filogenética das sequências consenso, a fim de verificar a história evolutiva do isolado foi utilizado o método Neighbor-Joining (Saitou e Nei, 1987). As distâncias evolutivas foram calculadas usando o método Kimura 2-parâmetros (Kimura, 1980). Todas as posições que continham lacunas e falta de dados foram eliminadas do conjunto de dados. A análise filogenética foi

realizada utilizando o software MEGA (Molecular Evolutionary Genetics Analysis), versão 7.0 (Tamura et al., 2007).

3.3. Meios e condição de cultivo

O meio de cultivo utilizado neste trabalho, foi o meio CASO (MC) modificado por Mota (2016). O meio é composto por (em g.L⁻¹) 15,0 de peptona de caseína; 2,5 de fosfato de potássio; 5,0 de cloreto de sódio; 10,0 de glicose. Ágar foi adicionado ao meio de cultivo, quando necessário, a 15 g.L⁻¹.

Para reativação das culturas bacterianas, mantidas em freezer – 70 °C, 250 µL a cultura estoque foram inoculados em 25mL de meio de cultura e incubados em estufa a 28 °C por 12 horas. Após este período, as culturas bacterianas anteriores foram transferidas para frascos Erlenmeyer contendo 50mL obedecendo a proporção de 5% (v/v).

A solução de hemina foram preparadas com NaOH 0,1 M, tamponada com PBS – tampão fosfato salino (NaH₂PO₄ 0,5 M; Na₂HPO₄ 0,5 M; NaCl). As soluções de cloreto férrico e sulfato de ferro foram preparados em água destilada. Foram adicionados aos meios os devidos volumes, para que os meios ficassem em concentrações de 5 e 10 μ M, e 0,5, 1 e 5 mM. Em seguida os meios de cultura foram autoclavados por 15 min a 121 °C e após o resfriamento foram distribuídos em placas de Petri após a autoclavação, 20 mL por placa de Petri (90x15mm).

Para a preparação dos meios de cultivo contendo sangue ou hemoglobina, o meio MC foi previamente autoclavado e, posteriormente, estes componentes foram adicionados de modo a obter as concentrações de 4% e 4 mg/mL, respectivamente. A hemoglobina foi solubilizada em água destilada esterilizada. Ambos foram adicionados quando o meio de cultivo atingia a temperatura entre 55-60 °C. Os meios foram assepticamente distribuídos em placas de Petri (90x15mm), na proporção de 20 mL/placa.

Uma alíquota de 10 µL das culturas bacterianas foram inoculadas no centro de cada placa de Petri e estas foram incubadas na estufa a 28°C por 48 h. O crescimento bacteriano também foi acompanhado ao longo de 18 horas no leitor de placas Bioscreen C[™].

Para avaliação do crescimento em meio líquido, uma alçada das colônias obtidas em meio MC sólido, foram transferidas para frascos contendo 20 mL de

meio PGP composto (em g.L⁻¹) de 5,0 de peptona de caseína, 2,0 de fosfato de potássio e 10 mL de glicerol. Os frascos foram incubados em incubadora a 28 °C a 110 min⁻¹ por 3 horas.

Alíquotas de 2 μ L das culturas bacterianas foram inoculadas em placa de 96 poços que continha meio de cultura MC líquido e hemina nas concentrações de 1 mM, 0,5 mM, 10 μ M e 5 μ M, em um volume final de 300 μ L. A D.O₆₀₀ (densidade ótica) foi medida a cada hora.

3.4. Análise proteômica

3.4.1. Obtenção de biomassa bacteriana

As culturas bacterianas, ativadas como descrito no item 3.3, foram inoculadas em meio MC sólido contendo 5 mM de hemina. Várias alíquotas de 10 µL foram inoculadas em três placas de Petri contendo meio de cultivo. Duas colônias de cada placa foram retiradas com auxílio de palitos esterilizados e suspendidas em água ultrapura autoclavada e, em seguida, centrifugadas a 20.817 g por 4 min a 4 °C. Este último procedimento foi repetido três vezes. Os *pellets* foram congeladas em nitrogênio líquido e mantidos no ultra freezer por 24 h.

3.4.2. Extração de proteínas

Para extração de proteínas totais, foi utilizado o protocolo modificado de Damerval e colaboradores (1986). Um mililitro de tampão TCA/DTT/Acetona (ácido tricloroacético 10% e ditiotreitol 20 mM em acetona 100%) foi adicionado às amostras que foram mantidas sob agitação constante por 30 min a 4 ºC.

As amostras foram, então mantidas, durante a noite, a -20 °C e centrifugadas a 23.000 g por 30 min a 4 °C. O sobrenadante foi descartado e o sedimento foi lavado três vezes com acetona gelada contendo 20 mM de DTT com breve agitação e centrifugação a 12.000 g por 5 min, 4 °C. Após a última lavagem, o sobrenadante foi descartado e o sedimento foi deixado à temperatura ambiente para secagem.

Os sedimentos foram suspensos em 1 mL em tampão ureia/tiouréia (7M de uréia; 2 M de tioréia, 1% de DTT; 2% de triton X100; 5 µM pepstatina, 1mM fenilmetanosulfonilfluorídrico – PMSF) e mantidos sob agitação até a completa

homogeneização das amostras. As amostras foram centrifugadas a 12.000g por 15 min a 4 °C e o sobrenadante foi coletado.

A concentração das proteínas totais foi determinada com o kit 2D-Quant (GE-Healthcare®) de acordo com as instruções do fabricante. A leitura da absorbância das amostras foi realizada a 480 nm no Espectrofotômetro SHIMADZU UV1800.

3.4.3. Digestão proteica

Cem microgramas de proteínas foram preparados de acordo com Reis e colaboradores (2016). As amostras foram dessalinizadas em membranas de 5000 MWCO Vivaspin 500 (GE Healthcare) nas quais foram adicionados 200 µL de bicarbonato de amônio 50 mM, pH 8,5. Em seguida, as amostras foram centrifugadas a 15 000 g durante 20 min a 8 °C. Este procedimento foi repetido por, pelo menos, três vezes até que restassem cerca de 50 µL de amostra.

Heringer e colaboradores (2015) descreveram a metodologia utilizada para digestão das proteínas. Para cada amostra, foi adicionada 25 μ L de RapiGest® a 0,2% (v / v) (Waters, Milford, CT, EUA) e as amostras foram homogeneizadas usando equipamento do tipo vortex e incubadas brevemente em Eppendorf Thermomixer® a 80 ° C, durante 15 min. Em seguida, adicionouse 2,5 μ L de DTT 100 mM e os tubos foram vortexados e incubados a 60 ° C durante 30 minutos com agitação.

Em seguida, foram adicionados 2,5 μ L de iodoacetamida 300 mM (GE Healthcare) e as amostras foram vortexadas e incubadas no escuro durante 30 min à temperatura ambiente. A digestão foi realizada adicionando-se 20 μ L de solução de tripsina (50 ng / μ L, V5111, Promega, Madison, WI, EUA) preparada em bicarbonato de amônio 50 mM e depois incubando as amostras a 37 ° C overnight. Para a precipitação do RapiGest®, foram adicionados 10 μ L de ácido trifluoroacético a 5% (v / v) (TFA, Sigma-Aldrich) e as amostras foram incubadas a 37 ° C durante 90 min e depois centrifugadas a 16000 g durante 30 min. As amostras foram transferidas para tubos de vidro (Total Recovery, Waters).

3.4.4. Análise LC-MS/MS

As análises para identificação das proteínas foram feitas pelo sistema nanoAcquity UPLC, acoplado ao espectrômetro de massas Synapt G2-Si HDMS (Waters, CT, USA), usado para análises ESI-QTOF HDMSE, de acordo Reis e

colaboradores. (2016). As amostras proteicas foram digeridas com tripsina e os peptídeos resultantes foram concentrados e dessalinizados com o uso de ponteiras do tipo Zip Tip C18 (Millipore®). Posteriormente, as amostras foram submetidas à cromatografia líquida bidimensional capilar em nano-fluxo utilizando o equipamento nanoUPLC.

A cromatografia foi iniciada injetando-se 1,0 µL de cada amostra digerida para normalizar antes da quantificação relativa das proteínas. Para garantir que os valores fossem padronizados para todas as amostras, a normalização se baseou nas medidas estequiométricas das contagens de íons totais das corridas antes das análises.

Após o processo de normalização, o volume da injeção das amostras foi ajustado para garantir quantidades iguais de proteínas para cada uma das amostras. Foram realizadas três repetições técnicas por amostra agrupada. Durante o processo de separação, as amostras foram carregadas em uma coluna trap 5 μ m C18 (180 μ m x 20 mm) com 5 μ L/min, durante 3 minutos e, em seguida, em uma coluna analítica de 1,8 μ m de fase reversa nanoACQUITY HSS T3 (100 μ m x 100 mm) a 600 nL/min, com uma temperatura de coluna de 60 °C.

Para eluição peptidica, foi utilizada um gradiente binário. A fase A consistiu de agua (Tedia, Fairfield, Ohio, EUA) e 0,1% de ácido fórmico (Sigma-Aldrich) e a fase B móvel composta por acetonitrila (ACN) (Sigma-Aldrich) e 0,1% de ácido fórmico. O gradiente de eluição começou em 7% de B e manteve-se durante 3 min, em seguida, foi aumentado até 40% B até 90,09 min, e desde 40% de B até 85% B até 94,09 min, sendo mantida a 85% até 98,09 min, em seguida, diminuindo para 7% de B até 100.09 min e mantido 7% de B até o final do experimento no 108,09 min. A espectrometria de massas foi realizada de modo positivo e de resolução (modo V), 35.000 FWHM, com mobilidade iônica, e em modo de aquisição de dados independente (Data Independent Acquisition). A velocidade da onda de IMS (mobilidade iônica) foi definida como 600 m/s; a transferência de energia de colisão em rampa de 19V e 45V no modo de alta energia. A tensão do cone e dos capilares foi de 30V e 2800V, respectivamente, e a temperatura da fonte de 70 °C.

Nos parâmetros de TOF (tempo de vôo), o tempo de verificação foi ajustado em 0,5 s no modo contínuo com uma faixa de massa de 50 a 2000 Da.

Foi utilizado 100 fmol/µl de fibrinopeptídeo B humano (GLU1) (Sigma-Aldrich) como um calibrador externo e a aquisição de massa foi realizada a cada 30 s.

3.4.5. Bioinformática

O processamento dos espectros obtidos e a busca no banco de dados foram realizados pelo programa Progenesis QI for Proteomics *Software* V.2.0 (Nonlinear Dynamics, Newcastle, Reino Unido). Foram usados os seguintes parâmetros nas análises: o número de íon mínimo por fragmentação peptídica igual a 2, íon mínimo por fragmentação de proteínas igual a 5 e peptídeo mínimo por proteína igual a 2, modificações fixas de carbamidomethyl (C) e modificações variáveis de oxidação (M) e de fosforilação (STY), e um valor padrão para taxa de detecção falsa (FDR) com um máximo de 4%, a pontuação superior a cinco, e erros máximos em massa de 10 ppm.

Os resultados obtidos foram contrastados com o banco de dados específicos de cada bactéria. *Serratia plymuthica* S13 foi contrastada com o banco que continha 4987 proteínas (versão novembro de 2016). *Kosakonia sacchari* foi contrastada com banco de dados com 4454 proteínas (versão de julho de 2017). Ambos os bancos de dados foram obtidos no *UniProtKB* (http://uniprot.org).

Foram consideradas somente as proteínas presentes nas três repetições biológicas. Foram consideradas reguladas as proteínas que atenderam a dois critérios: Anova P<0.05 e Fold change maior que 1,5.

As anotações funcionais das proteínas foram realizadas usando o *software* Blast2Go v. 3.0 PRO (www.blast2go.com) e *UniProtKB* (http://uniprot.org). Para a predição da localização celular foram utilizados a ferramenta FUEL-Mloc (Wan *et al.,* 2017) e o *UniProtKB*.

4. Resultados e discussão

4.1. Serratia plymuthica

Como uma bactéria integrante da microbiota intestinal de *A. aegypti, S. plymuthica* precisa estar adaptada às condições fisiológicas do lúmen do intestino e ser capaz de utilizar a dieta do mosquito para o seu crescimento e, possivelmente, atuar na homeostase intestinal. A digestão do sangue em mosquitos envolve vários desafios, dentre os quais se destacam a lise das hemácias, a hidrólise da hemoglobina e a liberação de uma grande massa do grupo prostético heme.

S. plymuthica demonstrou possuir atividade β-hemolítica quando foi inoculada em meio MC sólido suplementado com sangue. Esta bactéria promove a lise total dos eritrócitos que pode ser observada pela formação da zona transparente ao redor da colônia (Figura 8B). A bactéria não demonstrou ter atividade hemoglobinásica quando cultivada na presença de hemoglobina, (Figura 8C). Porém foi possível observar o escurecimento da colônia, evidenciando a incorporação de heme a partir da hemoglobina. Já na presença de hemina, foi possível observar o escurecimento e um halo translúcido ao redor da colônia evidenciando uma alta capacidade da bactéria de captar heme presente no meio de cultivo resultando no escurecimento da colônia (Figura 8 D). Para melhor evidenciar a incorporação de heme, a Figura 9 mostra as colorações das colônias retiradas das placas em cada condição.

Figura 8. Crescimento de *S. plymuthica* em meio sólido. Cultivo de *S. plymuthica* meio MC sólido (A) e meio MC sólido suplementado com 4% sangue (B), em meio de cultivo suplementado com 4mg/mL de hemoglobina (C) e meio de cultivo suplementado com 5 mM de hemina (D).

Figura 9. Coloração das colônias de *S. plymuthica.* Cultivo de *S. plymuthica* meio MC sólido (A) e meio MC sólido suplementado com 4% de sangue (B), 4mg/mL de hemoglobina (C) e 5mM de hemina (D).

O crescimento de *S. plymuthica* foi acompanhado em meio MC sólido suplementado com diferentes concentrações de hemina, e de duas fontes inorgânicas de ferro, sulfato de ferro e cloreto férrico. A bactéria foi capaz de crescer bem em todas as concentrações de hemina utilizadas (Figura 10). As colônias apresentaram mudança na coloração, tornando-se mais escura principalmente na sua periferia. Também foi possível visualizar um halo claro ao redor da colônia nas concentrações de 0,5, 1,0 e 5,0 mM, como observado anteriormente. Na presença de 1mM e 5 mM de hemina foi possível observar um aumento no diâmetro da colônia bacteriana, quando comparado com o obtido no controle e com as concentrações mais baixas deste composto. Este dado é indicativo de que concentrações elevadas de heme são indutoras de crescimento desta espécie bacteriana. *S. plymuthica* também foi capaz de crescer em concentrações elevadas nos meios contendo sais de ferro, sendo levemente inibida na concentração de 5 mM de sulfato de ferro.

Figura 10. Crescimento de *S. plymuthica*. Meio MC sólido contendo hemina, sulfato de ferro e cloreto férrico.

Para possibilitar uma maior difusão dos nutrientes e uma interação estreita entre células individualizadas e a hemina do meio, o crescimento de *S. plymuthica* foi acompanhado ao longo de 24 horas no meio MC liquido suplementado com quatro concentrações diferentes de hemina: duas concentrações micromolares (5 μ M; 10 μ M) e duas concentrações milimolares deste composto (0,5 mM; 1 mM). Foi possível observar que, a presença de hemina afetou, de forma moderada, as curvas de crescimento de *S. plymuthica* nas diferentes concentrações utilizadas (Figura 11). De forma surpreendente, quando submetida à maior concentração de hemina utilizada (1 mM), *S. plymuthica* foi capaz de se adaptar e de se sobrepor ao crescimento da curva controle após 15 h de crescimento.

Figura 11. Cinética de crescimento de *S. plymuthica.* Em meio MC (■), meio MC suplementado com 1 mM (■), 0,5 mM (■), 10µM (■) e 5 µM (■) de hemina.

4.1.1. Identificação de proteínas por LC-MS / MS de S. plymuthica

Diante da alta capacidade de crescimento de *S. plymuthica* em meio ricos em ferro, uma análise proteômica foi realizada para a identificação das proteínas diferencialmente acumuladas nesta espécie bacteriana, em resposta à suplementação do meio com hemina (5 mM). *S. plymuthica* foi cultivada em meio sólido com o intuito de simular a consistência semi-sólida do bolo alimentar no intestino médio do mosquito.

A análise proteômica foi realizada com base em análises comparativas entre as amostras, onde cada comparação resultou numa lista de proteínas identificadas em ambas as amostras (tratamento e controle). Para refinamento e controle dos resultados são apresentadas somente as proteínas que apareceram em todas as repetições biológicas e técnicas, gerando assim dados confiáveis e importantes para prosseguimento do estudo.

As proteínas foram consideradas diferencialmente acumuladas (*Differentially Accumulated Protein* - DAP) nas seguintes condições: p<0,05 e a diferença de pelo menos 1,5 vezes do *fold change*.

Os resultados das análises proteômicas permitiram obter à identificação de 436 proteínas. Dentre as proteínas identificadas na presença de heme, 18% foram reguladas pela presença do composto, 28 DAPs aumentadas e 54 DAPs reduzidas na presença de heme, como pode ser vista na Tabela 1.

4.1.2. Classificação funcional das DAPs

As DAPs, obtidas foram classificadas funcionalmente por meio de análises de ortologia gênica pelo uso do *Software* Blast2GO. A classificação foi feita com base em três critérios: componentes celulares, processos biológicos e funções moleculares. É importante ressaltar que uma mesma proteína pode participar de mais de uma dessas classificações.

Conforme mostra a Figura 12, a classificação funcional das DAPs reguladas na presença de heme evidencia que, dez proteínas estão envolvidas em componentes celular, 23 em processos biológicos e 16 em funções moleculares.

Tabela 1. Proteínas diferencialmente acumuladas em S. plymuthica com localização subcelular. DAPs identificadas em células de S. plymuthica cultivada na presença de heme. Localização subcelular por predição através de análises pela ferramenta FUEL-mLoc. LC: Localização celular predita da proteína, MI: membrana interna, P: periplasma, ME: membrana externa; CI: citolplasma; EX: xtracelular; FL: flagelo; FI: fímbria.

Uniprot ID	LC	Proteína	ANOVA	Fold change
		DAPs aumentadas		
S4YPP8	CI	Universal stress protein	0,0003	11.8
S4YNE7	MI	ABC transporter ATP-binding protein	0,0008	4.7
S4YIR5	MI	Transcriptional regulator	0,0000	4.0
S4YJW6	ΕX	Flagellin	0,0099	3.9
S4YUX6	MI	Amino acid ABC transporter substrate-binding protein	0,0007	3.1
S4YLR1	CI	Chorismate synthase	0,0099	2.3
S4YN26	CI	Transketolase	0,0001	2.1
S4YPB0	Ρ	Peptidyl-prolyl cis-trans isomerase	0,0017	2.0
S4YKU6	CI	Acetate kinase	0,0027	1.9
S4YQI6	CI	Semialdehyde dehydrogenase	0,0078	1.9
S4YF24	Ρ	UPF0312 protein M621_09495	0,0003	1.9
S4YQU9	CI	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	0,0132	1.9
S4YKQ5	FL	Flagellar basal body protein	0,0008	1.9
S4YGS6	Ρ	ABC transporter substrate-binding protein	0,0005	1.8
S4YNH5	CI	Ketohydroxyglutarate aldolase	0,0114	1.7
S4YJK9	Ρ	SapA	0,002	1.7
S4YJR4	MI	Endopeptidase IV	0,0018	1.7
S4YKW2	Ρ	N-acetylglucosamine-6-phosphate deacetylase	0,0063	1.7
S4YIR6	CI	Ribosome-binding factor A	0,0104	1.7
S4YQ21	Ρ	D-ribose transporter subunit RbsB	0,0047	1.7

Tabela. 1, Co	ont.			
Uniprot ID	LC	Proteína	ANOVA	Fold change
S4YPV1	CI	Cystathionine gamma-synthase	0,0014	1.6
S4YAT2	CI	Fatty acid oxidation complex subunit alpha	0,0054	1.6
S4YDU9	CI	Succinate dehydrogenase iron-sulfur subunit	0,0001	1.6
S4YTM2	MI	50S ribosomal protein L4	0,0038	1.6
S4YFI2	Ρ	Flavodoxin	0,0133	1.6
S4YCZ0	MI	Uncharacterized protein	0,0015	1.5
S4YGD8	Ρ	Amino acid transporter	0,0048	1.5
S4YJ39	CI	Aconitate hydratase	0,0174	1.5
		DAPS diminuidas		
S4YP79	Ρ	50S ribosomal protein L30	0,0002	8,1
S4YDE8	CI	Superoxide dismutase	0,0000	5,4
S4YJZ1	CI	Ketohydroxyglutarate aldolase	0,0006	4,3
S4YN10	MI	ATP synthase subunit delta	0,0020	4,8
S4YMN3	Ρ	Glycine/betaine ABC transporter substrate-binding protein	0,0265	3,5
S4YTP0	ME	Transcriptional regulator	0,0000	3,3
S4YMN9	MI	Multidrug transporter	0,0008	2,9
S4YEZ3	MI	UPF0234 protein M621_05050	0,0000	2,8
S4YNM7	CI	LysR family transcriptional regulator	0,0002	2,8
S4YPD4	Μ	30S ribosomal protein S4	0,0032	2,6
S4YLK3	ME	Outer membrane phosphoporin protein E	0,0000	2,6
S4YRN2	CI	RNA polymerase sigma factor	0,0010	2,6
S4YS69	Ρ	Agmatinase	0,0002	2,5
S4YLB8	Ρ	Ribosome hibernation promoting factor HPF	0,0012	2,5
S4YJS5	Ρ	30S ribosomal protein S16	0,0071	2,4

Tabela. 1, Cont.							
Uniprot ID	LC	Proteína	ANOVA	Fold change			
S4YM12	CI	Cytosine deaminase	0,0004	2,3			
S4YCV5	CI	Oxidoreductase	0,0008	2,3			
S4YXW7	MI	Glutamate racemase	0,0195	2,2			
S4YB57	CI	Malate dehydrogenase	0,0005	2,1			
S4YNW0	CI	Acetyl-CoA carboxylase biotin carboxylase subunit	0,0449	2,1			
S4YJI5	CI	Phosphoribosylglycinamide formyltransferase 2	0,0002	2,1			
S4YLD0	ΕX	Peptidase M15	0,0348	2,0			
S4YD16	CI	Adenylate kinase	0,0011	2,0			
S4YL10	CI	Aldehyde oxidoreductase	0,0012	2,0			
S4YK92	ME	Transcriptional regulator	0,0165	1,9			
S4YE80	CI	GMP reductase	0,0332	1,9			
S4YFE3	CI	LeucinetRNA ligase	0,0010	1,9			
S4YJJ1	CI	L-serine dehydratase	0,0017	1,9			
S4YK46	CI	Ribosome-recycling factor	0,0011	1,8			
S4YAD8	CI	Mannitol-1-phosphate 5-dehydrogenase	0,0013	1,8			
S4YD37	MI	Phosphatidylserine decarboxylase proenzyme	0,0204	1,8			
S4YE23	CI	Delta-aminolevulinic acid dehydratase	0,0002	1,8			
S4YHN7	CI	Bifunctional polymyxin resistance protein ArnA	0,0058	1,8			
S4YG49	CI	Chaperone protein HtpG	0,0039	1,8			
S4YNM9	CI	Elongation factor G	0,0026	1,7			
S4YMR5	CI	Ferredoxin-NADP reductase	0,0401	1,7			
S4YAU6	MI	50S ribosomal protein L10	0,0000	1,7			
S4YDZ9	Ρ	Carbamoyl-phosphate synthase (glutamine-hydrolyzing)	0,0002	1,7			
S4YN87	CI	Pyruvate dehydrogenase E1 component	0,0052	1,7			

Tabela. 1, Co	ont.		
Uniprot ID	LC	Proteína ANOVA	Fold change
S4YD04	Ρ	Phosphoribosylamineglycine ligase 0,0002	1,6
S4YIF2	Ρ	50S ribosomal protein L7/L12 0,0015	1,6
S4YFK9	MI	Succinate dehydrogenase flavoprotein subunit 0,0000	1,6
S4YDV0	CI	Glucose-1-phosphate thymidylyltransferase 0,0404	1,6
S4YC66	CI	Urocanate hydratase 0,0003	1,6
S4YN76	CI	Glutathionine S-transferase 0,0001	1,6
S4YJV4	Ρ	PrkA family serine protein kinase 0,0295	1,5
S4YH64	CI	DNA-binding protein 0,0302	1,5
S4YJJ2	CI	Acetolactate synthase 0,0168	1,5
S4YF25	CI	Threonine synthase 0,0000	1,5
S4YG26	CI	Peptidyl-prolyl cis-trans isomerase 0,0003	1,5
S4YGX9	FI	Phenazine biosynthesis protein PhzF family protein 0,0076	1,5
S4YV94	MI	Uncharacterized protein 0,0216	1,5
S4YMD1	CI	Universal stress protein 0,0073	1,5
S4YDU1	CI	60 kDa chaperonin 0,0015	1,5

Figura 12. Classificação funcional das proteínas diferencialmente acumuladas em S. plymuthica cultivada na presença de heme. Número de anotações geradas para as proteínas envolvidas em processos biológicos (A), componentes celulares (B) e funções moleculares (C). As barras representam o número de anotações geradas para as proteínas envolvidas em cada classificação especifica.

O critério de processos biológicos nos permitiu categorizar as DAPs na presença de heme em 23 classes. Duas classes foram observadas somente em DAPs aumentadas: motilidade celular com duas anotações (S4YKQ5 e S4YJW6) e uma anotação para transporte transmembrana (S4YJK9). Seis classes foram representadas somente por DAPs reduzidas: morfogênese celular (S4YXW7), organização da parede celular ou biogênese (S4YXW7), processo de modificação de proteína celular (S4YJV4, S4YG26), processo metabólico das pequenas moléculas (S4YNW0, S4YDV0, S4YD04, S4YB57, S4YD16, S4YJI5, S4YE80, S4YAD8, S4YFK9, S4YN10, S4YM12), processo metabólico de tRNA (S4YFE3) e processo metabólico secundário (S4YDV0).

No critério componentes celulares, foram obtidos 10 classes distintas para as DAPs reguladas pelo heme. Duas classes foram representadas somente por DAPs aumentadas, sendo elas espaço periplásmatico limitado à membrana externa (S4YGS6) e organela (S4YJW6). Somente uma DAPs reduzida foi classificada como presente no citosol (S4YP79).

Quando considerado o critério função molecular obteve-se 16 classificações, oito delas presente somente nas DAPs aumentadas. São elas: atividade de liase (S4YAT2, S4YNH5, S4YJ39, S4YLR1), atividade ATPase (S4YNE7), atividade de molécula estrutural (S4YJW6), atividade do transportador (S4YUX6, S4YGS6), atividade hidrolase (S4YKW2), atividade de isomerase (S4YAT2), atividade quinase (S4YKU6) e ligação a íons (S4YKU6, S4YN26, S4YFI2, S4YPV1, S4YNE7). Seis classificações são especificamente de DAPs reduzidas, sendo elas: atividade de fator de tradução, ligação de RNA (S4YNM9), atividade do fator de transcrição, ligação de proteína (S4YRN2), atividade transferase, transferindo grupos alquilo ou arilo (diferentes de metilo) (S4YN76), atividade transportadora transmembrana (S4YN10, S4YMN9, S4YLK3), ligação de proteína desdobrada (S4YG49, S4YDU1), ligação rRNA (S4YPD4, S4YAU6).

Para a predição da localização celular das DAPs aumentadas e reduzidas na presença de heme foi utilizada a ferramenta FUEL-Mloc. Aproximadamente 42% das DAPs aumentadas estão no citoplasma e 28,6% estão no periplasma da célula bacteriana. Já nas DAPs reduzidas, 57,4% estão no citoplasma e aproximadamente 22% estão na membrana interna da célula, como pode ser visto na Figura 13.

Figura 13. Localização celular das proteínas diferencialmente acumuladas *S. plymuthica* cultivada na presença de heme. Localização subcelular por predição através de análises pela ferramenta FUEL-mLoc.

A predição da localização celular permitiu observar 12 DAPs aumentadas no citoplasma, dentre elas a proteína de estresse universal, que foi 11,8 vezes mais acumulada. Esta proteína está ligada a qualquer processo que cause mudança na célula, seja essa alteração endógena ou exógena.

O transportador ABC localizado na membrana interna da célula, foi 4,7 vezes mais acumulado na presença de heme. Essa proteína possui atividade ATPase. Foi identificada somente uma DAP aumentada extracelular em *S. plymuthica*, a flagelina, uma proteína estrutural do flagelo bacteriano, que foi 3,9 vezes mais acumulada.

A proteína flavodoxina foi identificada no periplasma celular. Esta proteína participa das reações de transferência de elétrons e é considerada um recurso antioxidante para que os microrganismos enfrentem desafios oxidativos.

Entre as DAPs diminuídas, 31 estão no citoplasma da célula bacteriana. Dentre elas, se destaca a superóxido dismutase – SOD, enzima que possui função antioxidante e catalisa a dismutação do superóxido em oxigênio e peróxido de hidrogênio (2 superoxido + 2 H⁺ = O_2 + H_2O_2).

Na membrana interna da célula bacteriana destaca-se o transportador multidroga. Essa proteína facilita a exportação de diversas drogas citotóxicas através das membranas celulares. Na membrana extracelular foi identificada a porina. Essas proteínas têm como função a catálise de transferência de substâncias (de até 1000 Da) de um lado da membrana para o outro.

Uma proteína extracelular, peptidase M15, foi identificada entre as DAPs diminuídas e tem a função de hidrolisar proteínas em polipeptídios ou aminoácidos pela clivagem de suas ligação peptídicas.

A proteína de biossíntese de fenazina, um antibiótico produzido por diversas bactérias, está relacionada à competitividade e sobrevivência dos microrganismos em habitat natural. Por fim, no periplasma temos a agmatinase, enzima que catalisa a formação da putrecina a partir da agmatina.

Alguns eventos fisiológicos importantes ocorrem ao longo da digestão sanguínea no intestino médio do mosquito A. aegypti. Dentre eles, destacam-se a formação da matriz peritrófica, a grande liberação do grupo prostético heme e a colonização progressiva do lúmen intestinal por um grande número de espécies bacterianas. Como heme é um agente pró-oxidante, grande parte deste composto se associa à matriz peritrófica que atuaria como principal agente de neutralização da toxicidade do heme. Neste trabalho, postulamos que as bactérias intestinais do mosquito poderiam participar de forma auxiliar no processo de detoxificação do heme, a partir dos seguintes dados da literatura: a população bacteriana cresce exponencialmente ao longo da digestão, indicando que este crescimento é, aparentemente, beneficiado pelo aumento da concentração de heme no lúmen intestinal; observa-se a presença de bactérias associadas à matriz peritrófica rica em heme; as bactérias ocupam inteiramente o lúmen intestinal ao final do processo digestivo, quando a matriz peritrofica está degradada e o seu efeito protetor está, pelo menos parcialmente, perdido (Pascoa et al., 2002; Gusmão et al., 2010).

Gusmão e colaboradores (2010) mostraram que bactérias Gramnegativas do gênero *Serratia* são predominantes na cepa Rockfeller de *A. aegypti* mantida em laboratório. Desta forma, *S. plymuthica* foi escolhida para este estudo. Esta espécie bacteriana foi extremamente resistente à presença a altas concentrações de ferro, nas formas orgânica e inorgânica, em meio líquido e sólido. Na literatura, relata-se concentrações na faixa de 0,3 a 6 µM de ferro para um crescimento ótimo de um microrganismo (Vasil e Ochsner, 1999; Zhu *et al.,* 2013; Seo *et al.,* 2014; Roy e Griffith, 2017). Em concentrações na faixa de 50-100 μ M os danos oxidativos causados pelo heme já são significativos, em concentrações acima de 100 μ M o efeito sobre a permeabilidade da membrana é importante (Schmitt *et al.*, 1993).

Em meio sólido foi possível observar que concentrações milimolares de hemina induzem o crescimento da colônia de *S. plymuthica* da mesma forma que o aumento da concentração de heme, ao longo da digestão no mosquito, favorece à completa colonização do lúmen do intestino médio deste inseto.

É importante ressaltar a presença do halo translúcido ao redor da colônia no meio com hemina, evidenciando a produção de hemóforo para captação de heme. Em geral, bactérias Gram-negativas são mais resistentes à toxicidade do heme do que bactérias Gram-positivas (Nitzan *et al.,* 1994).

Com a análise proteômica foi possível observar que três DAPs que foram aumentadas na presença do heme são transportadores do tipo ABC (S4YUX6, S4YGS6, S4YJK9). Os transportadores de membrana utilizam energia do ATP para o transporte de substâncias através da mesma. Três tipos de proteína de transporte na membrana foram identificados, demonstrando que o transporte de solutos via membrana, nesta bactéria, foi aumentado devido a presença do heme. Dentre essas proteínas temos o transportador *SapA* (S4YJK9) que foi identificado em *Escherichia coli, Salmonella, Vibrio, Pasteurella, Erwinia, Actinobacillus* e espécies de *Haemophilus. Haemophilus influenza* SapA se liga ao heme e o transporta para o citoplasma bacteriano (Mason *et al., 2011*). Transportadores ABC internos podem transportar Fe²⁺ para a célula (Porcheron *et al., 2013*). Assim, pode ser que o mesmo mecanismo que ocorre em *H. influenza* pode estar ocorrendo em *S. plymuthica*.

Proteínas envolvidas com a motilidade celular foram reguladas positivamente, a flagelina e uma proteína basal do corpo flagelar, os genes envolvidos com a motilidade celular também foram regulados positivamente na bactéria *S. plymuthica* quando cultivada na presença de compostos orgânicos voláteis (COV) produzidos por fungos (Schmidt *et al.*, 2017). A motilidade bacteriana é uma estratégia importante para a bactéria avançar ou se distanciar de um estímulo favorável ou desfavorável (Alexandre, 2015).

Neste trabalho foram identificadas proteínas de resposta ao estresse (USP- u*niversal stress proteins*), como já era esperado. A proteína de resposta ao estresse (S4YPP8) estava em maior abundância nas amostras proteicas na

presença de heme. Esta proteína está envolvida na resistência a agentes capazes de alterar a estrutura do DNA. Em *E. coli*, USPs são um grupo de proteínas conservadas e os níveis de expressão se tornam elevados em resposta a variadas condições de estresse, como presença de antioxidantes, calor, falta de nutrientes e outras situações que podem prejudicar o crescimento celular e causar danos ao DNA (Xu *et al.,* 2016). É possível que *S. plymuthica* necessitou aumentar a produção desta proteína para proteger o DNA contra danos, possivelmente, causados por espécies reativas de oxigênio.

Acetato quinase teve sua produção aumentada quando *S. plymuthica* foi cultivada na presença de 5 mM de hemina. É sabido que acetato quinase participa da via de síntese acetil-CoA juntamente com a fosfato acetiltransferase que foi identificada, mas não regulada pelo heme (ver Tabela Suplementar 1), a partir de acetato. Em bactérias ácido lácticas, a acetato quinase é induzida em situações de estresse ambiental e/ou respiratório (Papadimitriou *et al.,* 2016).

A enzima trascetolase foi uma das DAPs aumentadas nas condições estudadas. Esta enzima, que participa da via das pentoses fosfato, tem a função de transferir 2 C de uma cetose para uma aldose. A trascetolase também foi regulada positivamente em *Bifidobacterium longum*, uma bactéria Gram-positiva, quando cultivada na presença de sais biliares (Sánchez *et al.,* 2005). Ela também foi regulada em *Saccharomyces cerevisiae* quando cultivada sob condições de fermentação à vácuo.

Duas DAPs aumentadas são proteínas com cluster ferro-enxofre (aconilato hidratase e succinato desidrogenese). Aconitato são proteínas com clusters Fe-S, são capazes de mudar para proteínas de ligação ao RNA formando IRPs - proteínas reguladoras de ferro, e desempenham papel fundamental na regulação da homeostase do ferro. Na presença de grandes concentrações de ferro, leva também à reconstituição de clusters aumentando a atividade da enzima aconitato (Arnaud et al., 2007). Nwugo e colaboradores (2011) também observaram um aumento na expressão das proteínas relacionadas ao ciclo TCA ao expor Acinetobacter baumannii a um meio rico em ferro. assim como Lima е colaboradores (2014) observaram em Chromobacterium violaceum cultivada na presença de ferro.

As flavodoxinas são pequenas flavoproteínas de transferência de elétrons solúveis que são encontradas em uma ampla gama de bactérias, incluindo

cianobactérias e α-proteobactérias. No presente trabalho, foi identificada uma flavodoxina regulada positivamente. As flavodoxinas desempenham um papel importante na resposta ao estresse oxidativo (Blanchard *et al.,* 2007). Flavodoxina também foi identifica na bactéria Gram-negativa *Desulfovibrio vulgaris* sob condições de estresse causado por peróxido de hidrogênio (Zhou *et al.,* 2010).

O transportador multidroga teve sua acumulação diminuída na presença de heme. Esse transportador funciona direcionando uma série de substâncias de um lado a outro da membrana, o que confere a algumas bactérias a resistência a uma gama de antibióticos. Já é sabido que algumas bactérias possuem homólogos para o transportador multidroga, como é o caso de *Vibrio cholerae*, *Pseudomonas aeruginosa, Neisseria gonorrhoeae* e *Salmonella entérica* (Du *et al.,* 2015). Sabe-se que *Serratia* as bombas de efluxo demonstraram contribuir para a resistência a antibióticos (Matsuo *et al.,* 2008).

A enzima malato desidrogenase foi reguada negativamente. Esta enzima tem como função catalisar a conversão do malato a oxaloacetato (usando NAD+) e vice-versa. Malato desidrogenase foi regulada negativamente em *E. coli* sob estresse causado por clortetraciclina, um antibiótico de amplo espectro (Lin *et al.,* 2014), e também em *Pseudomonas fluorescens* quando exposta a estresse causada por diversas concentrações de nitroprussiato de sódio (Auger *et al.,* 2011).

A componente E1 de piruvato desidrogenase faz parte do complexo da piruvato desidrogenase e, desta forma, participa da conversão do piruvato a acetil-CoA anterior ao ciclo do ácido cítrico no metabolismo energético. Esta enzima já foi encontrada em outras bactérias na presença de um meio estressante, tais como *Acinetobacter baumannii* (Nwugo *et al.,* 2011), *Chromobacteruim violaceum* (Lima *et al.,* 2014) e *Streptococcus pyogenes* (Wang *et al.,* 2014).

ATP sintase é a enzima que fornece energia para a célula bacteriana por meio da formação de ATP a partir de ADP e fosfato inorgânico. Neste trabalho, esta enzima foi regulada negativamente, assim como em *Acinetobacter* sob estresse causado pela degradação do fenol (Lin, 2017).

Cinco DAPs diminuídas foram proteínas ribossômicas, 50S ribosomal protein L30, 30S ribosomal protein S4, 30S ribosomal protein S16, 50S ribosomal

protein L10, 50S ribosomal protein L7/L12. Estes dados mostram que a síntese proteica foi diminuída na presença de altas concentrações heme. Na bactéria Gram-negativa *Desulfovibrio vulgaris*, sob condições de estresse causado por peroxido de hidrogênio, as proteínas ribossomais também foram reguladas negativamente. Esses dados indicam o efeito prejudicial do estresse oxidativo sobre a síntese de proteínas (Zhou *et al.*, 2010).

Outras proteínas de resposta ao estresse também foram identificadas. Uma delas, a superóxido dismutase (SOD), foi regulada negativamente. SOD corresponde a primeira linha de defesa antioxidante de bactéria (Cornelis *et al.,* 2011).

É sabido que glutationa protege a célula bacteriana contra diversos estressores ambientais, bem como protege a célula da ação de pH, estresse oxidativos e osmóticos. Neste caso, observou-se que glutationa não foi regulada pela presença de hemina, mas estava dentre as proteínas identificadas (Tabela Suplementar 1).

4.2. Kosakonia sacchari

A análise filogenética foi realizada a partir do gene 16S rRNA de 6 sequências contendo acima de 1.200 pb, conforme parâmetro definido pelo programa computacional utilizado (MEGA). A árvore filogenética foi gerada usando 1.448 nucleotídeos alinhados, contendo as relações evolutivas de 6 táxons. Na Figura 14 é possível observar que o isolado denominado inicialmente *A. aegypti* 17 se alinha próximo à espécie *Kosakonia sacchari*, comprovando a análise feita no Blast que identificou, com 98% de similaridade, o isolado 17 como *Kosakonia sacchari* (NR_118333.1).

Figura 14. Análise filogenética do sequenciamento da região do gene 16S rRNA do isolado bacteriano de *A. aegypti*. A linha horizontal refere-se à distância genética. Os números nos nós referem-se aos valores estimados de apoio com 1000 réplicas de bootstrap.

Quando *K. sacchari* foi cultivada na presença de sangue, não foi possível observar a formação de halo ao redor da colônia. Sendo assim, a espécie foi caracterizada como hemólise gama. É possível também verificar que mesmo não sendo possível a visualização clara do halo, verifica-se que a colônia bacteriana muda de cor, indicando que houve lise de hemácias, hidrólise de hemoglobina e incorporação de heme, como pode ser visto na Figura 15. A Figura 16 mostra a coloração das colônias quando retiradas das placas de cultivo. Aparentemente, esta bactéria consegue captar muito melhor o heme quando este composto está presente no meio de cultura a partir de hemina livre.

Figura 15. Crescimento de *K. sacchari* **em meio sólido.** Cultivo de *K. sacchari* meio MC sólido (A) e meio MC sólido suplementado com 4% sangue (B), em meio de cultivo suplementado com 4mg/mL de hemoglobina (C) e meio de cultivo suplementado com 5 mM de hemina (D).

Figura 16. Coloração das colônias de *K. sacchari*. Cultivo de *K. sacchari* meio MC sólido (A) e meio MC suplementado com 4% de sangue (B), com 4mg/mL de hemoglobina (C) e suplementado com 5mM de hemina (D).

K. sacchari foi inoculada em meio MC sólido suplementado com hemina, sulfato de ferro ou cloreto férrico, obtendo os resultados mostrados na Figura 17. A bactéria foi capaz de crescer bem em todas as concentrações de hemina utilizadas. As colônias apresentaram mudança na coloração, tornando-se mais escuras com o aumento da concentração de heme. As mesmas concentrações de hemina, foi testado o efeito do sulfato de ferro e cloreto férrico. A bactéria foi capaz de crescer em todas as condições como pode ser visto na Figura 17. Porém observou-se uma parente inibição do crescimento vista na diminuição do diâmetro das colônias, nas concentrações de 1 e 5 mM de sulfato de ferro.

Figura 17. Crescimento de *K. sacchari* em meio sólido. Meio MC sólido contendo hemina, sulfato de ferro e cloreto férrico.

O crescimento de *K. sacchari* foi acompanhado ao longo de 24 horas em meio MC líquido contendo quatro concentrações de hemina: duas concentrações micromolares (5 μ M; 10 μ M) e duas concentrações milimolares deste composto (0,5 mM; 1 mM), como pode ser visto na Figura 18. Foi possível observar um aumento da produção de células no meio MC suplementado com hemina. O crescimento bacteriano foi particularmente estimuldo na presença de 5 μ M do composto.

Figura 18. Cinética de crescimento de *K. sacchari.* Em meio MC (■), meio MC suplementado com 1 mM (■), 0,5 mM (■), 10μM (■) e 5 μM (■) de hemina.

4.2.1. Identificação de proteínas por LC-MS / MS de K. sacchari

Foi realizada a análise das proteínas diferencialmente acumuladas nas células de *K. sacchari* cultivadas em meio sólido suplementado com hemina na concentração de 5 mM. Com base em análises comparativas entres as amostras, uma lista de proteínas foram identificadas nas amostras do tratamento e do controle.

As proteínas foram consideradas diferencialmente acumuladas (*Differentially Accumulated Protein* - DAP) nas seguintes condições: p<0,05 e a diferença de pelo menos 1,5 vezes do *fold change*, desta forma quando as proteínas tiveram *fold change* maior que 1.5 foram consideradas DAP aumentada, e *fold change* menor que 0.6667 foi considerada DAP diminuída, e FDR (taxa de detecção falsa) de 4%.

Os resultados das análises permitiram obter a identificação de 749 proteínas (Tabela Suplementar 2), sendo, 7% reguladas pela presença de heme no meio. Com os parâmetros utilizados, foram identificadas 18 DAPs aumentadas e 39 DAPs reduzidas na presença de heme, como pode ser visto na Tabela 2.

Tabela 2. Proteínas diferencialmente acumuladas em *K. sacchari* com suas respectivas localizações subcelular. DAPs identificadas em células de *K. sacchari* cultivada na presença de heme. Localização subcelular por predição através de análises pelo Uniprot. LC: Localização celular predita da proteína, MI: membrana interna, CI: citoplasma; FL: flagelo; PX: peroxissomos; P: periplasma; RB: ribossomo; IN: intracelular.

Uniprot ID	LC	Proteína	ANOVA	Fold change			
DAPs aumentadas							
W6JCH5		Uncharacterized protein	0.0102	2.6			
A0A059XJT8	CL	Glutathione-dependent formaldehyde dehydrogenase	0.0384	2.4			
W6JB65	PX	Mn-containing catalase	0.0207	2.3			
W6J887		TIGR01777 family protein	0.0031	2.2			
W6J0Y6		Arginine transporter ATP-binding subunit	0.0064	2.2			
W6J717		NAD(P)-dependent oxidoreductase	0.0484	2.1			
W6J8D4		NAD(P)-dependent oxidoreductase	0.0196	2.0			
W6J0I0		LexA family transcriptional regulator	0.0073	1.8			
W6IZ76	CL	L-asparaginase 1	0.0452	1.8			
W6JED4	CL	3-ketoacyl-CoA thiolase	0.0278	1.7			
W6J3K9		Quinone oxidoreductase	0.0381	1.7			
W6JCD2		Uncharacterized protein	0.0493	1.7			
W6J709		Diguanylate cyclase	0.0429	1.7			
W6J8H5		Gamma-glutamyltransferase	0.0487	1.6			
W6J2H0	CL	Two-component system response regulator ArcA	0.0267	1.6			
W6IXF3		Uncharacterized protein	0.0188	1.6			
A0A059XTX9		Succinate-semialdehyde dehydrogenase (NADP(+))	0.0323	1.5			
W6J5H4		Metalloprotease TIdD	0.0466	1.5			

Tabela 2, cont.

Uniprot ID	LC	Proteína	ANOVA	Fold change
		DAPs diminuídas		
W6IZB1	FL	Flagellin	0.0064	7.8
W6J0R8	Р	Molybdate ABC transporter substrate-binding protein	0.0024	5.8
W6JBQ8		Uncharacterized protein	0.0263	4.2
W6J7L6		Iron-sulfur cluster assembly scaffold protein IscU	0.0081	3.8
W6J0A1	FL	Flagellin	0.0412	3.7
W6J240		Lyase	0.0374	3.4
W6J9I1		Transcriptional repressor MprA	0.0092	3.1
W6JD21	CL	Transcriptional regulator	0.0147	3.1
W6JC54		Heat-shock protein	0.0141	2.8
A0A059XJZ6		Formimidoylglutamate deiminase	0.0185	2.6
W6J5B5		UPF0253 protein C813_10840	0.0162	2.3
W6J9T6		Autonomous glycyl radical cofactor	0.0291	2.3
W6J2Y3	CL	Galactokinase	0.0282	2.3
A0A059XJV7		Shikimate dehydrogenase (NADP(+))	0.0271	2.0
W6JCM3	MB	Molybdopterin biosynthesis protein MoeB	0.0081	1.9
A0A059XJB1		Succinylglutamate desuccinylase	0.0107	1.8
W6J697		Glycine dehydrogenase (decarboxylating)	0.0139	1.8
W6J5F0		Peptide deformylase	0.0308	1.8
W6J5N6		DNA-binding transcriptional regulator FruR	0.0370	1.8
W6J422	CL	Fructose-6-phosphate aldolase	0.0432	1.7
W6JA60	MB	Phospholipid-binding lipoprotein MlaA	0.0280	1.7
W6J1E8		Uncharacterized protein	0.0174	1.7
W6JDY5	CL	Pyridoxine 5'-phosphate synthase	0.0343	1.7

Tabela 2, cont.

Uniprot ID	LC	Proteína	ANOVA	Fold change
W6JD07		ClpXP protease specificity-enhancing factor	0.0301	1.6
W6JCR3		FMN-binding protein MioC	0.0043	1.6
A0A059XJG1		Phospho-2-dehydro-3-deoxyheptonate aldolase	0.0434	1.6
W6J3R6		Thiamine-phosphate synthase	0.0017	1.6
W6JCB7		Carbonic anhydrase	0.0079	1.6
W6JCS4	MB	6-phospho-alpha-glucosidase	0.0102	1.6
W6J630	RB	50S ribosomal protein L10	0.0319	1.6
W6IXB2	IN	Two-component system response regulator	0.0347	1.6
W6J1N7		Peroxiredoxin	0.0308	1.6
W6J5K3		ABC transporter ATP-binding protein	0.0058	1.6
A0A059XPZ3		N-formylglutamate deformylase	0.0012	1.5
W6J7L8	CL	TryptophantRNA ligase	0.0243	1.5
W6JEI6	IN	Transcriptional regulatory protein RcsB	0.0164	1.5
W6J7D2		Transcriptional regulator	0.0354	1.5
A0A059XUB2		GDP-L-fucose synthase	0.0047	1.5
W6JBI2		Amino acid ABC transporter substrate-binding protein	0.0240	1.5

4.2.2. Classificação funcional das DAPs

A análise da classificação funcional das DAPs, observadas através do cultivo em meio suplementado com hemina, foi conduzida por três critérios, são eles: componentes celulares, processos biológicos e funções moleculares. Ressaltamos novamente que uma mesma proteína pode participar de mais de uma dessas classificações.

Na classificação funcional das DAPs aumentadas na presença de heme, foram geradas 87 anotações para processo biológico, 14 para componente celular e 57 para função molecular. Já nas DAPs diminuídas foram geradas 284 anotações para processo biológico, 73 para componente celular e 121 para função molecular.

Na Figura 19 é possível observar a classificação das DAPs no critério processo biológico, que permitiu categorizá-las em 57 classes. Algumas delas apareceram somente nas DAPs aumentadas, são elas: comunicação celular, regulação do processo biológico, regulação do processo celular, resposta celular ao estímulo, sinalização e sinalização de um único organismo, todas representadas pela proteína W6J2H0 - regulador de resposta do sistema de ArcA, e processo metabólico lipídico representado por duas proteínas, W6JED4 - 3-cetoacil-CoA tiolase e W6J8H5 - Gama-glutamiltransferase.

Como pode ser observado na Figura 19, algumas categorias apareceram somente nas DAPs diminuídas, são elas: biogênese do componente celular (W6J7L6 e W6J630), cofator de processos metabólicos (W6J7L6 e W6J3R6), expressão gênica (W6J5F0 e W6J7L8), localização, localização celular, locomoção, motilidade celular, movimento da célula ou componente subcelular representadas por duas flagelinas (W6J0A1 e W6IZB1), organização de componentes celulares ou biogênese (W6J7L6 e W6J630), processo biossintético celular, processo biossintético composto organonitrogenio, processo biossintético de amida representado por peptídeo deformilase - W6J5F0 e triptofano tRNA ligase - W6J7L8, processo metabólico de carboidratos (A0A059XUB2, W6J2Y3, W6J422 e W6JCS4), processo metabólico de carboidratos de um único organismo (A0A059XUB2, W6J2Y3 e W6J422). As categorias de processo biossintético de macromoléculas, processo biossintético de macromoléculas, processo biossintético de substância orgânica, processo

biossintético do composto de nitrogênio celular, processo biossintético peptídico, processo metabólico celular amida, processo metabólico de macromoléculas celulares, processo metabólico de proteína celular, processo metabólico de proteínas, processo metabólico macromolécula, processo metabólico peptídico, tradução foram representadas por duas proteínas, W6J5F0 – peptídeo derfomilase e W6J7L8 - triptofano - tRNA ligase.

Figura 19. Classificação funcional das DAPs classificadas em processo biológico em *K. sacchari* cultivadas na presença de heme. Número de anotações geradas para as proteínas envolvidas em processos biológicos.

A Figura 20 mostra as classificações funcionais das DAPs nos critérios de componente celular (A) e função molecular (B). Somente apareceu DAPs aumentadas a categoria de componente celular, periferia celular e membrana representada pela proteína W6J0Y6 - subunidade de ligação a ATP do transportador de arginina. A classificação de organela apareceu somente nas DAPs diminuídas a com dois tipos de flagelina (W6J0A1 e W6IZB1).

Nas DAPs aumentadas, na classificação de função molecular, as categorias representadas foram: atividade peptidase (W6J5H4 e W6J8H5), atividade transferase, transferindo grupos acila (W6JED4 e W6J8H5), atividade transportadora, atividade transportadora transmembrana, atividade ATPase, atividade de nucleosídeo-trifosfatase, atividade de pirofosfatase, atividade hidrolase, atuando sobre anidridos de ácido, em anidridos contendo fósforo e atividade hidrolase, atuando sobre anidridos ácidos foram representado por uma única proteína a subunidade de ligação a ATP do transportador de arginina (W6J0Y6). As categorias de função molecular que apareceram somente nas DAPs diminuídas foram: atividade do fator de transcrição de ligação ao ácido nucléico (W6J5N6, W6J9I1 e W6JD21), atividade liase (W6J240, W6J422, W6JCB7) e atividade ligase (W6J7L8, W6J7D2 e W6JCM3).

Figura 20. Classificação funcional das DAPs em *K. sacchari* em componente celular e função molecular. Número de anotações geradas para as proteínas envolvidas em componentes celulares (A) e funções moleculares (B). As barras representam o número de anotações geradas para as proteínas envolvidas em cada classificação especifica.

Com a utilização do FUEL – Mloc e o Uniprot foi encontrada a localização celular de apenas poucas proteínas. Nas DAPs aumentadas, foi possível encontrar a localização de 4 proteínas: desidrogenase de formaldeído dependente de glutationa, L-asparaginase, 3-cetoacil-CoA tiolase, regulador ArcA, encontram-se no citoplasma das células bacterianas como pode ser visto na Tabela 2.

Nas DAPs diminuídas, foi possível encontrar a localização celular de 14 proteínas, que podem ser vistas na Tabela 2, são elas: duas proteínas flagelares,

um transportador ABC de molibidato no periplasma, regulador transcricional, galoctoquinase, frutose-6-fosfato, piridoxina 5'-fosfato sintase, e o triptfano tRNA ligase, localizado no citoplasma bacteriano. A proteína de biossíntese de molibdopterina MoeB, a lipoproteína de ligação a fosfolipidos MlaA, a 6-fosfoalfa-glucosidase localizadas na membrana interna da célula. Duas proteínas são determinadas como proteínas intracelulares, as suas são determinadas como reguladores, uma regulador de dois componentes (W6IXB2) e um regulador transcricional de RcsB e por fim a proteína ribossomal L10.

Dentre as proteínas diferencialmente acumuladas, a formaldeído desidrogenase dependente de glutationa – FDH teve sua produção aumentada cerca de 2,4 vezes. Esta proteína é responsável pela desintoxicação do formaldeído exógeno, enquanto que as aldeído desidrogenases são importantes quando os níveis de formaldeído aumentam. O trabalho de Gutheil e colaboradores (1997) mostra, com os resultados obtidos a partir de *E. coli* e *H. influenza*, que a função da formaldeído desidrogenase dependente de glutationa (GS-FDH) em bactérias Gram negativas é desintoxicar o formaldeído e que a indutibilidade da GS-FDH pode ser uma característica comum das bactérias Gram-negativas.

Já foi descrito, para a bactéria *A. baumannii*, que a expressão do gene *adhC1*, que codifica GS-FDH, é controlada por ferro presente no meio de cultura (Echenique *et al.,* 2001). Em *E. coli*, o gene *frm*A, que codifica GS-FDH foi regulado positivamente sob estresse oxidativo causado por cloro e peróxido de hidrogênio (Wang *et al.,* 2009).

A catalase depende de manganês teve sua produção aumentada 2,4 vezes. Essa catalase, também chamada de catalase não heme, está amplamente distribuída ao longo da vida microbiana. As catalases dependente de manganês são difundidas no ambiente o que reforça as funções antioxidantes. São também dependentes do ferro e de heme, porém não sabe ao certo como o papel das mesmas são desempenhados (Whittaker, 2012). As catalases de manganês contêm um complexo de manganês binuclear em seu sítio ativo catalítico ao invés de conter um heme (Whittaker, 2012). Proteínas da classe das catalases são um dos componentes centrais das vias de desintoxicação que impedem a formação do radical hidroxila, que é altamente reativo (Zeng *et al.,* 2011). Já foi descrita a presença de Mn-catalase em

bactérias patogênicas como Salmonella enterica Typhimurium (Mcclelland et al., 2001), *E. coli* O157 (Perna et al., 2001) e *Pseudomonas aeruginosa* (Stover et al., 2000).

A enzima L-asparaginase teve sua produção aumentada cerca de 1,7 vezes. Esta proteína tem como função catalisar a hidrólise de L-asparagina para L-aspartato, e pode também, em menor escala, catalisar a hidrólise de L-glutamina em L-glutamato (Ebrahiminezhad *et al.*, 2011). As L-asparaginases bacterianas podem ser classificadas quanto ao tipo. São denominadas tipo 1 e tipo 2 (Lee *et al.*, 1989). As do tipo 1 estão na região periplasmática, enquanto que as do tipo 2 no citosol (Han *et al.*, 2014). As enzimas L-aspaginases podem suprimir o crescimento de células cancerosas (El-bessoumy *et al.*, 2004), e também poder ser aplicadas em diferentes áreas da indústria de alimentos (Boyd e Phillips, 1971; Nagarethinam *et al.*, 2012; Pradhan *et al.*, 2013). Na cianobactéria *Arthrospira platensis*, a L-aspaginase teve sua produção aumentada sob condições de estresse, a retirada de ferro e nitrogênio do meio de cultivo afetou a produção da enzima (Prihanto e Wakayama, 2014).

A família de regulador de transcrição LexA foi regulada positivamente aqui. Essa classe de proteína está envolvida em resposta ao estresse e também à resposta a SOS, um conjunto de repostas celulares que são induzidas pela exposição das células bacterianas a uma grande variedade de agentes estressantes, que danificam ou interferem na replicação do DNA. O sistema SOS é mediado por LexA e RecA. LexA atua como repressor de pelo menos 40 genes (Courcelle *et al.,* 2001). O regulador LexA também foi regulado positivamente na bactéria Gram-negativa *Rhodobacter sphaeroides* quando exposta ao peróxido de hidrogênio (Zeller *et al.,* 2005). Os mecanismos de LexA tem sido amplamente estudados em *E. coli* e *Vibrio sp.* em reposta a resistência a antibióticos (Guerin *et al.,* 2009; Re *et al.,* 2009; Poole, 2012).

A enzima metaloprotease TIdD foi reguada positivamente. Esta proteína requer Zn ou Fe como cofator. É importante salientar que esta protease pode regular diretamente enzimas importantes tanto pela maturação quanto pela degradação de proteínas. Em trabalho recente, foi quantificado o Zn e Fe nas metaloproteínase TIdD e TIdE de *E. coli*. Os dados mostram que TIdE não continha nenhum dos íons metálicos, enquanto que a TIdD continha quantidades aproximadamente 1M de metal (Ghilarov *et al.,* 2017). O fato do meio de cultivo

utilizado aqui neste trabalho ser rico em Fe-heme pode ter favorecido a produção da metaloprotease TIdD em *K. sacchari*. Metaloproteínases também são associadas a fatores de virulência, como no caso da bactéria *Vibrio anguillarum*, em que um sistema de metaloprotease dependente de Zn mostrou ser um importante fator de virulência (Norqvist *et al.*, 1990).

A proteína diguanilato ciclase tem como função a síntese de diguanilato cíclico (c-di-GMP). Esta molécula está relacionada a sinalização celular e atua em processos importantes como de motilidade, formação de biofilme e virulência (Newell *et al.*, 2011). O gene que codifica para esta proteína foi regulada positivamente na bactéria *Chromobacterium violaceum* sob estresse causado por hidroperóxido de cumeno. Os autores também associam o aumento desta proteína a mecanismos de virulência mediados pelo gene OhrR (proteína de resistência a hidroperóxido orgânico) (Previato-Mello *et al.*, 2017). Neste trabalho, esta proteína teve sua produção aumentada cerca de 1,6 vez, quando as células de *K. sacchari* cresceram na presença de heme.

Dentre as proteínas reguladas negativamente, estão duas flagelinas. As flagelinas são proteínas constituintes dos flagelos bacterianos. A flagelinas também foram reguladas negativamente na bactéria Gram-negativa *C. jejuni* quando exposta ao estresse por cádmio (Kaakoush *et al.,* 2008). É descrito na literatura que a proteína c-di-GMP regula a motilidade flagelar (Wolfe e Visick, 2008). Em mutantes da bactéria para o gene que codifica a proteína c-di-GMP, *Pseudomonas fluorescens* não teve sua motilidade afetada, diferentemente da estirpe selvagem que cresceu menos no meio de cultivo, mostrando, portando, que esta proteína está envolvida na motilidade celular (Newell *et al.,* 2011). Em nosso trabalho a proteína diguanilato ciclase teve sua produção aumentada, nos mostrando que o mesmo processo que ocorre em *P. fluorescens* pode está acontecendo aqui e *K. sacchari*, diminuindo assim a motilidade bacteriana.

Sabe-se que bactérias se utilizam de diferentes mecanismos para lidar contra o estresse oxidativo. Além das enzimas mais conhecidas, como catalase e superóxido dismutase, as bactérias também desenvolveram o mecanismo de usar a oxidação reguladora da cisteína para responder e lidar com as espécies reativas de oxigênio encontradas no ambiente. Aqui a enzima chiquimato desidrogenase foi regulada negativamente. Esta enzima participa da quarta reação da via do ácido chiquímico, realizando a redução do 3-desidrochiquimato a chiquimato. Esta proteína também foi regulada em *P. aeruginosa* e *S. aureus* exposta a concentrações de peróxido de hidrogênio (Deng *et al.,* 2013).

A protease ClpXP foi regulada negativamente. Esta protease está amplamente distribuída em bactérias e está envolvida na regulação de proteínas danificadas (Baker e Sauer, 2012). Os genes que codificam para a proteína ClpXP são induzidos por choque térmico tanto em bactérias Gram-negativas quando em Gram-positivas (Gerth *et al.,* 1998; Kroh e Simon, 1990; Chastanet *et al.,* 2001). Elas também são importantes para a tolerância ao estresse (Thomsen *et al.,* 2002). Esta protease tem um papel importante na recuperação de danos ao DNA (Pruteanu e Baker, 2009).

Outra proteína regulada negativamente em *K. sacchari* foi a proteína de estrutura de montagem de cluster ferro-enxofre *IscU*. Esta proteína funciona na montagem e transferência de *clusters* Fe-S. É sabido que o sistema *Isc* é altamente conservado em Proteobactérias (Zheng *et al.*, 1998). As proteínas com *cluster* Fe-S desempenham papéis importantes na transferência de elétrons, catálise e regulação gênica (Beinert *et al.*, 1997). Em *E. coli* o sistema IscS-*IscU* foi inibido na presença de peróxido de hidrogênio. Desta forma, em condições de estresse oxidativo, a bactéria utiliza outro sistema, o sistema SufS-SufE, para construção de *clusters* Fe-S (Dai e Outten, 2012). O sistema *IscU* também já foi encontrado em bactérias representativas do bolo alimentar de *Anopheles gambiae*, como *Pseudomonas aeruginosa*, *Enterobacter cloacae* e *Serratia marcescens* (Wang *et al.*, 2011).

A proteína chamada de fator de radical glicêmico foi regulada negativamente. Esta proteína, bem caracterizada em *E. coli*, pode substituir uma subunidade da piruvato formiato-liase danificada por oxidação (Wagner *et al.*, 2001). Sabe-se que sob condições de estresse, a morte celular programada é induzida por *maz*EF, e ao mesmo tempo, este fator permite a síntese de algumas proteínas específicas, dentre elas fator radical glicêmico (YfiD). Kumar e Engelberg-Kulka (2014) propuseram que YfiD pode permitir que a formiato-liase de piruvato sensível a espécies reativas de oxigênio funcione no processo de morte celular. Na bactéria *E. hormaechei subsp. steigerwaltii* 51, houve aumento na produção de YfiD, quando a bactéria foi exposta a cefotaxima. Isto pode indicar uma possível indução do módulo *maz*EF, que desencadeia então os

processos que levam à morte da maior parte da população e à sobrevivência de sua pequena parte (Maravić *et al.,* 2016).

5. Conclusões

Neste trabalho identificamos, pela primeira vez, a presença da *bactéria K.* sacchari associada a insetos e, particularmente, ao intestino médio de *A. aegypti.*

Os resultados obtidos nos mostram o quão eficientes *S. plymuthica* e *K. sacchari* foram capazes de se multiplicar em concentrações de 5 μ M; 10 μ M; 0,5 mM e 1 mM Fe-heme disponível nos meios de cultivo. Ambas as espécies bacterianas podem ter um papel auxiliar no processo de detoxicação de heme em intestino do mosquito *A. aegypti*, por sua capacidade de se multiplicar no meio contento heme e sangue.

A identificação de proteínas por espectrometria de massa foi de grande valia, visto que foi a primeira realizada nestas espécies bacterianas isoladas deste inseto. Identificamos 436 proteínas em *S. plymuthica*, dessas, 28 DAPs aumentadas e 54 DAPs reduzidas na presença de heme. Em *K. sacchari* foram identificadas 749 proteínas, sendo, 18 DAPs aumentadas e 39 DAPs diminuídas.

Muitas proteínas que foram reguladas nestas bactérias estão envolvidas no metabolismo energético, síntese proteica, de resposta ao estresse e motilidade destas bactérias. Isto indica que *S. plymuthica* e *K. sacchari* necessitaram reprogramar suas redes metabólicas para lidar com o estresse e também neutralizar as espécies reativas de oxigênio induzidas pelo heme.

6. Referências Bibliográficas

Alexandre G. 2015. Chemotaxis control of transient cell aggregation. *J. Bacteriol.* **197**:3230–3237.

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* **25**:3389–3402.

Alves W.C.L., Gorayeb I. de S., Loureiro E.C.B. 2010. Isolated bacteria from hematophagous Culicidae (Diptera: Nematocera) in Belém, Pará State, Brazil*. *Rev Pan-Amaz Saude* **1**:131–141.

Arnaud N., Ravet K., Borlotti A., Touraine B., Boucherez J., Fizames C., Briat J-F., Cellier F., Gaymard F.. 2007. The iron-responsive element (IRE)/ironregulatory protein 1 (IRP1)–cytosolic aconitase iron-regulatory switch does not operate in plants. *Biochem. J.* **405**:523–531.

Arnoux P., Haser R., Izadi-Pruneyre N., Lecroisey A., Czjzek M. 2000. Functional aspects of the heme bound hemophore HasA by structural analysis of various crystal forms. *Proteins* **41**:202–10.

Audsley M.D., Ye Y.H., McGraw E.A. 2017. The microbiome composition of *Aedes aegypti* is not critical for *Wolbachia*-mediated inhibition of dengue virus. *PLoS Negl. Trop. Dis.* **11**:1–15.

Auger C., Lemire J., Cecchini D., Bignucolo A., Appanna V.D. 2011. The metabolic reprogramming evoked by nitrosative stress triggers the anaerobic utilization of citrate in *Pseudomonas fluorescens*. *PLoS One* **6**.

Baker T.A., Sauer R. 2012. ClpXP, an ATP-powered unfolding and proteindegradation machine. *Biochim. Biophys. Acta - Mol. Cell Res.* **1823**:15–28.

Beinert H., Holm R.H., Münck E. 1997. Iron-sulfur clusters: Nature's modular, multipurpose structures. *Science (80-.).* **277**:653–659.

Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M., Brownstein J.S., Hoen A.G., Sankoh O., Myers M.F., George D.B., Jaenisch T., William Wint G.R., Simmons C.P., Scott T.W., Farrar J.J., Hay S.I. 2013. The global distribution and burden of dengue. *Nature* **496**:504–507.

Billingsley, P.F., Lehane M.J. 1996. Structure and ultrastructure of the insect midgut. In: Lehane, M.J., Billingsley, P.F., Biology of the insect midgut. In: Hall, LC&, editor. 1st editio., pp. 6–114.

Blanchard J.L., Wholey W.Y., Conlon E.M., Pomposiello P.J. 2007. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. *PLoS One* **2**.

Boyd J.W., Phillips A.W. 1971. Purification and Properties of L-Asparaginase from *Serratia marcescens* **106**:578–587.

Braun V. 2001. Iron uptake mechanisms and their regulation in pathogenic bacteria. *Int. J. Med. Microbiol.* **291**:67–79.

Braun V., Schmitz G. 1980. Excretion of a protease by *Serratia marcescens*. *Arch. Microbiol.* **124**:55–61.

Cabanes D., Dehoux P., Dussurget O., Frangeul L., Cossart P. 2002. Surface proteins and the pathogenic potential of *Listeria monocytogenes*. *Trends Microbiol.* **10**:238–245.

Carrero P., Garrote J.A., Pacheco S., García A.I., Gil R, Carbajosa S.G. 1995. Report of six cases of human infection by *Serratia plymuthica. J. Clin. Microbiol.* **33**:275–276.

Chastanet A., Prudhomme M., Claverys J.P. 2001. Regulation of *Streptococcus pneumoniae* clp Genes and Their Role in Competence Development and Stress Survival *J. Bacteriol.* **183**:7295–307.

Chavshin A.R., Oshaghi M.A., Vatandoost H., Pourmand M.R., Raeisi A., Enayati A.A., Mardani N., Ghoorchian S. 2012. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught *Anopheles stephensi:* A step toward finding suitable paratransgenesis candidates. *Acta Trop.* **121**:129–134.

Chen M., Zhu B., Lin L., Yang L., Li Y., An Q. 2014. Complete genome sequence of *Kosakonia sacchari type strain SP1*T. *Stand. Genomic Sci.* **9**:1311–1318.

Clegg S., Allen B.L. 1985. Molecular cloning and expression of an extracellular nuclease of *Serratia marcescens* in *Escherichia coli. FEMS Microbiol. Lett.* **27**:257–262.

Consoli R.A.G.B., Oliveira R.L. 1994. Principais mosquitos de importância sanitária no Brasil. Ed. Fiocruz 1^a. Rio de Janeiro 228 p.

Coon K.L., Brown M.R., Strand M.R. 2016. Gut bacteria differentially affect egg production in the anautogenous mosquito *Aedes aegypti* and facultatively autogenous mosquito *Aedes atropalpus* (Diptera: Culicidae). *Parasit. Vectors* **9**:375.

Cornelis P., Wei Q., Andrews S.C., Vinckx T. 2011. Iron homeostasis and management of oxidative stress response in bacteria. *Metallomics* **3**:540.

Courcelle J., Khodursky A., Peter B., Brown P.O., Hanawalt P.C. 2001. Comparative Gene Expression Profiles Following UV Exposure in Wild-Type and SOS-Deficient *Escherichia coli.Genetics.***158**:4164.

Dai Y., Outten F.W. 2012. The *E. coli* SufS-SufE sulfur transfer system is more resistant to oxidative stress than IscS-IscU. *FEBS Lett.* **586**:4016–4022.

Damerval C., De Vienne D., Zivy M., Thiellement H. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. *Electrophoresis* **7**:52–54.

Dansa-Petretski M., Ribeiro J.M.C., Atella G.C., Masuda H., Oliveira P.L. 1995. Antioxidant role of *Rhodnius prolixus* heme-binding protein: Protection against heme-induced lipid peroxidation. *J. Biol. Chem.***270**:10893-10896.

Daskaleros P.A., Payne S.M. 1987. Congo red binding phenotype is associated with hemin binding and increased infectivity of *Shigella flexneri* in the HeLa cell model. *Infect. Immun.* **55**:1393–8.

Deng X., Weerapana E., Ulanovskaya O., Sun F., Liang H., Ji Q., Ye Y., Fu Y., Zhou L., Li J., Zhang H., Wang C., Alvarez S., Hicks L.M., Lan L., Wu M., Cravatt

B.F., He C. 2013. Proteome-wide quantification and characterization of oxidationsensitive cysteines in pathogenic bacteria. *Cell Host Microbe* **13**:358–370.

Dennison N.J., Jupatanakul N., Dimopoulos G. 2014. The mosquito microbiota influences vector competence for human pathogens. *Curr. Opin. Insect Sci.* **3**:6–13.

Dennison N.J., Saraiva R.G., Cirimotich C.M., Mlambo G., Mongodin E.F., Dimopoulos G. 2016. Functional genomic analyses of *Enterobacter, Anopheles and Plasmodium* reciprocal interactions that impact vector competence. *Malar. J.* **15**:1–15.

Dick G.W.A., Kitchen S.F., Haddow A.J. 1952. Zika virus. I. Isolations and serological specificity. *Trans. R. Soc. Trop. Med. Hyg.* Vol. 46.:509–520.

Du D., Wang Z., James N.R., Voss J.E., Klimont E., Ohene- T., Venter H., Chiu W., Luisi B.F. 2015. Structure of the AcrAB-ToIC multidrug efflux pump. *Nature* **509**:512–515.

Duffy M.R., Chen T.-H., Hancock W.T., Powers A.M., Kool J.L., Lanciotti R.S., Pretrick M., Marfel M., Holzbauer S., Dubray C., Guillaumot L., Griggs A., Bel M., Lambert A.J., Laven J., Kosoy O., Panella A., Biggerstaff B.J., Fischer M., Hayes E.B. 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. *N. Engl. J. Med.* **360**:2536–2543.

Ebrahiminezhad A., Rasoul-amini S., Ghasemi Y. 2011. L-Asparaginase Production by Moderate Halophilic Bacteria Isolated from Maharloo Salt Lake *Indian J. Microbiol.***51**:307–311.

Echenique J.R., Dorsey C.W., Patrito L.C., Petroni A., Tolmasky M.E., Actis L. A. 2001. *Acinetobacter baumannii* has two genes encoding glutathionedependent formaldehyde dehydrogenase: evidence for differential regulation in response to iron. *Microbiology* **147**:2805–15.

Eisenstein B.I. Enterobacteriaceae. In: Mandell GL, Douglas RG, Bennett JE, editors. Principles and practice of infectious disease. 3rded. New York: Churchill Livingstone; 1990. p. 1658-73.

El-bessoumy A.A., Sarhan M., Mansour J. 2004. Production , Isolation , and Purification of L -Asparaginase from *Pseudomonas aeruginosa* 50071 Using Solid-state Fermentation. *J. of Biochemistry and Mol. Biol.* **37**:387–393.

Engel P., Moran N.A. 2013. The gut microbiota of insects - diversity in structure and function. *FEMS Microbiol. Rev.* **37**:699–735.

Frankowski J., Lorito M., Scala F., Schmid R., Berg G., Bahl H. 2001. Purification and properties of two chitinolytic enzymes of *Serratia plymuthica* HRO-C48. *Arch. Microbiol.* **176**:421–426.

Gaio A. de O. 2011a.Estudo da microbiota intestinal de *Aedes aegypti* (Diptera: Culicidae) e sua contribuição para a digestão de sangue. Tese (Doutorado em Biociências e Biotecnologia) - Campos dos Goytacazes – RJ, Universidade Estadual do Norte Fluminense – UENF, 99p.

Gaio A. de O, Gusmão D.S., Santos A. V., Berbert-Molina M.A., Pimenta P.F.P., Lemos F.J.A. 2011b. Contribution of midgut bacteria to blood digestion and egg

production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit. Vectors 4:105.

Gerth U., Krüger E., Derré I., Msadek T., Hecker M. 1998. Stress induction of the *Bacillus subtilis* clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. *Mol. Microbiol.* **28**:787–802.

Ghigo J.M., Létoffé S., Wandersman C. 1997. A new type of hemophoredependent heme acquisition system of *Serratia marcescens* reconstituted in *Escherichia coli. J. Bacteriol.* **179**:3572–9.

Ghilarov D., Serebryakova M., Stevenson C.E.M., Hearnshaw S. J., Volkov D.S., Maxwell A., Lawson D.M., Severinov K. 2017. The Origins of Specificity in the Microcin-Processing Article The Origins of Specificity in the Microcin-Processing Protease TIdD / E. *Struct. Des.* **25**:1549–1561.e5.

Graça-Souza A. V., Maya-Monteiro C., Paiva-Silva G.O., Braz G.R.C., Paes M.C., Sorgine M.H.F., Oliveira M.F., Oliveira P.L. 2006. Adaptations against heme toxicity in blood-feeding arthropods. *Insect Biochem. Mol. Biol.* **36**:322–335.

Grimont F., Grimont P. 2006. The Genus Serratia. Prokaryotes 6:219–244.

Gubler D.J., Clark G.G. 1995. Dengue/Dengue Hemorrhagic Fever: The Emergence of a Global Health Problem Dengue. *Emerg. Infect. Dis.* **1**:55.

Guerin É., Cambray G., Sanchez-alberola N., Campoy S., Erill I., Re S. Da, Gonzalez-zorn B., Barbé J., Ploy M., Mazel D. 2009. The SOS Response Controls Integron Recombination. *Science*. **324**:2009.

Gusmão D.S., Santos A. V., Marini D.C., Bacci M., Berbert-Molina M.A., Lemos F.J.A. 2010. Culture-dependent and culture-independent characterization of microorganisms associated with *Aedes aegypti* (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. *Acta Trop.* **115**:275–81.

Gusmão D.S., Santos A.V., Marini D.C., Russo É.D.S., Peixoto A.M.D., Bacci Júnior M., Berbert-Molina M.A., Lemos F.J.A. 2007. First isolation of microorganisms from the gut diverticulum of *Aedes aegypti* (Diptera: Culicidae): new perspectives for an insect-bacteria association. *Mem Inst Oswaldo Cruz* **102**:919–924.

Gutheil W.G., Kasimoglu E., Nicholson P.C. 1997. Induction of glutathionedependent formaldehyde dehydrogenase activity in *Escherichia coli* and *Hemophilus influenza*. *Biochem. Biophys. Res. Commun.* **238**:693–696.

Hall T. 2001. BioEdit version 5.0.6. Manual:1–192.

Han S., Jung J., Park W. 2014. Biochemical Characterization of L-Asparaginase in NaCI-Tolerant *Staphylococcus sp.* OJ82 Isolated from Fermented Seafood. *J. Microbiol. Biotechnol.***24**:1096–1104.

Harris A.K.P., Williamson N.R., Slater H., Cox A., Abbasi S., Foulds I., Simonsen H.T., Leeper F.J., Salmond G.P.C. 2004. The *Serratia* gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. *Microbiology* **150**:3547–3560.
Hines D. A., Saurugger P.N., Ihler G.M., Benedik M.J. 1988. Genetic analysis of extracellular proteins of *Serratia marcescens*. *J Bacteriol* **170**:4141–4146.

Huang W., Wilks A. 2017. Extracellular Heme Uptake and the Challenge of Bacterial Cell Membranes. *Annu. Rev. Biochem.* **86**:799–823.

Idei A., Kawai E., Akatsuka H., Omori K. 1999. Cloning and characterization of the *Pseudomonas fluorescens* ATP-binding cassette exporter, HasDEF, for the heme acquisition protein HasA. *J. Bacteriol.* **181**:7545–51.

Jain S., Arora S., Saha R.S., Kaur I.R. 2017. Serratia plymuthica: A community-acquired uropathogen. *Indian J. Med. Sci.* **69**:31.

Jankiewicz U., Brzezinska S.M. 2015. Purification, characteristics and identification of chitinases synthesized by the bacterium *Serratia plymuthica* MP44 antagonistic against phytopathogenic fungi. *Appl. Biochem. Microbiol.* **51**:560–565.

Kaakoush N.O., Raftery M., Mendz G.L. 2008. Molecular responses of *Campylobacter jejuni* to cadmium stress. *FEBS J.* **275**:5021–5033.

Kay W.W., Phipps B.M., Ishiguro E.E., Trust T.J. 1985. Porphyrin binding by the surface array virulence protein of *Aeromonas salmonicida*. *J. Bacteriol*. **164**:1332–6.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J. Mol. Evol.* **16**:111–120.

Klein J.S., Lewinson O. 2011. Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. *Metallomics* **3**:1098.

Kroh H.E., Simon L.D. 1990. The C1pP Component of Clp Protease Is the sigma32-Dependent Heat Shock Protein F21.5. *J. Bacteriol.* **172**:6026–6034.

Kumar S., Engelberg-Kulka H. 2014. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents. *Curr. Opin. Microbiol.* 21:22–27.

Lee B.C. 1995. Quelling the red menace: haem capture by bacteria. *Mol. Microbiol.* **18**:383–390.

Lee S., Wroble M.H., Ross J.T. 1989. L-Asparaginase from *Erwinia carotovora* An Improved Recovery and Purification Process Using Affinity Chromatography. *Appl. Biochem. and Biotechnol.* **22**.

Letoffe S., Ghigo J.M., Wandersman C. 1994. Secretion of the *Serratia marcescens* HasA protein by an ABC transporter. *J Bacteriol* **176**:5372–5377.

Létoffé S., Omori K., Wandersman C. 2000. Functional characterization of the HasA(PF) hemophore and its truncated and chimeric variants: determination of a region involved in binding to the hemophore receptor. *J. Bacteriol.* **182**:4401–5.

Létoffé S., Nato F., Goldberg M.E., Wandersman C. 1999. Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor

HasR. Mol. Microbiol. 33:546-555.

Lima D.C., Duarte F.T., Medeiros V.K.S., Lima D.B., Carvalho P.C., Bonatto D., Batistuzzo de Medeiros S.R. 2014. The influence of iron on the proteomic profile of *Chromobacterium violaceum*. *BMC Microbiol*. **14**:267.

Lin J. 2017. Stress responses of *Acinetobacter* strain Y during phenol degradation. *Arch. Microbiol.* **199**:365–375.

Lin X., Kang L., Li H., Peng X. 2014. Fluctuation of multiple metabolic pathways is required for *Escherichia coli* in response to chlortetracycline stress. *Mol. BioSyst.* **10**:901–908.

Litwin C.M., Calderwood S.B. 1993. Role of iron in regulation of virulence genes. *Clin. Microbiol. Rev.* **6**:137–149.

Maravić A., Cvjetan S., Konta M., Ladouce R., Martín F.A. 2016. Proteomic response of β -lactamases-producing *Enterobacter cloacae* complex strain to cefotaxime-induced stress. *Pathog. Dis.* **74**:1–12.

Marraffini L.A., DeDent A.C., Schneewind O. 2006. Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria. *Microbiol. Mol. Biol. Rev.* **70**:192–221.

Mason K.M., Raffel F.K., Ray W.C., Bakaletz L.O. 2011. Heme utilization by nontypeable *Haemophilus influenzae* is essential and dependent on sap transporter function. *J. Bacteriol.* **193**:2527–2535.

Matheson R. 1930. The utilization of aquatic plants as aids in mosquito control. *Am. Nat.* **64**:56–86.

Matsuo T., Chen J, Minato Y, Ogawa W, Mizushima T, Kuroda T, Tsuchiya T. 2008. SmdAB, a Heterodimeric ABC-Type Multidrug Efflux Pump, in *Serratia marcescens*. *J. of Bacteriol.* **190**:648–654.

Matsuyama T., Bhasin A., Harshey R.M. 1995. Mutational analysis of flagellumindependent surface spreading of *Serratia marcescens* 274 on a low-agar medium. *J Bacteriol* **177**:987–991.

Mazmanian S.K., Skaar E.P., Gaspar A.H., Humayun M., Gornicki P., Jelenska J., Joachmiak A., Missiakas D.M., Schneewind O. 2003. Passage of Heme-Iron Across the Envelope of *Staphylococcus aureus*. *Science (80-.).* **299**:906–909.

Mcclelland M., Sanderson K.E., Spieth J., Clifton S.W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M., Du F., Hou S., Layman D., Grewal N., Mulvaney E., Ryan E., Sun H. 2001. Complete genome sequence of *Salmonella enterica* serovar Typhimurium LT2. *Nature* **413**.

Ministério da saúde. 2018. Boletim Epidemiológico 49:1–13.

Moraes C.S., Seabra S.H., Castro D.P., Brazil R.P., de Souza W., Garcia E.S., Azambuja P. 2008. *Leishmania (Leishmania) chagasi* interactions with *Serratia marcescens*: Ultrastructural studies, lysis and carbohydrate effects. *Exp. Parasitol.* **118**:561–568.

Moro V.C., Tran F.H., Raharimalala F.N., Ravelonandro P., Mavingui P. 2013. Diversity of culturable bacteria including *Pantoea* in wild mosquito *Aedes* albopictus. BMC Microbiol. 13:70.

Mota G.P. 2016. Efeito de diferentes concentrações de heme sobre o crescimento de bactérias isoladas do intestino médio de *Aedes aegypti*. Monografia – Campos dos Goytacazes – RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF, 2016.

Muturi E.J., Bara J.J., Rooney A.P., Hansen A.K. 2016. Midgut fungal and bacterial microbiota of *Aedes triseriatus* and *Aedes japonicus* shift in response to La Crosse virus infection. *Mol. Ecol.* **25**:4075–4090.

Nagarethinam S., Nagappa A., Udupa N., Rao, J.V., Meenashi V.B. 2012. Microbial L-Asparaginase and its future prospects. *Asian J. Med. Res.*:159–168.

Newell P.D., Yoshioka S., Hvorecny K.L., Monds R.D., Toole G.A.O., Acteriol J.B. 2011. Systematic Analysis of Diguanylate Cyclases That Promote Biofilm Formation by *Pseudomonas fluorescens* Pf0. *J. of Bacteriol.* **193**:4685–4698.

Nitzan Y., Wexler H.M., Finegold S.M. 1994. Inactivation of anaerobic bacteria by various photosensitized porphyrins or by hemin. *Curr. Microbiol.* **29**:125–131.

Norqvist A., Norrman B.O., Wolf-watz H. 1990. Identification and Characterization of a Zinc Metalloprotease Associated with Invasion by the Fish Pathogen *Vibrio anguillarum*. *Infec. and immun.* **58**:3731–3736.

Nwugo C.C., Gaddy J.A., Zimbler D.L., Actis L.A. 2011. Deciphering the iron response in *Acinetobacter baumannii:* A proteomics approach. *J. Proteomics* **74**:44–58.

Olczak T., Dixon W.D., Genco C. 2001. Binding specificity of the *Porphyromonas gingivalis* heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. *J. Bacteriol.* **183**:5599–5608.

Oliveira M.F., Silva J.R., Dansa-Petretski M., Souza W., Lins U., Braga C.M., Masuda H., Oliveira P.L. 1999. Haem detoxification by an insect. *Nature* **400**:517–518.

Oliveira P.L., Kawooya J.K., Ribeiro J.M.C., Meyer T., Poorman R., Alves E.W., Walker F.A., Machado E., Nussenzveig R.H., Padovan G.J., Masuda H. 1995. A heme-binding protein from hemolymph and oocytes of the blood-sucking insect, *Rhodnius prolixus*: Isolation and characterization. *J. Biol. Chem.***270**: 10897-10901.

Paiva-Silva G.O., Cruz-Oliveira C., Nakayasu E.S., Maya-Monteiro C.M., Dunkov B.C., Masuda H., Almeida I.C., Oliveira P.L. 2006. A heme-degradation pathway in a blood-sucking insect. *Proc. Natl. Acad. Sci. U. S. A.* **103**:8030–8035.

Papadimitriou K., Alegría Á., Bron P.A., De Angelis M., Gobbetti M., Kleerebezem M., Lemos J.A., Linares D.M., Ross P., Stanton C., Turroni F., Van Sinderen D., Varmanen P., Ventura M., Zúñiga M., Tsakalidou E. 2016. Stress Physiology of Lactic Acid Bacteria. *Microbiol. Mol. Biol. Rev.* **80**:837–890.

Pascoa V., Oliveira P.L., Dansa-Petretski M., Silva J.R., Alvarenga P.H., Jacobs-Lorena M., Lemos F.J.A. 2002. *Aedes aegypti* peritrophic matrix and its interaction with heme during blood digestion. *Insect Biochem. Mol. Biol.* **32**:517– 523. Perna N.T., lii G.P., Burland V., Mau B., Glasner J.D., Rose D.J., Mayhew G.F., Po È., Evans P.S., Gregor J., Kirkpatrick H.A., Hackett J., Klink S., Boutin A., Shao Y., Miller L., Grotbeck E.J., Davis N.W., Lim A., Dimalanta E.T., Potamousis K.D., Apodaca J., Anantharaman T.S., Lin J., Yen G., Schwartz D.C., RAW,I. Blattner F.R. 2001. Genome sequence of enterohaemorrhagic *Escherichia coli* O157 : H7 **409**.

Perry R.D., Brubaker R.R. 1979. Accumulation of iron by *yersiniae*. *J. Bacteriol.* **137**:1290–1298.

Perry R.D., Lucier T.S., Sikkema D.J., Brubaker R.R. 1993. Storage reservoirs of hemin and inorganic iron in *Yersinia pestis*. *Infect. Immun.* **61**:32–9.

Pialoux G., Gaüzère B.A., Jauréguiberry S., Strobel M. 2007. Chikungunya, an epidemic arbovirosis. *Lancet Infect. Dis.* **7**:319–327.

Poole K. 2012. Bacterial stress responses as determinants of antimicrobial resistance. *J. Antimicrob. Chemother*.:2069–2089.

Porcheron G., Garénaux A., Proulx J., Sabri M., Dozois C.M. 2013. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. *Front. Cell. Infect. Microbiol.* **3**:1–24.

Pradhan B., Dash S.K., Sahoo S. 2013. Screening and characterization of extracelluar L -asparaginase producing *Bacillus subtilis strain hswx 88*, isolated from Taptapani hotspring of Odisha, India. *Asinan Pacific J. of Trop. Biomed.* **3**:936–941.

Previato-Mello M., Meireles D.A., Netto L.E.S., Neto J.F.S. 2017. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in *Chromobacterium violaceum*. *Infec. and immun.* **85**:1–18.

Prihanto A.A., Wakayama M. 2014. Combination of environmental stress and localization of L -asparaginase in *Arthrospira platensis* for production improvement. *Biotech.* **4**:647–653.

Pruteanu M., Baker T.A. 2009. Proteolysis in the SOS response and metal homeostasis in *Escherichia coli. Res. Microbiol.* **160**:677–683.

Ramirez J.L., Souza-Neto J., Cosme R.T., Rovira J., Ortiz A., Pascale J.M., Dimopoulos G. 2012. Reciprocal tripartite interactions between the *Aedes aegypti* midgut microbiota, innate immune system and dengue virus influences vector competence. *PLoS Negl. Trop. Dis.* **6**:1–11.

Rani A., Sharma A., Rajagopal R., Adak T., Bhatnagar R.K. 2009. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected *Anopheles stephensi*-an Asian malarial vector. *BMC Microbiol.* **9**:96.

Ratliff M., Zhu W., Deshmukh R., Wilks A., Stojiljkovic I. 2001. Homologues of neisserial heme oxygenase in gram-negative bacteria: Degradation of heme by the product of the pigA gene of *Pseudomonas aeruginosa. J. Bacteriol.*

183:6394–6403.

Raymond K.N., Dertz E.A., Kim S.S. 2003. Enterobactin: an archetype for microbial iron transport. *Proc. Natl. Acad. Sci. U. S. A.* **100**:3584–3588.

Re D.S., Garnier F., Guérin E., Campoy S., Denis F. 2009. The SOS responsepromotes qnrB quinolone-resistance determinant expression **10**.

Reis R.S., Vale E. de M., Heringer A.S., Santa-Catarina C., Silveira V. 2016. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. *J. Proteomics* **130**:170–179.

Romoser W.S. 1996. The vector alimentary system. BJ Beaty, WC Marquardt, The Biology of Disease Vectors. 1^a. Colorado: University.

Rossignol M., Basset A., Espéli O., Boccard F. 2001. NKBOR, a mini-Tn10-based transposon for random insertion in the chromosome of Gram-negative bacteria and the rapid recovery of sequences flanking the insertion sites in *Escherichia coli. Res. Microbiol.* **152**:481–485.

Roy E.M., Griffith K.L. 2017. Characterization of a Novel Iron Acquisition Activity That Coordinates the Iron Response with Population Density under Iron-Replete Conditions in *Bacillus subtilis. J. of Bacter.* **199**:1–23.

Sadrzadeh S.M.H., Graf E., Panter S.S., Hallaway P.E., Eaton J.W. 1984. Hemoglobin. A biologic Fenton reagent. *J. Biol. Chem.* **259**:14354–14356.

Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* **4**:406–425.

Sánchez B., Anglade P., Baraige F., Los C.G., Margolles A., Zagorec M., Sa B. 2005. Proteomic Analysis of Global Changes in Protein Expression during Bile Salt Exposure of *Bifidobacterium longum* NCIMB 8809. *J. Bacteriol.* **187**:5799–5808.

Schmidt R., Jager V. de, Zühlke D., Wolff C., Bernhardt J., Cankar K., Beekwilder J., Ijcken W. van, Sleutels F., Boer W. de, Riedel K., Garbeva P. 2017. Fungal volatile compounds induce production of the secondary metabolite Sodorifen in *Serratia plymuthica* PRI-2C. *Sci. Rep.* **7**:862.

Schmitt T.H., Frezzatti W. A., Schreier S. 1993. Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. *Arch. Biochem. Biophys.***307**:96-103.

Seo S.W., Kim D., Latif H., O'Brien E.J., Szubin R., Palsson B.O. 2014. Deciphering fur transcriptional regulatory network highlights its complex role beyond iron metabolism in *Escherichia coli. Nat. Commun.* **5**.

Sterkel M., Oliveira J.H.M., Bottino-Rojas V., Paiva-Silva G.O., Oliveira P.L. 2017. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. *Trends Parasitol.* **xx**:1–12.

Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S.L., Hufnagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G.K., Wu Z., Paulsen I.T., Reizer J., Saier M.H., Hancock R.E.W., Lory S., Olson M.V., Corporation P., West E.A. 2000. Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. *Nature.* **406**:959–964.

Stugard C.E., Daskaleros P.A., Payne S.M. 1989. A 101-kilodalton heme-binding protein associated with congo red binding and virulence of *Shigella flexneri* and enteroinvasive *Escherichia coli* strains. *Infect. Immun.* **57**:3534–9.

Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol. Biol. Evol.* **24**:1596–1599.

Tauil P.L. 2001. Urbanization and dengue ecology. *Cad. saude publica / Minist. da Saude, Fund. Oswaldo Cruz, Esc. Nac. Saude Publica* **17 Suppl**:99–102.

Terenius O., Lindh J.M., Eriksson-Gonzales K., Bussière L., Laugen A.T., Bergquist H., Titanji K., Faye I. 2012. Midgut bacterial dynamics in *Aedes aegypti. FEMS Microbiol. Ecol.* **80**:556–565.

Thomsen L.E., Olsen J.E., Foster J.W., Ingmer H. 2002. ClpP is involved in the stress response and degradation of misfolded proteins in *Salmonella enterica* serovar Typhimurium. *Microbiology* **148**:2727–2733.

Tong Y., Guo M. 2009. Bacterial heme-transport proteins and their hemecoordination modes. *Arch. Biochem. Biophys.* **481**:1–15.

Vasil M.L., Ochsner U.A. 1999. The response of *Pseudomonas aeruginosa* to iron: Genetics, biochemistry and virulence. *Mol. Microbiol.* **34**:399–413.

Wagner A.F.V., Schultz S., Bomke J., Pils T., Knappe J., Lehmann W.D. 2001. YfiD of Escherichia coli and Y061 of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. *Biochem. Biophys. Res. Commun.* **285**:456–462.

Wan S., Mak M.W., Kung S.Y. 2017. FUEL-mLoc: Feature-unified prediction and explanation of multi-localization of cellular proteins in multiple organisms. *Bioinformatics* **33**:749–750

Wang N., Zhang J., Zhang L., Yang X.Y., Li N., Yu G., Han J., Cao K., Guo Z., Sun X., He Q.Y. 2014. Proteomic analysis of putative heme-binding proteins in *Streptococcus pyogenes. Metallomics* **6**:1451.

Wang S., Deng K., Zaremba S., Deng X., Lin C., Wang Q., Tortorello M.Lou, Zhang W. 2009. Transcriptomic response of *Escherichia coli* O157:H7 to oxidative stress. *Appl. Environ. Microbiol.* **75**:6110–6123.

Wang Y., Gilbreath T.M., Kukutla P., Yan G., Xu J. 2011. Dynamic gut microbiome across life history of the malaria mosquito *Anopheles gambiae* in Kenya. *PLoS One* **6**:e24767.

Whittaker J.W. 2012. Non-heme manganese catalase – the 'other' catalase. *Arch Biochem Biophys* **525**:111–120.

WHO. 2012. Dengue and severe dengue. WHO Fact Sheet:1-4.

WHO. 2015. Zika virus outbreaks in the Americas. *Wkly Epidemiol Rec* **90**:609–610.

Wolfe A.J., Visick K.L. 2008. Get the message out: Cyclic-Di-GMP regulates multiple levels of flagellum-based motility. *J. Bacteriol.* **190**:463–475.

Xu Y., Guo J., Jin X., Kim J.S., Ji Y., Fan S., Ha N.C., Quan C.S. 2016. Crystal structure and functional implications of the tandem-type universal stress protein UspE from *Escherichia coli. BMC Struct. Biol.* **16**:1–8.

Yadav K.K., Bora A., Datta S., Chandel K., Gogoi H.K., Prasad G.B.K.S., Veer V. 2015. Molecular characterization of midgut microbiota of *Aedes albopictus* and *Aedes aegypti* from Arunachal Pradesh, India. *Parasit. Vectors* **8**:641.

Yanagida N., Uozumi T., Beppu T. 1986. Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J. Bacteriol. **166**:937–44.

Zeller T., Moskvin O. V., Li K., Klug G., Gomelsky M. 2005. Transcriptome and Physiological Responses to Hydrogen Peroxide of the Facultatively Phototrophic Bacterium *Rhodobacter sphaeroides. Society* **187**:7232–7242.

Zeng H.W., Cai Y.J., Liao X.R., Zhang F., Zhang D.B. 2011. Production, characterization, cloning and sequence analysis of a monofunctional catalase from *Serratia marcescens* SYBC08. *J. Basic Microbiol.* **51**:205–214.

Zheng L., Cash V.L., Flint D.H., Dean D.R. 1998. Assembly of iron-sulfur clusters. *J. Biol. Chem.* **273**:13264–13272.

Zhou A., He Z., Redding-Johanson A.M., Mukhopadhyay A., Hemme C.L., Joachimiak M.P., Luo F., Deng Y., Bender K.S., He Q., Keasling J.D., Stahl D.A., Fields M.W., Hazen T.C., Arkin A.P., Wall J.D., Zhou J. 2010. Hydrogen peroxide-induced oxidative stress responses in *Desulfovibrio vulgaris* Hildenborough. *Environ. Microbiol.* **12**:2645–2657.

Zhu Y., Kumar S., Menon A.L., Scott R.A., Adams M.W.W. 2013. Regulation of iron metabolism by py *Pococcus furiosus*. *J. Bacteriol.* **195**:2400–2407.

Apêndice

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YKQ1	7	47.3766	1,4-dihydroxy-2-naphthoyl-CoA synthase	0.1178	1.1149
S4YD20	9	82.0677	10 kDa chaperonin	0.0066	1.1472
S4YRU3	23	203.1859	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase	0.7262	0.9792
S4YL50	14	83.3446	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	0.0318	0.8287
S4YPD9	16	110.7406	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	0.7618	1.0182
S4YT59	8	81.5298	2,5-diketo-D-gluconic acid reductase	0.1983	1.1124
S4YJQ4	10	73.5494	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase	0.8284	1.0068
S4YI11	22	213.5823	2-dehydro-3-deoxyphosphooctonate aldolase	0.9219	0.9901
S4YHH6	47	435.3576	30S ribosomal protein S1	0.0039	0.8738
S4YPG8	5	45.8412	30S ribosomal protein S10	0.0008	1.2584
S4YP74	8	48.8006	30S ribosomal protein S11	0.0991	0.8760
S4YLU7	2	16.6775	30S ribosomal protein S13	0.0224	1.2364
S4YE21	2	18.6177	30S ribosomal protein S15	0.0991	0.8565
S4YJS5	5	55.4134	30S ribosomal protein S16	0.0071	0.4191
S4YMT4	15	139.5032	30S ribosomal protein S2	0.0172	0.7281
S4YTL8	3	28.0692	30S ribosomal protein S3	0.9247	1.0045
S4YPD4	3	20.8171	30S ribosomal protein S4	0.0032	0.3846
S4YLV4	20	232.1356	30S ribosomal protein S5	0.2763	1.0658
S4YIL7	9	68.451	30S ribosomal protein S6	0.0009	0.6884
S4YPE7	7	57.0241	30S ribosomal protein S8	0.0013	1.2404

Tabela suplementar 1. Todas as proteínas identificadas em *Serratia plymuthica* cultivada na presença de 5mM.

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YN39	7	44.2222	30S ribosomal protein S9	0.7779	1.0129
S4YM37	3	17.0543	3-dehydroquinate synthase	0.3468	1.2516
S4YLZ0	12	92.1405	3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ	0.2413	1.0682
S4YES5	5	57.1387	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase	0.0015	1.4830
S4YJI8	3	22.6929	3-isopropylmalate dehydrogenase	0.0245	1.1916
S4YF38	2	11.6809	3-ketoacyl-ACP reductase	0.0762	0.4960
S4YHZ8	13	127.6788	3-ketoacyl-ACP reductase	0.3747	0.9141
S4YE27	9	57.1827	3-ketoacyl-CoA thiolase	0.0419	1.1775
S4YHP3	16	126.6438	3-oxoacyl-[acyl-carrier-protein] synthase 2	0.0408	1.1111
S4YF41	8	60.2754	3-oxoacyl-[acyl-carrier-protein] synthase 2	0.4891	0.9359
S4YKY6	23	210.5016	3-oxoacyl-ACP synthase	0.0598	1.1448
S4YMB5	8	57.3417	3-phosphoglycerate dehydrogenase	0.8485	0.9907
S4YRH3	3	18.1854	4-hydroxy-tetrahydrodipicolinate synthase	0.0318	0.6974
S4YE43	18	128.0548	50S ribosomal protein L1	0.1172	1.1388
S4YAU6	14	113.7402	50S ribosomal protein L10	0.0000	0.5964
S4YDR1	10	90.2829	50S ribosomal protein L11	0.7295	1.0323
S4YNL2	9	98.2926	50S ribosomal protein L14	0.7982	1.0189
S4YPE0	4	22.8183	50S ribosomal protein L15	0.4978	1.0698
S4YTK5	7	57.8322	50S ribosomal protein L17	0.0029	1.1992
S4YFH7	5	41.1512	50S ribosomal protein L19	0.0508	0.8650

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YEE3	2	16.1632	50S ribosomal protein L21	0.4162	0.8857
S4YNL8	4	21.8174	50S ribosomal protein L22	0.0567	1.1717
S4YTL5	6	39.8	50S ribosomal protein L24	0.1353	1.0828
S4YLM2	2	17.1851	50S ribosomal protein L3 glutamine methyltransferase	0.0063	0.6714
S4YNM3	14	157.1256	50S ribosomal protein L3	0.5753	0.9673
S4YP79	4	34.6567	50S ribosomal protein L30	0.0002	0.1242
S4YTM2	10	93.9367	50S ribosomal protein L4	0.0038	1.5863
S4YLV7	15	105.1647	50S ribosomal protein L5	0.1398	0.8921
S4YNK5	12	112.6534	50S ribosomal protein L6	0.0033	0.7100
S4YIF2	11	75.4812	50S ribosomal protein L7/L12	0.0015	0.6204
S4YEB7	18	181.3999	50S ribosomal protein L9	0.1524	0.8478
S4YKC8	7	60.7995	6,7-dimethyl-8-ribityllumazine synthase	0.0058	0.7158
S4YDU1	42	507.7301	60 kDa chaperonin	0.0015	0.6639
S4YG91	36	334.0865	6-phosphogluconate dehydrogenase, decarboxylating	0.0014	0.7354
S4YNE7	4	27.8664	ABC transporter ATP-binding protein	0.0008	4.6688
S4YGS6	2	11.3849	ABC transporter substrate-binding protein	0.0005	1.7966
S4YG85	6	39.809	ABC transporter substrate-binding protein	0.0077	0.8487
S4YKU6	18	169.9971	Acetate kinase	0.0027	1.9384
S4YJJ2	9	60.2455	Acetolactate synthase	0.0168	0.6522
S4YC25	10	72.0553	Acetolactate synthase	0.2278	0.8888

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YNW0	3	16.3513	Acetyl-CoA carboxylase biotin carboxylase subunit	0.0449	0.4741
S4YLY4	17	127.9004	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha	0.5836	0.9470
S4YLM1	7	58.7791	Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta	0.4951	1.0453
S4YQS9	2	11.4715	Acetylornithine deacetylase	0.1174	0.7116
S4YPK1	3	15.9884	Acetylornithine/succinyldiaminopimelate aminotransferase	0.0714	0.6498
S4YNG0	38	340.3833	Acetyltransferase component of pyruvate dehydrogenase complex	0.0034	0.7806
S4YM02	7	51.1464	Acetyltransferase M621_18390	0.0151	0.8764
S4YSW0	39	294.8861	Aconitate hydratase B	0.0098	0.8071
S4YJ39	13	93.0861	Aconitate hydratase	0.0174	1.5202
S4YHU1	5	64.8972	Acyl carrier protein	0.0034	0.6983
S4YPG2	3	15.6956	Acyl-CoA esterase	0.3256	0.7917
S4YLA9	7	47.6062	Adenosylhomocysteinase	0.0184	1.1169
S4YD16	15	117.1991	Adenylate kinase	0.0011	0.4924
S4YI91	3	17.7889	Adenylosuccinate lyase	0.5057	1.2018
S4YIK5	22	198.1749	Adenylosuccinate synthetase	0.0063	0.9410
S4YD43	2	16.5435	ADP-binding protein	0.9172	0.9868
S4YPE2	19	147.132	ADP-L-glycero-D-manno-heptose-6-epimerase	0.1994	1.0914
S4YS69	3	28.5813	Agmatinase	0.0002	0.3975
S4YL10	10	77.1744	Aldehyde oxidoreductase	0.0012	0.4997
S4YK05	46	471.2195	Aldehyde-alcohol dehydrogenase	0.8847	0.9687

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YID4	7	51.1216	Alpha-aspartyl dipeptidase	0.0003	0.7833
S4YTE3	16	115.0048	Amidohydrolase	0.1341	0.9488
S4YE25	17	138.3877	Amino acid ABC transporter substrate-binding protein	0.0215	1.2699
S4YCT3	22	129.9735	Amino acid ABC transporter substrate-binding protein	0.0212	1.0836
S4YKW0	5	35.6576	Amino acid ABC transporter substrate-binding protein	0.3500	1.0621
S4YUX6	5	39.1274	Amino acid ABC transporter substrate-binding protein	0.0007	3.0580
S4YGD8	2	10.9749	Amino acid transporter	0.0048	1.5451
S4YK34	12	97.3166	Aminoacyl-histidine dipeptidase	0.1425	0.9120
S4YQI1	7	49.3394	Aminotransferase AlaT	0.0007	1.3641
S4YLB0	6	39.8868	Arabinose 5-phosphate isomerase	0.0757	1.0518
S4YK99	8	50.3377	ArgininetRNA ligase	0.2263	1.0836
S4YMN5	14	101.4535	Argininosuccinate synthase	0.0065	0.8185
S4YHJ3	26	229.6096	Aromatic amino acid aminotransferase	0.5525	1.0327
S4YNC5	14	109.1883	Aromatic amino acid aminotransferase	0.0269	1.0948
S4YHJ5	8	56.3211	AsnC family transcriptional regulator	0.0019	0.7773
S4YM69	11	74.1703	AsparaginetRNA ligase	0.0260	0.8099
S4YAX4	24	217.7883	Aspartate ammonia-lyase	0.0091	1.3257
S4YE71	12	66.4539	Aspartate carbamoyltransferase	0.5316	1.0317
S4YQ18	26	185.3995	Aspartate-semialdehyde dehydrogenase	0.5593	1.0416

Tabela	suplementar	1,	Cont.
--------	-------------	----	-------

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YK86	4	33.789	Aspartyl-tRNA synthetase	0.0029	0.7286
S4YEE1	8	59.8868	ATP phosphoribosyltransferase	0.9963	0.9985
S4YQ37	7	51.988	ATP synthase epsilon chain	0.9791	0.9934
S4YPK2	24	150.5911	ATP synthase gamma chain	0.7583	1.0174
S4YUW3	43	425.5232	ATP synthase subunit alpha	0.0448	0.9282
S4YQ35	2	11.0488	ATP synthase subunit b	0.0109	0.6892
S4YR00	35	371.4161	ATP synthase subunit beta	0.2100	1.0651
S4YN10	2	11.8652	ATP synthase subunit delta	0.0020	0.2394
S4YG14	14	91.6332	ATP-dependent Clp protease ATP-binding subunit ClpX	0.4265	1.0398
S4YFR3	3	25.1662	ATP-dependent Clp protease proteolytic subunit	0.1628	1.1348
S4YIX2	4	28.3986	ATP-dependent dethiobiotin synthetase BioD	0.4254	0.9285
S4YUN1	18	150.7132	ATP-dependent protease ATPase subunit HsIU	0.0103	0.9004
S4YLR5	9	103.3965	Autonomous glycyl radical cofactor	0.0568	1.1227
S4YIW5	3	18.2383	Beta-N-acetylhexosaminidase	0.0061	1.4395
S4YHN7	9	60.7483	Bifunctional polymyxin resistance protein ArnA	0.0058	0.5559
S4YN15	15	117.0827	Bifunctional protein GlmU	0.9758	1.0044
S4YMZ1	26	181.0203	Bifunctional protein HIdE	0.0200	0.7774
S4YDT0	21	181.3875	Bifunctional purine biosynthesis protein PurH	0.5896	0.9663
S4YMG5	14	99.9451	Biosynthetic arginine decarboxylase	0.0001	0.6897
S4YPT3	12	99.4618	Branched-chain amino acid aminotransferase	0.0429	0.8676

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YDZ9	49	367.0712	Carbamoyl-phosphate synthase (glutamine-hydrolyzing)	0.0002	0.6014
S4YJD3	9	74.0256	Carbamoyl-phosphate synthase small chain	0.2848	1.1084
S4YN75	8	53.4455	Carbonic anhydrase	0.0047	0.7476
S4YP19	6	54.1962	Carbonic anhydrase	0.0423	0.8862
S4YDN6	2	12.1032	Carboxymethylenebutenolidase	0.0827	0.9094
S4YDW1	6	40.3163	Cell division protein FtsH	0.5491	1.0375
S4YEU1	22	207.8043	Cell division protein FtsZ	0.5735	1.0263
S4YS14	2	11.7326	Cell division protein ZapA	0.0244	0.6830
S4YHD2	2	12.6611	Cell division topological specificity factor	0.0250	0.7220
S4YF21	35	240.1838	Chaperone protein ClpB	0.0542	0.8386
S4YJB4	63	776.3786	Chaperone protein DnaK	0.0146	0.8658
S4YG49	38	307.6094	Chaperone protein HtpG	0.0039	0.5578
S4YMK2	5	41.8743	Chaperone protein skp	0.7933	0.9864
S4YLR1	5	27.3652	Chorismate synthase	0.0099	2.3456
S4YGJ2	7	46.3866	Citrate synthase	0.1017	0.6134
S4YG82	3	30.2344	Cold-shock protein	0.0070	1.4448
S4YK55	8	101.9935	Cold-shock protein	0.0114	1.1332
S4YEV8	29	219.4709	CTP synthase	0.0086	0.8000
S4YMV7	3	23.8478	Curved DNA-binding protein	0.4500	0.8402
S4YGN5	9	56.71	Cyclic pyranopterin monophosphate synthase accessory protein	0.3951	1.0707

Accession	eptide count	fidence score	Gescription	ANOVA	old_Change
	Å	Con			Ľ
S4YPV1	2	11.5476	Cystathionine gamma-synthase	0.0014	1.6467
S4YRC5	24	195.0799	Cysteine synthase	0.0002	1.3902
S4YKN4	11	76.6946	Cystine transporter subunit	0.0011	1.3788
S4YHL0	12	79.4092	Cytidylate kinase	0.0001	1.4062
S4YCU5	9	57.7675	Cytoplasmic glycerophosphodiester phosphodiesterase	0.0011	0.6790
S4YM12	4	24.0524	Cytosine deaminase	0.0004	0.4266
S4YC38	3	30.7285	D-alanineD-alanine ligase	0.9326	1.0055
S4YG99	18	120.0427	D-alanyl-D-alanine carboxypeptidase	0.0185	1.4082
S4YHD6	6	38.9437	D-alanyl-D-alanine carboxypeptidase	0.0193	1.3908
S4YE23	5	41.3795	Delta-aminolevulinic acid dehydratase	0.0002	0.5548
S4YML8	28	269.9222	Dihydrolipoyl dehydrogenase	0.0017	0.7307
S4YDI2	16	135.0507	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex	0.0716	0.8474
S4YHY9	10	72.2951	Dihydroorotase	0.0016	1.4301
S4YER5	11	92.344	Dihydroorotate dehydrogenase (quinone)	0.0026	0.8474
S4YQR7	18	110.3262	Dihydroxy-acid dehydratase	0.0156	0.9089
S4YLI0	2	20.1278	DNA-binding protein Fis	0.0489	0.8967
S4YH64	7	71.8382	DNA-binding protein	0.0302	0.6509
S4YNJ7	27	295.9607	DNA-directed RNA polymerase subunit alpha	0.1700	1.0565
S4YPZ7	3	23.9297	DNA-directed RNA polymerase subunit omega	0.0266	0.7872
S4YQ21	17	135.2203	D-ribose transporter subunit RbsB	0.0047	1.6870

Tabela sup	oleme	ntar 1, Cont.			
Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YI55	15	112.8173	dTDP-4-amino-4,6-dideoxygalactose transaminase	0.0637	0.9115
S4YDJ0	3	18.1523	dTDP-glucose 4,6-dehydratase	0.0134	0.7458
S4YGB8	7	51.727	Ecotin	0.0109	1.2609
S4YNM9	36	279.3022	Elongation factor G	0.0026	0.5793
S4YD25	3	33.4133	Elongation factor P	0.2241	1.1560
S4YM01	28	274.6608	Elongation factor Ts	0.0046	0.7998
S4YTM5	36	475.2133	Elongation factor Tu	0.5607	0.7756
S4YAU1	36	485.7823	Elongation factor Tu	0.0428	1.1990
S4YJR4	2	12.8888	Endopeptidase IV	0.0018	1.7220
S4YIX0	9	76.1411	Endoribonuclease L-PSP	0.3733	0.8286
S4YFE1	32	345.004	Enolase	0.0051	0.7707
S4YRK0	3	17.3202	Enoyl-CoA hydratase	0.0562	1.3438
S4YAT2	19	117.2056	Fatty acid oxidation complex subunit alpha	0.0054	1.6273
S4YTU3	10	73.451	Fe/S biogenesis protein NfuA	0.0020	0.7496
S4YMR5	2	10.9948	Ferredoxin-NADP reductase	0.0401	0.5801
S4YKY5	3	31.8839	Ferric uptake regulator	0.0831	0.9135
S4YKQ5	2	12.5585	Flagellar basal body protein	0.0008	1.8678
S4YJW6	7	43.6892	Flagellin	0.0099	3.9304
S4YFI2	2	11.7266	Flavodoxin	0.0133	1.5793
S4YDP9	2	11.4711	FMN reductase	0.4757	0.9611

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YB52	18	187.102	Fructose-1.6-bisphosphatase class 1	0.0012	0.7154
S4YN78	18	199.8304	Fructose-bisphosphate aldolase	0.0177	0.7510
S4YLQ6	5	33.449	Glucokinase	0.0502	1.1708
S4YFG4	3	17.9917	Glucosamine-6-phosphate deaminase	0.5425	0.9037
S4YM96	13	84.8969	Glucose-1-phosphate adenylyltransferase	0.7115	0.9761
S4YDV0	2	16.5429	Glucose-1-phosphate thymidylyltransferase	0.0404	0.6251
S4YHE3	7	51.8635	Glucose-6-phosphate 1-dehydrogenase	0.0194	0.7042
S4YJA1	3	24.1304	Glucose-6-phosphate 1-epimerase	0.0416	1.2116
S4YP25	10	72.8644	Glucose-6-phosphate isomerase	0.0026	0.6692
S4YCK9	14	77.9397	Glutamate 5-kinase	0.2708	0.9430
S4YMH0	19	124.3778	Glutamate dehydrogenase	0.0233	0.8475
S4YXW7	4	26.5783	Glutamate racemase	0.0195	0.4427
S4YNP8	15	96.0785	Glutamate synthase subunit beta	0.0190	1.1924
S4YFD1	6	41.8845	Glutamate-1-semialdehyde 2,1-aminomutase	0.0012	1.3373
S4YJS2	3	15.9022	Glutamatecysteine ligase	0.3507	0.9321
S4YUT4	28	290.1446	Glutamine synthetase	0.0024	0.7533
S4YUW7	17	127.2475	Glutaminefructose-6-phosphate aminotransferase [isomerizing]	0.0017	0.8474
S4YGC3	2	22.0989	Glutaredoxin	0.4922	1.0888
S4YIN2	4	35.1919	Glutaredoxin	0.0323	1.2837
S4YH53	23	175.2816	Glutathione ABC transporter substrate-binding protein GsiB	0.0003	1.4988

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YP54	14	126.7451	Glutathione reductase	0.0741	0.8883
S4YNH2	16	117.066	Glutathione synthetase	0.0271	0.7097
S4YN76	6	43.7244	Glutathionine S-transferase	0.0001	0.6364
S4YPJ9	16	151.2726	Glyceraldehyde-3-phosphate dehydrogenase	0.0419	1.1820
S4YQU9	5	27.5564	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	0.0132	1.8751
S4YMY8	28	217.4582	Glycine dehydrogenase (decarboxylating)	0.6923	1.0186
S4YMN3	3	16.2063	Glycine/betaine ABC transporter substrate-binding protein	0.0265	0.2863
S4YE80	8	55.3906	GMP reductase	0.0332	0.5258
S4YCT8	2	18.4973	GntR family transcriptional regulator	0.2794	0.9052
S4YH84	7	46.5717	GTP cyclohydrolase 1	0.0236	1.1774
S4YLL7	19	143.5941	HistidinetRNA ligase	0.0454	1.1136
S4YDZ5	6	45.4284	Inorganic pyrophosphatase	0.0897	0.8901
S4YJP4	28	238.2793	Inosine-5'-monophosphate dehydrogenase	0.0464	1.1042
S4YRL7	9	59.7117	Inositol monophosphatase	0.1071	1.1457
S4YLM9	8	53.602	Iron-sulfur cluster assembly scaffold protein IscU	0.1680	1.1531
S4YG71	5	32.8827	Iron-sulfur cluster carrier protein	0.0022	0.8270
S4YJM4	2	12.5976	Iron-sulfur cluster insertion protein ErpA	0.0951	1.3467
S4YI95	37	359.4453	Isocitrate dehydrogenase [NADP]	0.0027	0.7941
S4YGG9	65	640.9493	Keto-acid formate acetyltransferase	0.0262	0.6993
S4YJZ1	8	70.5073	Ketohydroxyglutarate aldolase	0.0006	0.2317

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YNH5	6	47.6429	Ketohydroxyglutarate aldolase	0.0114	1.7491
S4YPT0	19	126.0242	Ketol-acid reductoisomerase	0.0001	0.8138
S4YFE3	18	120.5376	LeucinetRNA ligase	0.0010	0.5338
S4YSW4	5	37.9878	Lipopolysaccharide ABC transporter ATP-binding protein	0.0068	0.7616
S4YNX3	9	70.9846	Lipopolysaccharide export system protein LptA	0.5337	0.9789
S4YMI2	10	71.0548	Lipoprotein	0.1373	1.0833
S4YMM7	24	171.203	LOG family protein ygdH	0.1895	0.8367
S4YJJ1	9	55.6884	L-serine dehydratase	0.0017	0.5341
S4YP88	9	55.6295	L-threonine dehydratase	0.9045	1.0078
S4YM82	14	94.4726	LysinetRNA ligase	0.1049	0.7856
S4YNM7	2	10.9621	LysR family transcriptional regulator	0.0002	0.3678
S4YB57	22	219.2953	Malate dehydrogenase	0.0005	0.4674
S4YJE6	11	74.3993	Malic enzyme	0.2503	0.9443
S4YIS5	11	98.3068	Malonic semialdehyde reductase	0.0078	0.7532
S4YH27	5	33.5338	Malonyl CoA-acyl carrier protein transacylase	0.2956	1.0700
S4YAD8	4	32.3504	Mannitol-1-phosphate 5-dehydrogenase	0.0013	0.5482
S4YIQ9	9	60.6368	Mannose-6-phosphate isomerase	0.3314	0.9629
S4YHQ0	15	121.1461	Membrane protein	0.7550	1.0393
S4YQM9	3	28.044	Membrane protein	0.8059	1.0304
S4YJ11	3	17.8989	Metal resistance protein	0.2821	1.1583

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YML4	6	42.0506	Methionine aminopeptidase	0.0298	1.1394
S4YLW1	14	113.1005	Methionine import ATP-binding protein MetN	0.7366	0.9631
S4YLT9	22	125.858	MethioninetRNA ligase	0.1579	1.0575
S4YPB5	12	87.3349	Methylenetetrahydrofolate reductase	0.0047	0.8490
S4YGN2	9	63.994	Molybdenum cofactor biosynthesis protein B	0.0064	0.7593
S4YFW8	21	177.6602	Multidrug transporter	0.2064	1.0795
S4YMN9	3	17.4532	Multidrug transporter	0.0008	0.3518
S4YHS0	5	57.1134	Murein lipoprotein	0.5825	1.0541
S4YEY4	2	15.6737	N utilization substance protein B homolog	0.1343	1.0941
S4YKM4	2	12.182	N5-carboxyaminoimidazole ribonucleotide mutase	0.3920	0.9386
S4YKW2	6	35.497	N-acetylglucosamine-6-phosphate deacetylase	0.0063	1.7032
S4YEI6	2	18.3109	N-acetyltransferase	0.1452	0.9160
S4YJW0	3	24.4435	NAD kinase	0.0117	1.4693
S4YE99	19	147.7933	NAD-dependent malic enzyme	0.1504	1.1135
S4YHV6	5	26.2454	NADH dehydrogenase	0.1813	0.8831
S4YIW1	13	73.1969	NADH dehydrogenase subunit F	0.0644	0.8034
S4YLE0	19	139.5709	NADH-quinone oxidoreductase	0.9191	1.0071
S4YLJ6	4	36.15	NADH-quinone oxidoreductase subunit B	0.0452	0.7290
S4YKS4	7	50.9806	NADH-quinone oxidoreductase subunit I	0.0216	0.8722
S4YHT5	8	45.5927	N-ethylmaleimide reductase	0.0147	1.3963

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YLP2	3	24.9663	Nitrogen regulatory protein P-II	0.1134	0.8515
S4YCS7	2	10.224	Nuclease SbcCD subunit D	0.7514	1.0514
S4YF48	5	40.5751	Nucleoid-associated protein M621_05400	0.0134	0.9036
S4YLM3	8	74.6637	Nucleoside diphosphate kinase	0.0242	0.8417
S4YRD2	3	17.1244	Organic solvent ABC transporter ATP-binding protein	0.3225	0.9331
S4YPZ0	10	63.6388	Orotate phosphoribosyltransferase	0.0774	0.7623
S4YNI9	7	57.8399	Outer membrane channel protein	0.4021	1.1862
S4YAD1	11	91.7358	Outer membrane lipoprotein	0.0173	0.8162
S4YNV1	16	99.0562	Outer membrane lipoprotein	0.5432	0.9725
S4YLK3	4	30.1291	Outer membrane phosphoporin protein E	0.0000	0.3889
S4YJM3	13	83.3624	Outer membrane phosphoporin protein E	0.0574	1.4320
S4YEQ5	11	102.941	Outer membrane porin protein C	0.0464	1.1823
S4YK42	27	197.359	Outer membrane protein assembly factor BamA	0.1619	1.0911
S4YJQ3	6	41.779	Outer membrane protein assembly factor BamB	0.0032	0.7395
S4YJH0	13	87.1227	Outer membrane protein assembly factor BamC	0.1007	1.1025
S4YLM4	5	38.9019	Outer membrane protein X	0.7435	1.1556
S4YCV5	9	56.2409	Oxidoreductase	0.0008	0.4347
S4YIU1	6	39.6026	Oxidoreductase	0.0221	1.2114
S4YRL3	18	155.9188	Peptidase B	0.0042	0.8692
S4YLD0	3	22.1349	Peptidase M15	0.0348	0.4815

Tabela sup	oleme	ntar 1, Cont.			
Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YNZ3	28	204.719	Peptidase PmbA	0.3897	1.0428
S4YDH4	17	133.9153	Peptide ABC transporter substrate-binding protein	0.0231	0.9021
S4YH59	11	75.5678	Peptide ABC transporter substrate-binding protein	0.0035	0.7935
S4YGJ4	7	67.957	Peptidoglycan-associated outer membrane lipoprotein	0.1041	1.0616
S4YD67	6	46.9266	Peptidyl-prolyl cis-trans isomerase	0.0417	1.3171
S4YG26	3	26.8265	Peptidyl-prolyl cis-trans isomerase	0.0003	0.6558
S4YPB0	17	150.4689	Peptidyl-prolyl cis-trans isomerase	0.0017	2.0407
S4YF11	14	112.4053	Peptidylprolyl isomerase	0.0006	1.3131
S4YI01	2	12.411	Peptidyl-tRNA hydrolase	0.0372	1.2057
S4YKB7	19	229.9207	Peroxiredoxin	0.2152	1.0887
S4YGX9	2	10.177	Phenazine biosynthesis protein PhzF family protein	0.0076	0.6589
S4YID2	11	80.1893	PhenylalaninetRNA ligase alpha subunit	0.0151	0.7594
S4YFL1	22	137.2637	PhenylalaninetRNA ligase beta subunit	0.0198	0.8044
S4YEJ7	2	11.483	PhnG	0.5227	0.9334
S4YI29	8	52.1746	PhoP family transcriptional regulator	0.0904	0.8874
S4YLK5	30	279.2027	Phosphate acetyltransferase	0.8608	0.9878
S4YPK6	16	108.8501	Phosphate-binding protein PstS	0.6455	1.0151
S4YD37	2	12.6427	Phosphatidylserine decarboxylase proenzyme	0.0204	0.5509
S4YDJ6	16	128.2031	Phospho-2-dehydro-3-deoxyheptonate aldolase	0.0002	0.8180
S4YLZ1	32	270.116	Phosphoenolpyruvate-protein phosphotransferase	0.6738	1.0148

	ptide count	idence score	escription	ANOVA	ld_Change
ـــــــــــــــــــــــــــــــــــــ	Ре	Cont	۵		Ч
S4YKK1	2	18.1772	Phosphofructokinase	0.0132	1.3580
S4YL04	18	156.1768	Phosphoglucomutase	0.3782	1.0517
S4YIR1	17	117.4493	Phosphoglucosamine mutase	0.0009	0.6859
S4YN21	18	198.8994	Phosphoglycerate kinase	0.2592	1.0622
S4YFQ2	5	30.3502	Phosphoheptose isomerase	0.1187	0.9330
S4YN49	3	24.1498	Phospholipid ABC transporter substrate-binding protein	0.3618	1.0585
S4YDT7	12	82.9678	Phosphopentomutase	0.0117	0.8539
S4YD04	10	68.3934	Phosphoribosylamineglycine ligase	0.0002	0.6187
S4YM11	13	97.5461	Phosphoribosylaminoimidazole-succinocarboxamide synthase	0.0203	0.7487
S4YLG8	8	67.46	Phosphoribosylformylglycinamidine cyclo-ligase	0.4882	0.9448
S4YLP6	25	182.8019	Phosphoribosylformylglycinamidine synthase	0.0559	0.7020
S4YJI5	3	17.5328	Phosphoribosylglycinamide formyltransferase 2	0.0002	0.4760
S4YM53	18	148.2165	Phosphoserine aminotransferase	0.5765	0.9421
S4YEG5	40	294.9091	Polyribonucleotide nucleotidyltransferase	0.3596	1.0332
S4YCU4	5	34.8813	Preprotein translocase subunit YajC	0.7379	0.9691
S4YJV4	38	302.1628	PrkA family serine protein kinase	0.0295	0.6453
S4YNB0	7	44.9959	Probable Fe(2+)-trafficking protein	0.0048	1.1525
S4YPH7	15	91.1003	Probable GTP-binding protein EngB	0.0001	0.6976
S4YPA3	7	69.5156	Probable thiol peroxidase	0.0974	0.9247
S4YPP7	5	31.3941	Probable transcriptional regulatory protein M621_14295	0.0254	0.7798

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YLX2	19	141.8135	ProlinetRNA ligase	0.5518	1.0605
S4YF63	4	26.8186	Protease	0.2924	0.8792
S4YLE8	10	62.3439	Protease TldD	0.0439	1.1099
S4YJG3	2	17.3362	Protein ApaG	0.0025	0.6802
S4YF18	9	63.3795	Protein CreA	0.0632	0.8414
S4YC90	22	179.7773	Protein RecA	0.0001	1.2273
S4YFL9	19	157.5556	Protein TolB	0.0203	1.2298
S4YLW4	8	108.6094	PTS glucose transporter subunit IIA	0.8704	1.0077
S4YLA1	7	64.2795	PTS sugar transporter	0.0194	1.1072
S4YI10	8	102.3741	Purine nucleoside phosphoramidase	0.0120	0.8009
S4YEI5	13	90.9288	Purine nucleoside phosphorylase DeoD-type	0.8754	0.9861
S4YLZ4	14	89.0069	Putrescine-binding periplasmic protein	0.1224	1.0478
S4YN87	43	324.5966	Pyruvate dehydrogenase E1 component	0.0052	0.6059
S4YIM0	24	272.4312	Pyruvate kinase	0.2140	1.0752
S4YJE1	32	287.028	Pyruvate kinase	0.1800	0.9808
S4YQ24	4	28.2776	Quercetin 2,3-dioxygenase	0.1957	0.9396
S4YQT7	5	59.9922	Regulator of ribonuclease activity A	0.0703	0.8990
S4YN48	9	67.4262	Riboflavin synthase subunit alpha	0.6842	0.9642
S4YMV8	8	59.1259	Ribonuclease PH	0.3036	1.0528
S4YN57	4	29.0283	Ribose-5-phosphate isomerase A	0.0347	0.7647

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YMN7	22	202.7145	Ribose-phosphate pyrophosphokinase	0.3284	1.0726
S4YN98	4	30.897	Ribosomal protein L11 methyltransferase	0.3011	0.9546
S4YLB8	2	16.1226	Ribosome hibernation promoting factor HPF	0.0012	0.4053
S4YH98	21	136.084	Ribosome-binding ATPase YchF	0.2378	1.0135
S4YIR6	7	49.2501	Ribosome-binding factor A	0.0104	1.7004
S4YK46	17	131.5675	Ribosome-recycling factor	0.0011	0.5457
S4YRN2	6	38.0032	RNA polymerase sigma factor	0.0010	0.3917
S4YDM5	2	11.5827	RNA polymerase sigma factor RpoH	0.0124	0.7078
S4YMH4	3	24.9949	RNA polymerase-binding transcription factor DksA	0.9127	1.0105
S4YN16	4	27.3221	RNA pseudouridylate synthase	0.0506	1.2340
S4YN89	20	165.6474	Rod shape-determining protein Mbl	0.0247	1.1747
S4YE88	11	76.0269	S-(hydroxymethyl)glutathione dehydrogenase	0.0406	1.1023
S4YNA9	22	198.4015	S-adenosylmethionine synthase	0.0412	0.8300
S4YJK9	6	39.8165	SapA	0.0020	1.7399
S4YQI6	7	47.492	Semialdehyde dehydrogenase	0.0078	1.9189
S4YJM8	19	169.4114	Serine endoprotease	0.6142	0.9742
S4YTB5	10	87.4734	Serine endoprotease	0.0006	1.2679
S4YRL9	31	297.4686	Serine hydroxymethyltransferase	0.0003	0.7757
S4YPB2	3	23.3468	Shikimate dehydrogenase (NADP(+))	0.0215	0.7439
S4YTR4	9	63.3069	Shikimate kinase 1	0.0004	0.6920

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YTF9	8	70.8271	Single-stranded DNA-binding protein	0.4966	0.9840
S4YJY1	9	85.8038	Site-determining protein	0.0363	0.9565
S4YMN0	12	79.7556	Soluble pyridine nucleotide transhydrogenase	0.0188	0.8005
S4YEE7	12	131.0748	S-ribosylhomocysteine lyase	0.4981	1.0455
S4YTB1	16	167.3863	Stringent starvation protein A	0.0282	0.8179
S4YFK9	16	106.4979	Succinate dehydrogenase flavoprotein subunit	0.0000	0.6209
S4YDU9	4	22.8409	Succinate dehydrogenase iron-sulfur subunit	0.0001	1.6259
S4YFL3	16	167.4063	Succinyl-CoA ligase [ADP-forming] subunit alpha	0.0869	0.8364
S4YL30	28	288.6563	Succinyl-CoA ligase [ADP-forming] subunit beta	0.0103	0.8230
S4YM36	5	32.8904	Succinyl-diaminopimelate desuccinylase	0.5548	1.0291
S4YDE8	3	24.6951	Superoxide dismutase	0.0000	0.1858
S4YPC3	4	22.0403	Taurine ABC transporter substrate-binding protein	0.8090	1.1844
S4YMG4	4	26.4992	TetR family transcriptional regulator	0.2972	1.1311
S4YF87	10	54.8922	Thiamine ABC transporter substrate-binding protein	0.4667	1.0656
S4YDS1	6	58.3063	Thiamine-phosphate synthase	0.0487	0.7149
S4YAV2	10	85.3634	Thiazole synthase	0.1228	1.1536
S4YMY7	7	54.8335	Thiol:disulfide interchange protein	0.0045	1.1466
S4YCL6	8	72.8425	Thioredoxin	0.2238	0.9460
S4YGF8	5	39.3074	Thioredoxin reductase	0.0672	0.9118
S4YM44	11	103.1782	Thioredoxin-dependent thiol peroxidase	0.0095	1.2027

Accession	eptide count	fidence score	escription	ANOVA	old_Change
	Å	Con			ŭ
S4YEJ4	4	22.5869	Threonine aldolase	0.0249	0.7240
S4YF25	18	133.1066	Threonine synthase	0.0000	0.6544
S4YDX2	20	182.002	Transaldolase	0.2143	0.9777
S4YLD3	3	26.1535	Transaldolase	0.0010	1.4299
S4YAS6	2	12.869	Transcription antitermination protein RfaH	0.2689	0.8726
S4YIQ5	11	75.9011	Transcription elongation factor GreA	0.0164	1.2288
S4YDI8	6	45.5531	Transcription termination factor Rho	0.0115	0.8734
S4YEG0	24	224.4106	Transcription termination/antitermination protein NusA	0.5578	0.9382
S4YCY3	11	72.2377	Transcription termination/antitermination protein NusG	0.5623	0.9085
S4YAV9	10	95.3092	Transcriptional regulator	0.0000	0.6740
S4YBU6	15	104.2581	Transcriptional regulator	0.0008	0.7335
S4YKF2	6	49.7284	Transcriptional regulator	0.2476	0.8358
S4YMY5	8	48.3129	Transcriptional regulator	0.2331	0.9099
S4YIR5	6	51.1555	Transcriptional regulator	0.0000	4.0067
S4YK92	4	32.436	Transcriptional regulator	0.0165	0.5015
S4YTP0	2	11.3615	Transcriptional regulator	0.0000	0.3059
S4YNU9	19	150.7912	Transcriptional regulator	0.5589	0.9631
S4YIJ2	9	51.0359	Transcriptional regulator SlyA	0.0105	1.3162
S4YN26	25	184.5491	Transketolase	0.0001	2.0938
S4YGF3	5	39.0994	Translation initiation factor IF-1	0.0021	0.8332

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YF05	27	239.7814	Trigger factor	0.0055	0.8059
S4YQU3	15	150.7232	Triosephosphate isomerase	0.0085	0.8322
S4YIJ7	15	102.3311	TyrosinetRNA ligase	0.0183	0.8494
S4YFQ8	4	37.2727	Ubiquinol oxidase subunit 2	0.2311	1.0799
S4YCV6	4	22.2335	Ubiquinone/menaquinone biosynthesis C-methyltransferase UbiE	0.0046	1.3119
S4YMS1	4	23.3722	UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase	0.2444	1.1896
S4YJ82	24	173.2251	UDP-glucose 6-dehydrogenase	0.0326	0.9038
S4YCM3	20	181.772	UDP-N-acetyl-D-mannosamine dehydrogenase	0.0321	0.9123
S4YNW4	12	81.6701	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	0.9725	0.9978
S4YI49	7	58.5119	UDP-N-acetylglucosamine 2-epimerase	0.0634	0.8799
S4YET8	4	22.9092	UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide) pyrophosphoryl- undecaprenol N-acetylglucosamine transferase	0.5094	1.1000
S4YUZ3	3	21.9233	Uncharacterized protein	0.4212	0.9273
S4YBR1	10	63.757	Uncharacterized protein	0.3104	1.0418
S4YC82	13	99.8027	Uncharacterized protein	0.2721	1.1084
S4YV94	3	26.9735	Uncharacterized protein	0.0216	0.6608
S4YCW9	4	23.3313	Uncharacterized protein	0.1150	1.1017
S4YCZ0	4	35.4688	Uncharacterized protein	0.0015	1.5452
S4YG12	2	11.8833	Uncharacterized protein	0.0035	0.6907
S4YJ49	5	48.9478	Uncharacterized protein	0.4199	1.0565
S4YHC6	3	24.7228	Uncharacterized protein	0.3962	1.0985

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
S4YPD0	3	22.8817	Uncharacterized protein	0.3180	0.9272
S4YLM8	2	22.4768	Uncharacterized protein	0.4837	0.9537
S4YSX3	5	27.1254	Uncharacterized protein	0.0436	0.7148
S4YNQ8	2	12.3052	Uncharacterized protein	0.0212	1.4469
S4YJG4	10	73.7581	Universal stress protein E	0.2194	1.0718
S4YMD1	2	12.0609	Universal stress protein	0.0073	0.6617
S4YPP8	2	24.339	Universal stress protein	0.0003	11.7924
S4YEZ3	7	54.7427	UPF0234 protein M621_05050	0.0000	0.3603
S4YFD2	2	12.1706	UPF0250 protein M621_05995	0.9374	1.0090
S4YF24	8	72.2756	UPF0312 protein M621_09495	0.0003	1.8756
S4YM06	3	17.4309	UPF0325 protein M621_20190	0.1437	1.4283
S4YRI1	9	66.9187	Uracil phosphoribosyltransferase	0.1323	1.0944
S4YE14	6	38.9877	Uridine phosphorylase	0.8227	1.0131
S4YRU0	14	101.5531	Uridylate kinase	0.9538	1.0026
S4YC66	8	49.6285	Urocanate hydratase	0.0003	0.6346
S4YAF9	3	15.7981	Xylose ABC transporter substrate-binding protein	0.0007	1.3326
S4YKN6	3	23.5616	Zinc-binding dehydrogenase	0.7016	0.9776

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J9B8	4.00	28.80	(4S)-4-hydroxy-5-phosphonooxypentane-2,3-dione isomerase	0.39	0.89
W6JEH4	5.00	37.22	1,4-dihydroxy-2-naphthoyl-CoA synthase	0.61	0.91
W6J6H7	9.00	87.01	10 kDa chaperonin	0.03	0.87
W6J261	16.00	117.83	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase	0.17	1.26
W6J0S7	14.00	140.07	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	0.71	1.04
W6J6Z4	23.00	181.59	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	0.40	0.92
A0A059XTV0	10.00	58.38	2',3'-cyclic-nucleotide 2'-phosphodiesterase	0.11	0.48
W6JD37	20.00	197.86	2,5-didehydrogluconate reductase A	0.49	1.08
W6J481	3.00	26.76	2,5-didehydrogluconate reductase B	0.07	2.86
A0A059XTW7	20.00	169.34	2-amino-3-ketobutyrate coenzyme A ligase	0.43	0.94
W6J957	4.00	28.84	2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase	0.12	1.27
W6J025	22.00	163.75	2-dehydro-3-deoxyphosphooctonate aldolase	0.22	0.91
W6J5T7	10.00	69.93	2-hydroxy-3-oxopropionate reductase	0.42	0.88
W6J0U4	29.00	206.34	2-oxoglutarate dehydrogenase E1 component	0.35	1.13
W6J6B9	14.00	108.94	3'(2'),5'-bisphosphate nucleotidase CysQ	0.36	1.10
W6JD32	5.00	29.67	3,4-dihydroxy-2-butanone 4-phosphate synthase	0.24	0.67
W6J2C6	30.00	274.55	30S ribosomal protein S1	0.24	1.42
W6J5B9	10.00	103.66	30S ribosomal protein S10	0.07	0.52
W6J7T3	7.00	53.65	30S ribosomal protein S11	0.38	0.69
W6J8U6	5.00	40.56	30S ribosomal protein S12	0.31	0.32

Tabela suplementar 2. Todas as proteínas identificadas em Kosakonia sacchari cultivada na presença de 5mM.

ccession	ptide count idence score	escription	ANOVA	ld_Change
٩	Pe	Ā		Fo
W6J8X9	3.00 17.30	30S ribosomal protein S13	0.76	0.99
W6JDV3	3.00 19.15	30S ribosomal protein S16	0.17	0.73
W6J5C5	2.00 13.54	30S ribosomal protein S17	0.32	0.57
W6J5B1	4.00 33.29	30S ribosomal protein S18	0.06	0.55
W6J5D9	21.00 214.15	30S ribosomal protein S2	0.10	0.70
W6JCZ2	12.00 116.24	30S ribosomal protein S3	0.09	0.32
W6J5E1	15.00 115.67	30S ribosomal protein S4	0.15	0.42
W6J8X1	17.00 215.12	30S ribosomal protein S5	0.25	0.74
W6J341	11.00 105.07	30S ribosomal protein S6	0.30	0.76
W6J7Q4	15.00 113.61	30S ribosomal protein S7	0.14	0.52
W6J5D0	16.00 161.73	30S ribosomal protein S8	0.27	0.76
W6J5I7	4.00 26.57	30S ribosomal protein S9	0.12	0.72
W6J578	13.00 89.74	3-dehydroquinate synthase	0.48	1.03
W6JD27	17.00 128.54	3-hydroxy-5-phosphonooxypentane-2,4-dione thiolase	0.47	0.95
W6JCA9	7.00 56.44	3-hydroxyacyl-[acyl-carrier-protein] dehydratase FabZ	0.36	0.85
W6J040	9.00 87.73	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase	0.17	1.07
W6J4Q5	2.00 10.84	3-isopropylmalate dehydratase small subunit	0.44	0.90
W6JED4	11.00 72.13	3-ketoacyl-CoA thiolase	0.03	1.74
W6J654	3.00 22.08	3-octaprenyl-4-hydroxybenzoate carboxy-lyase	0.42	1.21
W6IZJ2	14.00 104.91	3-oxoacyl-[acyl-carrier-protein] synthase 2	0.06	0.82

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J5A4	6.00	41.43	3-oxoacyl-[acyl-carrier-protein] synthase 2	0.78	1.01
W6J1U4	11.00	66.66	3-oxoacyl-[acyl-carrier-protein] synthase 3	0.56	0.94
W6JBS5	14.00	126.93	3-oxoacyl-ACP reductase	0.11	1.12
A0A059XTX3	16.00	99.84	4-aminobutyrate2-oxoglutarate transaminase	0.27	0.84
W6J9X2	11.00	58.44	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin)	0.10	0.85
W6JE40	14.00	96.26	4-hydroxy-tetrahydrodipicolinate synthase	0.15	0.85
W6J3R3	18.00	160.33	50S ribosomal protein L1	0.17	0.83
W6J630	16.00	157.55	50S ribosomal protein L10	0.03	0.63
W6J3U6	16.00	155.41	50S ribosomal protein L11	0.23	0.70
W6J7Y0	7.00	73.34	50S ribosomal protein L13	0.20	0.42
W6J5G3	9.00	117.39	50S ribosomal protein L14	0.27	0.67
W6J5D8	6.00	38.53	50S ribosomal protein L15	0.43	0.80
W6J8W3	9.00	76.14	50S ribosomal protein L16	0.28	0.58
W6JBR8	6.00	38.32	50S ribosomal protein L16 arginine hydroxylase	0.02	1.33
W6JCZ6	9.00	93.79	50S ribosomal protein L17	0.21	0.41
W6JCZ4	3.00	24.43	50S ribosomal protein L18	0.59	0.79
W6J756	4.00	44.55	50S ribosomal protein L19	0.08	0.48
W6J7R3	6.00	37.06	50S ribosomal protein L2	0.26	1.46
W6J806	5.00	32.70	50S ribosomal protein L21	0.71	0.96
W6J5G0	10.00	109.90	50S ribosomal protein L22	0.19	0.59

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6JCZ3	9.00	65.55	50S ribosomal protein L24	0.18	0.65
W6JAC4	4.00	23.67	50S ribosomal protein L25	0.04	0.70
W6J5L2	2.00	14.23	50S ribosomal protein L27	0.06	0.21
W6J5F6	21.00	229.87	50S ribosomal protein L3	0.58	0.92
W6J7S7	4.00	45.32	50S ribosomal protein L30	0.23	0.58
W6JCP5	3.00	17.30	50S ribosomal protein L31	0.32	0.69
W6JCZ1	12.00	121.57	50S ribosomal protein L4	0.93	1.00
W6J8W7	17.00	154.49	50S ribosomal protein L5	0.13	0.70
W6J5G8	11.00	129.18	50S ribosomal protein L6	0.11	0.61
A0A059XPN7	14.00	136.27	50S ribosomal protein L7/L12	0.92	1.01
W6J6C8	20.00	202.32	50S ribosomal protein L9	0.05	0.81
W6J1M0	8.00	79.71	6,7-dimethyl-8-ribityllumazine synthase	0.14	0.79
W6JCI9	46.00	565.29	60 kDa chaperonin	0.94	1.01
W6JCS4	8.00	46.63	6-phospho-alpha-glucosidase	0.01	0.62
W6IZ04	34.00	345.38	6-phosphogluconate dehydrogenase, decarboxylating	0.25	1.17
W6JC04	15.00	148.13	6-phosphogluconolactonase	0.10	1.26
W6J5K3	6.00	32.86	ABC transporter ATP-binding protein	0.01	0.64
W6J1G7	5.00	57.10	ABC transporter substrate-binding protein	0.83	1.02
W6J4H1	6.00	43.04	ABC transporter substrate-binding protein	0.31	0.78
W6J890	26.00	207.35	Acetate kinase	0.11	1.09

Accession	eptide count	ifidence score	Description	ANOVA	old_Change
	ď	Con			ц
W6J9K5	15.00	189.61	Acetoin reductase	0.05	0.94
W6JD57	27.00	271.34	Acetolactate synthase	0.55	1.09
W6J4P9	2.00	13.63	Acetolactate synthase small subunit	0.01	1.47
W6J7W2	24.00	179.89	Acetyl-CoA carboxylase biotin carboxylase subunit	0.21	1.18
W6J5G7	5.00	57.77	Acetyl-CoA carboxylase, biotin carboxyl carrier protein	0.22	0.84
W6J5C0	18.00	160.66	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha	0.54	0.93
W6JAW1	11.00	98.63	Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta	0.48	0.94
W6JCK4	31.00	269.84	Acetyl-coenzyme A synthetase	0.07	2.27
W6IZC0	7.00	57.68	Acetylornithine/succinyldiaminopimelate aminotransferase	0.17	1.71
W6J8R7	7.00	47.59	Acetylornithine/succinyldiaminopimelate aminotransferase	0.24	0.85
W6JD18	4.00	31.53	Acetyltransferase	0.14	0.82
W6J4H8	33.00	244.20	Acetyltransferase component of pyruvate dehydrogenase complex	0.38	1.22
W6JBQ7	10.00	104.32	Acid phosphatase	0.10	0.60
W6J0B8	36.00	269.49	Aconitate hydratase	0.08	1.55
W6J274	61.00	532.53	Aconitate hydratase B	0.30	0.87
W6IZQ0	3.00	29.53	Acyl carrier protein	0.33	0.80
W6IY24	2.00	11.85	Acyl-CoA thioesterase	0.21	1.15
W6J4P8	16.00	135.83	Adenylate kinase	0.19	0.70
W6J1M1	22.00	148.29	Adenylosuccinate lyase	0.62	0.96
W6J6E7	26.00	224.82	Adenylosuccinate synthetase	0.45	0.95

	t ore			0
Accession	Peptide coun Confidence sco	Description	ANOVA	Fold_Change
W6J6Y9	2.00 13.41	ADP-heptoseLPS heptosyltransferase	0.24	3.66
W6J4K3	21.00 138.54	ADP-L-glycero-D-manno-heptose-6-epimerase	0.19	1.14
W6JB13	10.00 62.65	Alanine racemase	0.08	1.36
W6J6X9	12.00 79.80	AlaninetRNA ligase	0.39	0.89
W6J2W6	9.00 66.17	Alcohol dehydrogenase	0.02	1.27
W6J7Y1	10.00 70.01	Alcohol dehydrogenase	0.75	1.02
A0A059XP30	27.00 263.86	Aldehyde dehydrogenase	0.15	0.81
W6J9G3	19.00 162.93	Aldehyde reductase	0.91	1.03
W6J052	71.00 789.51	Aldehyde-alcohol dehydrogenase	0.43	1.20
W6J2R6	8.00 50.37	Aldo/keto reductase	0.21	0.92
W6J0N5	6.00 38.52	Aldose 1-epimerase	0.07	0.61
W6JCX6	9.00 53.20	Alpha-1,4 glucan phosphorylase	0.07	0.67
W6J649	6.00 55.69	Alpha-acetolactate decarboxylase	0.33	0.83
A0A059XTN4	7.00 38.90	Amidohydrolase	0.15	0.78
W6JEF2	16.00 106.34	Amidophosphoribosyltransferase	0.48	0.93
W6JBI2	20.00 162.74	Amino acid ABC transporter substrate-binding protein	0.02	0.66
W6J5F7	21.00 172.04	Amino acid ABC transporter substrate-binding protein	0.85	1.03
W6J704	7.00 42.91	Aminoimidazole riboside kinase	0.23	0.85
W6J9S5	5.00 30.01	Aminomethyltransferase	0.01	0.73
W6JE07	24.00 184.29	Aminopeptidase PepB	0.49	1.03
Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
------------	-----------------------------------	--	-------	-------------
W6J3K4	6.00 33.97	Aminotransferase	0.01	0.78
W6JBW4	32.00 315.84	Aminotransferase	0.47	0.92
W6IZ58	8.00 52.03	AMP nucleosidase	0.41	1.08
W6J9A3	7.00 58.04	Antibiotic biosynthesis monooxygenase	0.16	0.55
W6J941	12.00 67.33	Arabinose 5-phosphate isomerase	0.40	1.07
W6JBX4	3.00 16.54	Arginine ABC transporter ATP-binding protein ArtP	0.30	0.84
W6J0A7	8.00 52.49	Arginine ABC transporter substrate-binding protein	0.51	0.63
W6J3H9	18.00 165.48	Arginine ABC transporter substrate-binding protein	0.57	0.71
W6J0Y6	4.00 22.21	Arginine transporter ATP-binding subunit	0.01	2.16
W6IX11	4.00 23.66	ArgininetRNA ligase	0.09	1.21
W6IYE6	8.00 62.16	Arylesterase	0.04	1.20
W6J3T2	2.00 11.78	Asp/Glu/hydantoin racemase	0.02	0.73
W6J0U6	22.00 144.76	Asparagine synthase B	0.32	1.11
W6J011	8.00 52.95	AsparaginetRNA ligase	0.69	1.06
W6J385	25.00 244.30	Aspartate ammonia-lyase	0.02	0.67
W6J8P3	7.00 45.69	Aspartate carbamoyltransferase	0.02	0.77
A0A059XTU7	3.00 16.57	Aspartate carbamoyltransferase regulatory chain	0.22	0.50
W6J518	11.00 87.05	Aspartate-semialdehyde dehydrogenase	0.44	0.91
W6J0G4	27.00 179.19	AspartatetRNA(Asp/Asn) ligase	0.30	1.19
W6J7R0	5.00 41.44	ATP synthase epsilon chain	0.10	0.80

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J499	22.00	188.33	ATP synthase gamma chain	0.09	0.81
W6J489	41.00	451.40	ATP synthase subunit alpha	0.73	1.03
W6J7Q5	13.00	93.02	ATP synthase subunit b	0.13	0.77
W6JCR6	34.00	404.43	ATP synthase subunit beta	0.96	1.00
W6J6K9	11.00	99.19	ATP synthase subunit delta	0.78	1.07
W6J6E3	19.00	167.39	ATP-dependent 6-phosphofructokinase	0.39	1.17
W6J4V1	25.00	182.47	ATP-dependent Clp protease ATP-binding subunit ClpX	0.51	0.96
W6J3T1	8.00	51.92	ATP-dependent Clp protease proteolytic subunit	0.08	0.81
W6JCF1	13.00	115.21	ATP-dependent Clp protease proteolytic subunit	0.13	0.81
W6J232	2.00	12.79	ATP-dependent dethiobiotin synthetase BioD	0.08	0.53
W6J429	12.00	83.81	ATP-dependent protease ATPase subunit HsIU	0.14	1.11
W6JD14	34.00	211.44	ATP-dependent zinc metalloprotease FtsH	0.22	0.93
W6J9T6	15.00	137.87	Autonomous glycyl radical cofactor	0.03	0.44
W6J8V1	11.00	101.26	Bacterioferritin	0.62	1.11
W6JB17	7.00	40.55	Beta-glucosidase	0.13	1.21
W6JEE5	19.00	133.25	Beta-ketoacyl-[acyl-carrier-protein] synthase I	0.74	1.03
W6J273	9.00	68.13	Bifunctional glucose-1-phosphatase/inositol phosphatase	0.03	1.20
			Bifunctional phosphopantothenoylcysteine decarboxylase/phosphopantothenate		
W6J4K8	11.00	64.79	synthase	0.08	0.87
W6J512	15.00	92.46	Bifunctional polymyxin resistance protein ArnA	0.50	0.94
W6J4M2	3.00	20.30	Bifunctional protein FolD	0.18	1.33

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
 A0A059XP70	6.00	34.05	Bifunctional protein HldE	0.52	1.11
W6JEK8	2.00	13.06	Bifunctional PTS fructose transporter subunit IIA/HPr protein	0.02	1.30
W6J3Q6	31.00	230.56	Bifunctional purine biosynthesis protein PurH	0.63	1.06
W6J1F4	24.00	165.21	Bifunctional UDP-sugar hydrolase/5'-nucleotidase	0.18	0.80
W6J407	14.00	103.18	Branched-chain amino acid aminotransferase	0.05	1.32
W6J4S7	16.00	126.23	Carbamoyl-phosphate synthase small chain	0.73	0.98
W6JCB7	4.00	24.03	Carbonic anhydrase	0.01	0.62
W6J3U2	9.00	68.14	Carboxymethylenebutenolidase	0.14	0.65
A0A059XNK4	4.00	24.99	Carboxypeptidase 1	0.16	1.08
A0A059XP91	33.00	328.49	Catalase	0.09	1.99
W6IXG4	20.00	133.74	Catalase-peroxidase	0.11	1.37
W6J4M1	6.00	36.87	Cell division protein FtsA	0.28	1.17
W6J5M5	24.00	195.87	Cell division protein FtsZ	0.00	0.68
W6IXI1	7.00	53.69	Cell division topological specificity factor	0.79	0.94
W6J5C4	5.00	31.31	Cell filamentation protein Fic	0.08	1.44
W6J878	37.00	270.39	Cellulose synthase regulator BcsB	0.53	0.91
W6J7G9	45.00	311.69	Chaperone protein ClpB	0.06	1.33
W6J5S5	19.00	123.98	Chaperone protein DnaJ	0.32	1.18
W6J4T8	58.00	576.55	Chaperone protein DnaK	0.52	1.06
W6J3N5	35.00	246.00	Chaperone protein HtpG	0.88	0.98

	0			
Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6J4R9	18.00 123.99	Chaperone SurA	0.26	0.82
W6IYC9	3.00 17.26	Chemotaxis protein	0.91	0.98
W6J0E1	5.00 31.74	Chemotaxis protein CheW	0.09	0.71
W6IX00	7.00 38.60	Chemotaxis response regulator protein-glutamate methylesterase	0.31	0.88
W6J363	5.00 40.66	Choline dehydrogenase	0.94	0.98
W6J858	3.00 23.62	Chorismate synthase	0.30	1.98
W6J8B0	11.00 76.82	CinA-like protein	0.00	0.70
W6JC12	27.00 275.17	Citrate synthase	0.82	1.02
W6J678	21.00 253.57	Class II fructose-bisphosphate aldolase	0.69	1.04
W6IZQ8	32.00 219.63	ClpV1 family T6SS ATPase	0.01	0.78
W6JD07	5.00 42.32	CIpXP protease specificity-enhancing factor	0.03	0.61
W6J1E6	3.00 16.66	Co-chaperone YbbN	0.97	0.98
W6IZK5	5.00 89.47	Cold-shock protein	0.07	0.54
W6J127	5.00 45.89	Cold-shock protein	0.18	0.67
A0A059XJN7	18.00 146.09	Conjugal transfer protein	0.80	0.95
W6J235	3.00 17.46	Copper homeostasis/adhesion lipoprotein NIpE	0.23	0.69
W6JC99	25.00 189.47	CTP synthase	0.30	1.07
W6J1I4	10.00 79.82	Cysteine ABC transporter substrate-binding protein	0.49	0.68
W6J2C0	6.00 34.73	Cysteine desulfurase	0.26	1.14
W6JA09	26.00 276.52	Cysteine synthase	0.00	1.21

_						
	Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
	W6IZC2	10.00	66.94	Cystine transporter subunit	0.63	0.72
	A0A059XJE2	14.00	94.60	Cytidylate kinase	0.20	0.81
	W6JAI6	7.00	47.09	Cytoskeleton protein RodZ	0.87	0.96
	W6J1U3	25.00	186.51	Cytosol nonspecific dipeptidase	0.52	0.92
	W6J6D1	13.00	110.52	D-3-phosphoglycerate dehydrogenase	0.90	1.01
	W6IXJ0	25.00	151.53	D-amino acid dehydrogenase	0.82	0.95
	W6IWX0	8.00	57.78	D-cysteine desulfhydrase	0.17	1.32
	A0A059XTD6	2.00	17.40	DeoR family transcriptional regulator	0.31	0.91
	W6JB50	3.00	23.34	DeoR family transcriptional regulator	0.75	2.58
	W6J4W4	13.00	85.60	Deoxyribose-phosphate aldolase	0.56	1.11
	W6J4I8	3.00	25.20	Deoxyuridine 5'-triphosphate nucleotidohydrolase	0.09	0.63
	W6IZ83	11.00	116.71	D-hexose-6-phosphate mutarotase	0.08	0.63
	W6J0U1	5.00	29.19	Diaminobutyrate2-oxoglutarate transaminase	0.25	0.78
	W6J709	14.00	90.05	Diguanylate cyclase	0.04	1.67
	W6J5I6	30.00	263.26	Dihydrolipoyl dehydrogenase	0.55	1.08
				Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase		
	W6J0Q5	31.00	250.32	complex	0.94	1.00
	W6JBT1	7.00	45.19	Dihydroorotase	0.63	1.27
	W6JBW2	11.00	71.46	Dihydroorotate dehydrogenase (quinone)	0.04	0.76
	W6J3Y1	10.00	51.02	Dihydroxy-acid dehydratase	0.69	0.98
	W6J6X8	14.00	113.51	Dimethylallyltransferase	0.05	1.22

Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6J736	2.00 12.13	Dipeptide ABC transporter ATP-binding protein	0.95	0.95
W6J0I4	3.00 15.76	DNA polymerase III subunit theta	0.26	0.74
A0A059XTJ5	12.00 164.10	DNA protection during starvation protein	0.18	0.78
W6J3J1	10.00 94.43	DNA-binding protein	0.32	0.79
W6J5Z0	9.00 72.70	DNA-binding protein	0.15	0.75
W6JBA5	11.00 85.98	DNA-binding protein	0.70	0.85
W6J7V8	2.00 11.48	DNA-binding protein Fis	0.06	0.16
W6J1K7	6.00 58.83	DNA-binding protein HU	0.41	0.64
W6IZD4	18.00 130.07	DNA-binding response regulator	0.13	0.87
W6JCP9	4.00 35.19	DNA-binding response regulator	0.19	0.75
W6J5N6	11.00 70.82	DNA-binding transcriptional regulator FruR	0.04	0.57
W6IZK1	18.00 124.36	DNA-binding transcriptional regulator KdgR	0.22	1.19
W6J5H9	23.00 233.64	DNA-directed RNA polymerase subunit alpha	0.03	0.90
W6JCM5	50.00 306.32	DNA-directed RNA polymerase subunit beta	0.20	0.89
W6J3S5	14.00 90.48	DNA-directed RNA polymerase subunit beta	0.73	1.06
W6J6J6	22.00 200.79	D-ribose ABC transporter substrate-binding protein RbsB	0.20	0.53
A0A059XNH9	5.00 29.65	DUF1338 domain-containing protein	0.12	1.62
W6J4Q9	17.00 171.65	Efflux transporter periplasmic adaptor subunit	0.51	0.93
W6IX14	18.00 125.85	Elongation factor G	0.38	1.17
W6J5B4	49.00 505.53	Elongation factor G	0.10	1.43

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J5F8	5.00	54.11	Elongation factor P	0.14	0.79
W6JA83	3.00	22.75	Elongation factor P hydroxylase	0.16	0.71
W6JCB1	29.00	308.13	Elongation factor Ts	0.42	1.16
A0A059XJP5;W6J5F1	39.00	502.75	Elongation factor Tu	0.24	1.17
W6JC26	2.00	14.10	Endolytic peptidoglycan transglycosylase RlpA	0.68	0.81
W6J3R1	13.00	101.50	Endonuclease V	0.59	0.94
W6J4V5	28.00	186.68	Energy-dependent translational throttle protein EttA	0.06	0.68
W6J1Y9	37.00	402.92	Enolase	0.47	1.05
W6IY88	19.00	180.60	Enoyl-[acyl-carrier-protein] reductase [NADH]	0.15	1.19
W6JB22	30.00	248.35	EvpB family type VI secretion protein	0.02	0.81
W6JBQ6	3.00	23.63	Exodeoxyribonuclease III	0.72	1.02
W6J7G7	11.00	95.81	Fe/S biogenesis protein NfuA	0.82	0.98
W6J7E4	4.00	22.48	Ferredoxin, 2Fe-2S type, ISC system	0.50	0.82
W6J0T5	5.00	34.36	Ferric uptake regulation protein	0.20	0.66
W6JBP7	7.00	44.72	Fe-S cluster assembly scaffold SufA	0.81	1.03
W6IWU4	2.00	11.61	Flagellar basal body-associated protein FliL	0.20	0.85
A0A059XJB9	12.00	76.00	Flagellar hook protein FlgE	0.32	0.79
W6JBS8	5.00	31.85	Flagellar L-ring protein	0.15	1.35
W6IZB1	21.00	248.69	Flagellin	0.01	0.13
W6J0A1	21.00	247.38	Flagellin	0.04	0.27

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J3P4	23.00	220.21	Flagellin	0.24	0.59
W6J1H7	2.00	10.76	Flavin reductase	0.16	5.78
W6J338	7.00	58.08	Flavodoxin	0.39	0.83
W6JCR3	4.00	31.60	FMN-binding protein MioC	0.00	0.61
W6J032	64.00	597.61	Formate acetyltransferase	0.34	1.13
W6J6W3	5.00	30.79	Formate dehydrogenase	0.22	0.66
W6J721	17.00	118.14	Formate dehydrogenase subunit alpha	0.38	0.84
A0A059XJZ6	4.00	28.48	Formimidoylglutamate deiminase	0.02	0.39
W6JBA3	4.00	24.20	Formyltetrahydrofolate deformylase	0.01	0.76
W6IX53	3.00	19.18	Free methionine-R-sulfoxide reductase	0.20	0.72
W6J1Q8	9.00	57.57	Fructokinase	0.77	1.02
W6JCH2	18.00	154.55	Fructose-1,6-bisphosphatase class 1	0.69	0.95
W6J422	10.00	57.92	Fructose-6-phosphate aldolase	0.04	0.57
W6JEP9	28.00	303.69	Fructose-bisphosphate aldolase	0.47	0.89
A0A059XNF4	30.00	234.72	Fumarate hydratase class I	0.14	0.75
W6IZ25	32.00	247.56	Fumarate hydratase class I	0.25	0.84
A0A059XP79	20.00	144.61	Fumarate hydratase class II	0.16	0.83
W6J312	34.00	305.41	Fumarate reductase flavoprotein subunit	0.10	1.24
W6J2Y3	6.00	42.02	Galactokinase	0.03	0.44
W6JAI7	15.00	113.96	GalU regulator GalF	0.83	1.03

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J5J3	2.00	12.31	Gamma carbonic anhydrase family protein	0.74	0.97
W6IYG6	10.00	71.61	Gamma-aminobutyraldehyde dehydrogenase	0.11	1.40
W6JCH4	7.00	45.81	Gamma-glutamylcyclotransferase	0.35	0.76
W6J8H5	13.00	79.78	Gamma-glutamyltransferase	0.05	1.57
A0A059XUB2	9.00	50.60	GDP-L-fucose synthase	0.00	0.65
W6JAI2	5.00	25.91	GDP-mannose 4,6-dehydratase	0.22	1.23
W6J8H2	2.00	12.96	GDP-mannose mannosyl hydrolase	0.27	0.42
W6J1Y1	31.00	250.42	Glucans biosynthesis protein G	0.90	0.97
W6JAS5	8.00	51.08	Glucokinase	0.55	1.03
W6J787	2.00	12.55	Gluconolactonase	0.14	1.21
W6J0X0	4.00	25.19	Glucosamine-6-phosphate deaminase	0.79	1.04
W6IX30	7.00	55.84	Glucose-6-phosphate 1-dehydrogenase	0.27	1.17
W6J3J2	27.00	188.30	Glucose-6-phosphate isomerase	0.60	1.03
W6JC20	21.00	203.24	Glutamate/aspartate ABC transporter substrate-binding protein	0.07	1.75
W6J246	14.00	104.46	Glutamate-1-semialdehyde 2,1-aminomutase	0.41	1.10
W6J3S8	26.00	205.69	Glutamine ABC transporter substrate-binding protein GlnH	0.51	0.76
W6J7M4	27.00	242.83	Glutamine synthetase	0.06	1.07
W6J446	5.00	30.46	GlutaminetRNA ligase	0.50	1.15
W6JBP3	6.00	41.56	Glutaredoxin	0.07	0.72
W6IZL6	10.00	78.71	Glutaredoxin, GrxB family	0.09	0.90

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J2M9	7.00	52.02	Glutathione S-transferase	0.46	0.88
W6JAX0	4.00	24.60	Glutathione S-transferase	0.12	0.83
W6J8N0	18.00	123.37	Glutathione synthetase	0.56	0.96
W6JD48	8.00	54.21	Glutathione-dependent disulfide-bond oxidoreductase	0.18	1.30
A0A059XJT8	13.00	105.64	Glutathione-dependent formaldehyde dehydrogenase	0.04	2.41
W6JD23	7.00	43.89	Glutathione-dependent reductase	0.12	1.44
W6J772	13.00	86.97	Glutathione-disulfide reductase	0.12	1.15
W6IYC6	15.00	131.32	Glyceraldehyde-3-phosphate dehydrogenase	0.21	1.35
W6J1G8	27.00	354.07	Glyceraldehyde-3-phosphate dehydrogenase	0.61	1.06
W6JCP4	12.00	107.10	Glycerol dehydrogenase	0.09	0.64
W6J434	14.00	82.35	Glycerol kinase	0.28	0.83
W6J829	7.00	65.95	Glycerol-3-phosphate dehydrogenase [NAD(P)+]	0.66	0.79
W6J9I5	6.00	43.13	Glycine betaine ABC transporter substrate-binding protein	0.71	0.89
W6J697	15.00	84.18	Glycine dehydrogenase (decarboxylating)	0.01	0.55
W6J0C4	3.00	27.05	Glycine zipper 2TM domain	0.54	0.87
W6JCU8	5.00	34.56	GlycinetRNA ligase alpha subunit	0.59	0.92
W6J850	42.00	298.61	GlycinetRNA ligase beta subunit	0.01	0.82
W6JBJ4	16.00	111.20	Glycogen debranching enzyme GlgX	0.25	1.23
W6J7F5	16.00	112.64	Glycogen synthase	0.09	1.30
W6J0Z3	11.00	74.02	Glycoside hydrolase	0.12	0.77

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
 W6J2L2	2.00	17.01	Glyoxalase	0.31	0.76
W6JD08	8.00	54.43	Glyoxalase	0.00	0.69
W6J290	9.00	56.93	GMP reductase	0.65	0.93
W6IY93	15.00	131.09	GntR family transcriptional regulator	0.06	0.78
W6JD13	3.00	17.94	GTPase Obg	0.07	2.42
W6JCQ8	21.00	143.42	GTP-binding protein TypA	0.06	1.33
W6JC54	11.00	109.43	Heat-shock protein	0.01	0.35
W6JCS3	5.00	34.71	Heat-shock protein	0.30	0.80
W6IZF5	4.00	23.68	Hemolysin	0.31	1.23
W6J358	17.00	118.70	HflK protein	0.10	1.31
W6J808	6.00	52.69	Histidine ABC transporter substrate-binding protein HisJ	0.16	1.27
W6JA90	7.00	43.46	Histidine ABC transporter substrate-binding protein HisJ	0.74	1.10
W6JBS3	4.00	44.25	Histidine triad nucleotide-binding protein	0.21	0.59
W6JEC5	5.00	33.36	Histidine utilization repressor	0.29	1.17
W6J7F9	6.00	39.66	HistidinetRNA ligase	0.06	2.06
W6JAX1	2.00	16.23	Hydrolase	0.14	0.85
W6J1Z5	7.00	52.67	Hydroxyacylglutathione hydrolase	0.36	0.91
W6J8D2	3.00	16.55	Hydroxyethylthiazole kinase	0.17	0.84
W6J2V8	17.00	136.64	Inorganic pyrophosphatase	0.15	0.75
W6J9X8	21.00	161.62	Inosine-5'-monophosphate dehydrogenase	0.57	1.25

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6JAH7	5.00	27.63	Inositol-1-monophosphatase	0.67	0.97
W6JD50	3.00	17.66	Iron ABC transporter substrate-binding protein	0.12	0.47
W6J7L6	2.00	11.35	Iron-sulfur cluster assembly scaffold protein IscU	0.01	0.26
W6J5F2	3.00	28.58	Iron-sulfur cluster insertion protein ErpA	0.85	1.01
W6J1L5	32.00	368.26	Isocitrate dehydrogenase [NADP]	0.69	1.04
W6JCM0	35.00	415.90	Isocitrate lyase	0.48	0.88
W6IX84	8.00	58.06	Isomerase/hydrolase	0.67	1.05
W6J8S5	4.00	27.24	Isopentenyl-diphosphate Delta-isomerase	0.39	0.27
W6J6D7	11.00	70.78	IsovaleryI-CoA dehydrogenase	0.38	1.11
W6IXD6	8.00	71.48	Keto-deoxy-phosphogluconate aldolase	0.00	0.70
W6JCN9	29.00	253.56	Ketol-acid reductoisomerase (NADP(+))	0.45	1.25
W6J0L8	3.00	28.66	Kinase inhibitor	0.07	1.57
W6J0F8	6.00	54.90	L,D-transpeptidase	0.45	0.70
W6JBV2	25.00	231.82	Lacl family transcriptional regulator	0.85	1.00
A0A059XJ60	14.00	107.02	Lactate dehydrogenase	0.01	1.41
W6IYY1	3.00	26.18	Lactoylglutathione lyase	0.59	0.91
W6IZ76	5.00	27.47	L-asparaginase 1	0.05	1.77
W6JAU5	3.00	17.72	L-cystine ABC transporter ATP-binding protein YecC	0.11	1.22
W6J7C9	10.00	75.35	Leucine ABC transporter subunit substrate-binding protein LivK	0.58	1.13
W6JBW9	7.00	52.74	Leucine-responsive transcriptional regulator	0.60	0.89

Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
A0A1B0NPU5	18.00 124.54	LeucinetRNA ligase	0.99	0.99
W6J0I0	3.00 24.52	LexA family transcriptional regulator	0.01	1.81
W6JCL3	6.00 43.24	LexA repressor	0.19	0.66
W6J0A3	10.00 85.79	Lipoprotein	0.85	1.03
W6J8W8	4.00 24.72	Lipoprotein	0.58	0.83
W6JCA6	13.00 154.73	Lipoprotein	0.16	0.72
W6JA10	10.00 72.74	Lipoprotein NIpD	0.53	0.83
A0A059XPU3	10.00 65.78	L-lactate dehydrogenase	0.25	1.11
W6J1Y4	26.00 188.22	LOG family protein	0.64	0.95
W6JC73	38.00 246.19	Lon protease	0.06	1.27
W6J7V2	14.00 89.37	Long-chain fatty acid transporter	0.07	2.24
W6J7Z5	11.00 76.22	LPS export ABC transporter ATP-binding protein	0.39	1.05
W6J490	9.00 57.01	LPS-assembly lipoprotein LptE	0.48	0.92
W6J5Q2	29.00 183.63	LPS-assembly protein LptD	0.51	1.03
W6J4M3	8.00 65.81	L-threonine 3-dehydrogenase	0.13	1.34
W6J240	5.00 27.91	Lyase	0.04	0.30
W6J9T5	11.00 63.21	LysinetRNA ligase	0.82	1.03
A0A059XPW2	5.00 30.59	LysR family transcriptional regulator	0.94	1.02
W6J916	5.00 27.56	Maf-like protein C813_17920	0.44	0.85
W6J7X5	22.00 272.72	Malate dehydrogenase	0.02	0.80

	(D			
Accession	Peptide count Confidence scor	Description	ANOVA	Fold_Change
W6J6Z7	35.00 300.70	Malate synthase	0.26	1.33
W6J7L0	29.00 252.40	Malic enzyme	0.02	0.76
W6J2V4	10.00 75.05	Malonyl CoA-acyl carrier protein transacylase	0.27	0.89
W6J6W1	32.00 368.82	Maltoporin	0.32	0.91
W6J3H6	30.00 327.93	Maltose ABC transporter substrate-binding protein MalE	0.17	0.60
W6J701	12.00 74.31	Mannitol-1-phosphate 5-dehydrogenase	0.00	1.31
W6JB03	5.00 37.28	Mannonate dehydratase	0.94	1.00
W6JES0	12.00 86.95	Mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase	0.20	0.84
W6JBN7	12.00 82.96	Mannose-6-phosphate isomerase	0.01	0.86
W6J6C6	4.00 24.09	Mechanosensitive ion channel protein MscS	0.32	1.53
W6J4A5	4.00 24.06	Membrane protein insertase YidC	0.94	0.81
W6J673	8.00 51.86	Metalloprotease	0.27	0.89
W6J696	19.00 115.82	Metalloprotease PmbA	0.94	1.00
W6J5H4	4.00 23.31	Metalloprotease TldD	0.05	1.52
W6J4C3	5.00 39.86	Methionine aminopeptidase	0.63	0.91
W6J4Y5	3.00 17.24	Methyl-accepting chemotaxis protein II	0.76	0.91
W6J7F6	12.00 67.71	Methylenetetrahydrofolate reductase	0.19	0.90
W6JEL8	28.00 297.65	Methyl-galactoside ABC transporter substrate-binding protein	0.56	0.81
W6JBQ9	9.00 78.43	MItA-interacting protein MipA	0.25	0.79
W6JB65	19.00 223.16	Mn-containing catalase	0.02	2.26

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J4E9	2.00	10.72	Molecular chaperone TorD	0.26	0.72
W6J0R8	10.00	75.47	Molybdate ABC transporter substrate-binding protein	0.00	0.17
W6JC01	3.00	24.97	Molybdenum cofactor biosynthesis protein B	0.01	0.80
W6JCD6	8.00	48.44	Molybdopterin adenylyltransferase	0.30	0.88
W6JCM3	4.00	29.41	Molybdopterin biosynthesis protein MoeB	0.01	0.52
W6IZ00	5.00	88.62	Murein lipoprotein	0.18	0.74
W6J1E4	5.00	53.75	N5-carboxyaminoimidazole ribonucleotide mutase	0.14	0.77
A0A059XPF7	10.00	65.07	N5-carboxyaminoimidazole ribonucleotide synthase	0.93	1.08
W6J717	10.00	82.48	NAD(P)-dependent oxidoreductase	0.05	2.06
W6J8D4	19.00	185.98	NAD(P)-dependent oxidoreductase	0.02	1.96
W6JBV3	11.00	124.07	NAD(P)H dehydrogenase (quinone)	0.16	1.19
W6J2H6	16.00	107.20	NAD(P)H nitroreductase	0.75	1.04
A0A059XP18	14.00	79.27	NAD(P)H-flavin reductase	0.12	1.14
W6IYL7	16.00	114.77	NAD-dependent malic enzyme	0.13	0.85
W6JAA4	23.00	185.14	NADH-quinone oxidoreductase	0.10	1.21
W6JEG6	5.00	39.70	NADH-quinone oxidoreductase subunit E	0.19	0.65
W6JAX8	25.00	168.18	NADH-quinone oxidoreductase subunit F	0.95	1.00
W6J8A0	13.00	100.11	NADH-quinone oxidoreductase subunit I	0.65	0.95
W6J217	16.00	147.27	NADP-dependent 3-hydroxy acid dehydrogenase	0.31	0.90
A0A059XJ74	8.00	65.91	NADP-dependent oxidoreductase	0.14	1.17

Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6J2V1	5.00 35.07	NADPH-dependent FMN reductase	0.51	0.61
W6J4T7	15.00 117.27	N-carbamoylputrescine amidase	0.28	1.08
A0A059XPZ3	2.00 12.59	N-formylglutamate deformylase	0.00	0.65
W6J1E5	21.00 215.55	NH(3)-dependent NAD(+) synthetase	0.67	0.96
W6JC13	9.00 67.08	Nif3-like dinuclear metal center protein	0.09	0.62
W6J2H4	2.00 12.06	Nitroreductase A	0.14	3.10
W6J6Z3	2.00 12.15	NrdH-redoxin	0.84	0.95
W6J1F1	8.00 48.47	N-succinylglutamate 5-semialdehyde dehydrogenase	0.01	1.37
W6IXC3	14.00 101.76	Nuclease PIN	0.16	0.84
W6J1G3	9.00 64.26	Nucleoid-associated protein C813_09530	0.19	1.20
W6J7N3	9.00 73.03	Nucleoside diphosphate kinase	0.09	0.69
W6J4X5	3.00 24.53	Nucleoside-specific channel-forming protein Tsx	0.55	0.91
W6IZT3	7.00 41.05	O-acetyl-ADP-ribose deacetylase	0.16	1.12
W6J058	22.00 197.97	Oligopeptide ABC transporter ATP-binding protein OppD	0.39	1.06
W6IXS4	21.00 198.28	Oligopeptide ABC transporter ATP-binding protein OppF	0.90	1.01
W6IY14	46.00 532.90	Oligopeptide ABC transporter substrate-binding protein OppA	0.63	1.08
W6IYA2	12.00 70.80	Oligopeptide ABC transporter substrate-binding protein OppA	0.45	0.87
W6J029	20.00 148.25	Oligopeptide ABC transporter substrate-binding protein OppA	0.32	0.85
W6J4Q2	5.00 69.39	Organic hydroperoxide resistance protein	0.44	1.18
W6J4Y0	2.00 24.26	Organic hydroperoxide resistance protein	0.18	0.64

Accession	Peptide count confidence score	Description	ANOVA	Fold_Change
W6JCT8	6.00 32.17	Orotate phosphoribosvltransferase	0.31	1.32
W6JAF3	9.00 64.35	Osmoprotectant uptake system substrate-binding protein	0.55	1.18
W6JD19	17.00 142.60	Osmotically-inducible protein OsmY	0.86	0.96
W6J5V3	25.00 210.99	Outer membrane channel protein TolC	0.06	0.88
W6JD11	3.00 17.40	Outer membrane lipid asymmetry maintenance protein MlaD	0.28	0.82
W6J5B0	4.00 38.84	Outer membrane lipoprotein RcsF	0.00	1.47
W6J226	51.00 360.34	Outer membrane protein assembly factor BamA	0.91	1.01
W6JE17	16.00 114.73	Outer membrane protein assembly factor BamB	0.24	0.91
W6JAL1	22.00 196.52	Outer membrane protein assembly factor BamC	0.19	0.73
W6JAF2	4.00 28.80	Outer membrane protein assembly factor BamD	0.61	0.87
W6IXT5	7.00 74.04	Outer membrane protein OmpW	0.44	0.81
W6J0L6	12.00 146.15	Outer membrane protein OmpX	0.10	1.39
W6J3G0	13.00 91.61	Outer membrane receptor protein	0.10	0.51
W6IXN0	18.00 126.98	Outer-membrane lipoprotein LolB	0.84	1.01
W6J9R7	15.00 130.53	Oxidative stress defense protein	0.44	0.83
A0A059XJX9	12.00 96.12	Oxidoreductase	0.96	0.99
W6IYV3	9.00 59.05	Oxidoreductase	0.03	1.11
W6IZ51	6.00 34.93	Oxidoreductase	0.79	0.96
W6J1M7	16.00 141.11	Oxidoreductase	0.02	1.33
W6J4J6	15.00 103.97	Oxidoreductase	0.02	1.17

	Û			
Accession	Peptide count Confidence scor	Description	ANOVA	Fold_Change
W6J4Z9	5.00 42.42	Oxidoreductase	0.86	0.90
W6J513	13.00 82.97	Oxidoreductase	0.67	0.94
W6JEM3	9.00 56.97	Oxidoreductase	0.14	1.49
W6JCB6	6.00 40.37	Pantothenate synthetase	0.61	0.95
W6J0R3	22.00 159.10	Pectinesterase	0.09	0.72
A0A059XTY1	18.00 122.90	Penicillin-binding protein activator LpoA	0.46	0.90
W6IZI4	8.00 49.06	Penicillin-binding protein activator LpoB	0.51	0.86
W6J3N9	11.00 74.86	Peptidase M15	0.14	0.67
W6JE20	14.00 96.68	Peptidase M4	0.15	1.47
W6J2R0	7.00 39.81	Peptidase T	0.25	0.86
W6IY69	19.00 120.81	Peptide ABC transporter substrate-binding protein	0.09	0.83
W6IY89	22.00 146.03	Peptide ABC transporter substrate-binding protein	1.00	1.01
W6J4S5	34.00 304.93	Peptide ABC transporter substrate-binding protein	0.16	1.34
W6J5F0	3.00 18.67	Peptide deformylase	0.03	0.55
W6J597	6.00 47.20	Peptide methionine sulfoxide reductase MsrA	0.32	0.95
W6J2I1	3.00 24.13	Peptide methionine sulfoxide reductase MsrB	0.67	1.15
W6JC08	13.00 138.53	Peptidoglycan-associated lipoprotein	0.23	0.65
W6J2J7	6.00 36.43	Peptidyl-prolyl cis-trans isomerase	0.09	1.53
W6J2X1	9.00 72.36	Peptidyl-prolyl cis-trans isomerase	0.13	0.83
W6J3L0	8.00 72.50	Peptidyl-prolyl cis-trans isomerase	0.06	0.81

Tabela	suplementar	2,	cont.
--------	-------------	----	-------

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J587	5.00	41.77	Peptidyl-prolyl cis-trans isomerase	0.33	1.21
W6J5E4	4.00	35.10	Peptidyl-prolyl cis-trans isomerase	0.37	0.94
W6J8U3	16.00	112.27	Peptidyl-prolyl cis-trans isomerase	0.68	0.92
W6J015	6.00	34.01	Peptidyl-tRNA hydrolase	0.84	0.93
W6J4D1	22.00	226.43	Periplasmic serine endoprotease DegP-like	0.00	1.25
W6J5L9	14.00	98.11	Periplasmic serine endoprotease DegP-like	0.82	0.98
W6J0P3	29.00	249.16	Periplasmic trehalase	0.16	1.30
W6J1N7	13.00	135.61	Peroxiredoxin	0.03	0.64
W6J3B4	17.00	185.35	Peroxiredoxin	0.05	0.61
W6IZ98	18.00	116.80	PhenylalaninetRNA ligase alpha subunit	0.47	1.08
W6IZ29	12.00	79.08	PhenylalaninetRNA ligase beta subunit	0.40	1.53
W6J816	39.00	304.47	Phosphate acetyltransferase	0.26	1.20
W6J7R5	23.00	181.68	Phosphate-binding protein PstS	0.91	0.98
W6JD60	5.00	29.83	Phosphate-binding protein PstS	0.33	1.33
W6JCI4	16.00	109.76	Phosphatidylserine decarboxylase proenzyme	0.01	0.75
A0A059XJG1	9.00	70.82	Phospho-2-dehydro-3-deoxyheptonate aldolase	0.04	0.61
W6J569	4.00	24.35	Phosphoadenosine phosphosulfate reductase	0.13	0.86
W6J8N7	26.00	214.70	Phosphoenolpyruvate carboxykinase (ATP)	0.02	0.85
W6IZ17	42.00	349.07	Phosphoenolpyruvate synthase	0.24	0.87
W6JE65	33.00	296.85	Phosphoenolpyruvate-protein phosphotransferase	0.35	1.18

Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6IZ43	14.00 92.97	Phosphofructokinase	0.00	1.25
W6J0S8	23.00 211.60	Phosphoglucomutase, alpha-D-glucose phosphate-specific	0.98	1.00
W6J819	19.00 145.92	Phosphoglucosamine mutase	0.71	0.97
W6J8P0	32.00 372.93	Phosphoglycerate kinase	0.68	1.04
W6J430	10.00 66.06	Phosphoheptose isomerase	0.17	0.78
W6J795	3.00 17.20	Phospholipase	0.17	0.80
W6JA60	6.00 28.30	Phospholipid-binding lipoprotein MlaA	0.03	0.60
W6JB59	6.00 33.28	Phosphomannomutase	0.47	0.87
W6JCE1	15.00 103.88	Phosphopentomutase	0.62	1.03
W6JCM1	12.00 108.09	Phosphoribosylamineglycine ligase	0.07	0.82
W6J9Z2	18.00 160.76	Phosphoribosylaminoimidazole-succinocarboxamide synthase	0.05	0.63
W6J7R1	15.00 102.55	Phosphoribosylformylglycinamidine cyclo-ligase	0.31	0.81
W6J7J8	11.00 67.04	Phosphoribosylformylglycinamidine synthase	0.53	1.23
W6J7H4	6.00 28.60	Phosphoribosylglycinamide formyltransferase	0.17	0.64
W6J068	22.00 192.30	Phosphoserine aminotransferase	0.30	0.96
W6J5M4	37.00 253.29	Polyribonucleotide nucleotidyltransferase	0.21	1.09
W6J8G2	13.00 93.88	Polysaccharide export protein Wza	0.81	0.93
W6J054	8.00 63.76	Porin	0.27	1.15
W6J1V7	6.00 49.05	Porin	0.32	1.22
W6J9K2	30.00 279.63	Porin	0.12	0.76

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J3A8	29.00	369.80	Porin OmpA	0.82	0.95
W6JAC0	16.00	178.38	Porin OmpC	0.00	0.81
W6J5L8	3.00	38.31	Preprotein translocase subunit SecG	0.17	1.16
W6J1P4	4.00	23.08	Preprotein translocase subunit YajC	0.85	1.04
W6JBR0	35.00	255.69	PrkA family serine protein kinase	0.18	0.84
W6J2W9	19.00	116.10	Probable cytosol aminopeptidase	0.06	1.11
W6JCQ9	3.00	23.71	Probable GTP-binding protein EngB	0.95	0.97
W6JBT6	5.00	30.17	Probable phosphatase C813_05895	0.54	1.08
W6J2H5	2.00	12.49	Probable phosphoglycerate mutase GpmB	0.14	1.40
W6J1D7	10.00	109.98	Probable thiol peroxidase	0.84	0.99
W6IX21	8.00	63.54	Probable transcriptional regulatory protein C813_00985	0.36	1.17
W6J210	25.00	163.70	ProlinetRNA ligase	0.70	1.04
A0A059XJW0	6.00	53.83	Protease	0.13	1.56
W6JAY2	3.00	21.00	Protein ElaB	0.88	0.92
W6J6H9	2.00	15.44	Protein FdhE homolog	0.67	1.13
W6JAC8	14.00	98.87	Protein GrpE	0.56	1.03
W6IXB8	5.00	38.18	Protein of avirulence locus ImpE	0.60	1.05
W6JAW2	10.00	74.95	Protein phosphatase CheZ	0.06	0.44
W6JA74	9.00	59.76	Protein RecA	0.81	0.98
W6J3Z6	24.00	176.75	Protein TolB	0.07	0.71

Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6JCU3	9.00 82.23	Protein-export protein SecB	0.50	0.94
W6J7W0	13.00 155.43	PTS glucose transporter subunit IIA	0.42	0.89
W6J1T6	12.00 76.48	PTS glucose transporter subunit IIBC	0.85	1.03
W6J719	2.00 16.70	PTS lactose transporter subunit IIA	0.93	1.02
W6J4L5	4.00 23.99	PTS mannitol transporter subunit IICBA	0.51	1.15
W6IX68	18.00 196.65	PTS mannose transporter subunit IIAB	0.63	1.05
W6J0L2	5.00 34.47	PTS mannose transporter subunit IID	0.39	0.81
W6JAN2	9.00 86.91	PTS sugar transporter	0.33	0.78
W6J6S4	2.00 13.82	PTS sugar transporter subunit IIB	0.95	1.07
W6JCM4	5.00 32.07	PTS sugar transporter subunit IIB	0.28	0.80
W6J2M6	11.00 76.44	Purine nucleoside phosphorylase DeoD-type	0.52	1.13
W6J0B0	16.00 126.24	Putrescine-binding periplasmic protein	0.66	0.89
W6JBR9	12.00 66.37	Putrescine-binding periplasmic protein	0.68	1.04
W6JDY5	4.00 27.36	Pyridoxine 5'-phosphate synthase	0.03	0.61
W6J505	2.00 23.93	Pyrimidine/purine nucleoside phosphorylase	0.75	0.94
W6J510	9.00 63.28	Pyrroline-5-carboxylate reductase	0.68	1.02
W6J056	21.00 135.93	Pyruvate dehydrogenase	0.63	1.05
W6J279	50.00 408.86	Pyruvate dehydrogenase E1 component	0.05	1.49
W6J0H5	30.00 262.28	Pyruvate kinase	0.36	1.25
W6J195	33.00 306.89	Pyruvate kinase	0.14	1.53

Tabela Suplementar Z, CC

l abela suplementar	² , cont.			
Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6J5W1	5.00 42.32	Quinol monooxygenase	0.51	0.85
W6J0P0	5.00 27.53	Quinolinate synthase A	0.08	0.45
W6J3K9	5.00 47.90	Quinone oxidoreductase	0.04	1.73
W6J2Y7	11.00 120.49	Reactive intermediate/imine deaminase	0.17	0.68
W6JC30	4.00 28.21	Regulator of nucleoside diphosphate kinase	0.06	0.55
W6J7G6	3.00 20.04	Regulator of ribonuclease activity A	0.04	1.24
W6J5S9	6.00 42.20	Response regulator	0.34	1.08
W6J497	3.00 18.06	Rho-binding antiterminator	0.07	1.55
W6IYZ3	7.00 41.17	Riboflavin synthase subunit alpha	0.02	0.68
A0A059XP98	34.00 225.23	Ribonuclease E	0.49	1.09
W6J684	12.00 81.59	Ribose-5-phosphate isomerase A	0.02	0.68
W6J110	18.00 151.10	Ribose-phosphate pyrophosphokinase	0.02	0.88
W6J2I2	3.00 15.73	Ribosomal RNA small subunit methyltransferase A	0.07	0.50
W6J6K5	2.00 10.50	Ribosomal RNA small subunit methyltransferase G	0.69	0.91
W6J2F7	3.00 18.75	Ribosomal RNA small subunit methyltransferase H	0.29	0.95
W6JDW9	6.00 51.51	Ribosomal subunit interface protein	0.23	0.77
W6J104	16.00 132.81	Ribosome-binding ATPase YchF	0.23	0.91
W6JD16	3.00 16.67	Ribosome-binding factor A	0.46	1.12
W6J233	11.00 97.93	Ribosome-recycling factor	0.28	0.66
W6JCY1	9.00 65.00	Ribulose-phosphate 3-epimerase	0.21	0.74

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6JCB5	6.00	36.34	RNA polymerase-binding transcription factor DksA	0.06	0.63
W6J5J6	4.00	22.23	RNase adapter protein RapZ	0.82	1.02
W6J5G9	18.00	148.13	Rod shape-determining protein	0.14	0.85
W6IY49	10.00	83.33	S-(hydroxymethyl)glutathione dehydrogenase	0.07	1.37
W6J9Q9	15.00	92.41	S-adenosylmethionine synthase	0.95	1.02
W6IZS9	2.00	15.88	SecY/secA suppressor protein	0.08	1.87
A0A059XTE7	12.00	109.70	Selenide, water dikinase	0.21	0.84
W6JDZ6	30.00	306.72	Serine hydroxymethyltransferase	0.21	0.84
W6J3E6	30.00	234.70	SerinetRNA ligase	0.17	0.86
W6J498	22.00	144.34	Serine-type D-Ala-D-Ala carboxypeptidase	0.18	0.72
A0A059XJV7	3.00	17.69	Shikimate dehydrogenase (NADP(+))	0.03	0.49
W6J1A5	2.00	11.73	Signal protein	0.48	2.77
W6J7C6	19.00	115.59	Signal recognition particle protein	0.12	1.26
W6J5R8	12.00	87.34	Single-stranded DNA-binding protein	0.07	0.73
W6JB08	25.00	202.02	Site-determining protein	0.45	0.96
W6J7E7	5.00	30.77	Soluble pyridine nucleotide transhydrogenase	0.86	1.00
W6JBG1	10.00	66.17	Spermidine/putrescine ABC transporter substrate-binding protein	0.30	1.19
W6J9H5	16.00	138.23	S-ribosylhomocysteine lyase	0.39	0.85
W6J5M2	14.00	112.29	Stringent starvation protein A	0.06	0.82
W6J314	33.00	298.99	Succinate dehydrogenase flavoprotein subunit	0.42	1.18

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J370	11.00	106.54	Succinate dehydrogenase iron-sulfur subunit	0.03	0.70
W6J415	18.00	136.18	Succinate dehydrogenase iron-sulfur subunit	0.50	0.95
W6J409	17.00	192.79	SuccinateCoA ligase [ADP-forming] subunit alpha	0.29	0.86
W6J309	32.00	257.62	SuccinateCoA ligase [ADP-forming] subunit beta	0.15	0.86
W6J4Y9	11.00	69.04	Succinate-semialdehyde dehydrogenase	0.00	1.25
A0A059XTX9	24.00	192.63	Succinate-semialdehyde dehydrogenase (NADP(+))	0.03	1.54
A0A059XJB1	2.00	11.97	Succinylglutamate desuccinylase	0.01	0.55
W6J6A9	12.00	79.27	Sugar ABC transporter substrate-binding protein	0.77	0.98
W6JDE9	8.00	45.81	Sugar ABC transporter substrate-binding protein	0.38	0.82
W6JA99	3.00	15.71	Sugar phosphatase	0.09	0.76
W6JCS2	5.00	27.26	Sugar-phosphatase	0.09	0.84
W6J7M7	5.00	28.59	Sulfurtransferase	0.34	0.87
W6J186	7.00	57.20	Superoxide dismutase	0.00	0.80
W6JCQ0	14.00	179.61	Superoxide dismutase	0.76	1.08
W6JCC8	15.00	108.45	Thiamine ABC transporter substrate binding subunit	0.30	0.68
W6IX97	5.00	33.34	Thiamine biosynthesis protein ThiJ	0.09	0.57
W6J0S6	22.00	178.93	Thiamine pyrophosphate-requiring protein	0.04	1.44
W6J3R6	5.00	35.64	Thiamine-phosphate synthase	0.00	0.61
W6J601	7.00	42.01	Thiazole synthase	0.10	0.49
W6J475	6.00	40.96	Thiol:disulfide interchange protein	0.40	0.81

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J6B0	7.00	42.05	Thiol:disulfide interchange protein	0.23	0.60
W6J3X3	9.00	96.49	Thioredoxin	0.12	0.74
W6J3F2	10.00	65.12	Thioredoxin reductase	0.02	0.84
W6JBQ0	14.00	104.17	Thioredoxin/glutathione peroxidase BtuE	0.54	0.86
W6J7S6	17.00	167.91	Thioredoxin-dependent thiol peroxidase	0.71	0.93
W6J2L0	13.00	91.15	Threonine synthase	0.16	0.81
W6IY54	6.00	54.86	Threonylcarbamoyl-AMP synthase	0.84	0.98
W6J5V5	9.00	56.57	Thymidine phosphorylase	0.72	1.07
W6J887	4.00	25.09	TIGR01777 family protein	0.00	2.24
W6J5T0	26.00	283.61	Transaldolase	0.38	0.88
W6J9Z8	16.00	143.25	Transaldolase	0.07	1.43
W6J811	12.00	85.75	Transcription elongation factor GreA	0.33	0.80
W6J698	29.00	219.82	Transcription termination factor Rho	0.11	1.23
W6J5M1	24.00	149.31	Transcription termination/antitermination protein NusA	0.83	0.98
W6JCM6	14.00	94.21	Transcription termination/antitermination protein NusG	0.37	0.88
W6J7D2	2.00	12.86	Transcriptional regulator	0.04	0.65
W6JD21	3.00	15.33	Transcriptional regulator	0.01	0.33
A0A059XNZ6	15.00	110.71	Transcriptional regulator	0.42	1.08
W6J2F9	8.00	99.15	Transcriptional regulator	0.17	1.28
W6J1L1	3.00	24.53	Transcriptional regulator BolA	0.92	0.98

Accession	Peptide count	Description	ANOVA	Fold_Change
W6J7N0	18.00 169	0.63 Transcriptional regulator Crp	0.49	1.12
W6JCC6	4.00 25.	.77 Transcriptional regulator MraZ	0.21	1.17
W6J299	5.00 28.	.06 Transcriptional regulator SlyA	0.66	1.11
W6JEI6	2.00 17.	.80 Transcriptional regulatory protein RcsB	0.02	0.65
W6J3L3	9.00 56.	.94 Transcriptional repressor IcIR	0.06	1.36
W6J9I1	4.00 29.	.91 Transcriptional repressor MprA	0.01	0.32
W6J6C1	21.00 179	0.60 Transketolase	0.79	0.97
W6JAM1	33.00 245	5.85 Transketolase	0.05	1.67
W6JBX0	2.00 13.	.84 Translation initiation factor IF-1	0.06	0.33
W6J1C8	2.00 18.	.90 Translation initiation factor IF-3	0.18	0.72
W6IXA1	9.00 51.	.81 Trehalose-6-phosphate synthase	0.26	1.11
W6J1K4	38.00 351	.33 Trigger factor	0.59	1.05
W6J425	16.00 178	3.19 Triosephosphate isomerase	0.19	0.88
W6JCI3	3.00 17.	.01 tRNA (N6-adenosine(37)-N6)-threonylcarbamoyltransferase complex ATPase TsaE	0.83	1.01
W6J6A3	16.00 122	tRNA-modifying protein YgfZ	0.93	1.00
W6J7L8	15.00 94.	.69 TryptophantRNA ligase	0.02	0.65
W6IXB2	13.00 104	1.04 Two-component system response regulator	0.03	0.63
W6J2H0	17.00 133	3.32 Two-component system response regulator ArcA	0.03	1.57
A0A059XP59	15.00 103	3.28 Two-component system response regulator OmpR	0.23	1.26
W6IXA2	2.00 12.	.20 Type VI secretion system-associated lipoprotein	0.86	0.82

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6IXK0	6.00	35.40	Type VI secretion system-associated protein	0.09	0.92
W6IXK5	18.00	168.94	Type VI secretion system-associated protein	0.06	0.50
W6IZP3	11.00	101.16	Type VI secretion-associated protein	0.04	0.67
W6J174	12.00	76.83	TyrosinetRNA ligase	0.10	1.61
W6J3T6	8.00	67.67	Ubiquinol oxidase subunit 2	0.98	0.99
W6JCN0	14.00	98.79	Ubiquinone/menaquinone biosynthesis C-methyltransferase UbiE	0.02	0.74
W6JC06	9.00	51.93	UDP-glucose 4-epimerase	0.03	0.84
W6IWM7	23.00	171.02	UDP-glucose 6-dehydrogenase	0.02	0.84
W6J3Z8	4.00	21.38	UDP-N-acetyl-D-mannosamine dehydrogenase	0.21	0.87
W6J5P1	11.00	70.69	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	0.13	0.83
			UDP-N-acetylglucosamineN-acetylmuramyl-(pentapeptide) pyrophosphoryl-		
W6J5M8	3.00	18.26	undecaprenol N-acetylglucosamine transferase	0.11	0.87
W6JCC4	9.00	50.37	UDP-N-acetylmuramateL-alanine ligase	0.24	0.81
W6J5N4	5.00	36.02	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate2,6-diaminopimelate ligase	0.03	0.75
W6J1E8	13.00	77.37	Uncharacterized protein	0.02	0.60
W6JBQ8	3.00	22.08	Uncharacterized protein	0.03	0.24
W6IXA9	14.00	89.33	Uncharacterized protein	0.20	0.86
W6IXL1	11.00	68.24	Uncharacterized protein	0.26	0.69
W6IXP4	4.00	33.98	Uncharacterized protein	0.28	1.11
W6IYF4	7.00	58.32	Uncharacterized protein	0.28	0.69
W6IZ10	3.00	21.33	Uncharacterized protein	0.04	0.71

Tabela	suplementar	2,	cont.
--------	-------------	----	-------

Accession	Peptide count Confidence score	Description	ANOVA	Fold_Change
W6IZN7	14.00 126.56	Uncharacterized protein	0.77	0.89
W6IZP7	13.00 154.63	Uncharacterized protein	0.02	0.79
W6IZQ3	19.00 144.20	Uncharacterized protein	0.32	0.86
W6J065	5.00 47.97	Uncharacterized protein	0.09	0.53
W6J097	4.00 33.67	Uncharacterized protein	0.66	0.80
W6J0M2	12.00 76.54	Uncharacterized protein	0.21	1.16
W6J0V0	4.00 41.30	Uncharacterized protein	0.11	1.63
W6J0V8	14.00 107.65	Uncharacterized protein	0.12	1.49
W6J109	3.00 17.64	Uncharacterized protein	0.76	0.93
W6J278	29.00 213.61	Uncharacterized protein	0.76	1.03
W6J377	4.00 42.85	Uncharacterized protein	0.95	1.00
W6J380	3.00 22.26	Uncharacterized protein	0.69	1.10
W6J3I9	12.00 90.67	Uncharacterized protein	0.09	0.76
W6J3L4	2.00 10.50	Uncharacterized protein	0.05	0.39
W6J3Y8	7.00 56.40	Uncharacterized protein	0.37	0.87
W6J4B3	2.00 12.50	Uncharacterized protein	0.26	1.25
W6J4K7	8.00 58.33	Uncharacterized protein	0.25	0.89
W6J4S8	5.00 26.45	Uncharacterized protein	80.0	0.82
W6J4W9	11.00 76.97	Uncharacterized protein	0.35	0.86
W6J5F4	3.00 17.89	Uncharacterized protein	0.06	2.81

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J5U8	7.00	85.79	Uncharacterized protein	0.16	1.32
W6J6D9	2.00	10.89	Uncharacterized protein	0.65	1.03
W6J725	2.00	10.84	Uncharacterized protein	0.88	1.21
W6J748	7.00	58.84	Uncharacterized protein	0.13	1.26
W6J7P5	7.00	40.81	Uncharacterized protein	0.18	0.88
W6J7Q0	5.00	35.81	Uncharacterized protein	0.44	0.91
W6J7Z1	2.00	10.69	Uncharacterized protein	0.59	0.90
W6J897	6.00	35.19	Uncharacterized protein	0.57	1.31
W6J900	3.00	26.35	Uncharacterized protein	0.09	1.49
W6JB19	14.00	95.81	Uncharacterized protein	0.80	1.05
W6JB26	20.00	135.71	Uncharacterized protein	0.01	0.83
W6JB55	9.00	63.27	Uncharacterized protein	0.09	1.54
W6JB89	10.00	62.06	Uncharacterized protein	0.90	0.99
W6JBE9	2.00	12.02	Uncharacterized protein	0.31	1.19
W6JBP1	7.00	100.85	Uncharacterized protein	0.44	1.13
W6JBR2	5.00	29.19	Uncharacterized protein	0.22	0.71
W6JBS6	2.00	11.47	Uncharacterized protein	0.06	0.76
W6JC70	4.00	49.80	Uncharacterized protein	0.47	1.12
W6JC74	12.00	97.95	Uncharacterized protein	0.24	0.85
W6JC78	7.00	64.31	Uncharacterized protein	0.36	0.84

Tabela	suplementar	2,	cont.
--------	-------------	----	-------

Accession	Peptide count nfidence score	Description	ANOVA	-old_Change
	Co H			-
W6JCS0	10.00 66.32	Uncharacterized protein	0.00	0.81
W6JCV6	7.00 42.42	Uncharacterized protein	0.38	0.79
W6JCW2	2.00 19.37	Uncharacterized protein	0.11	0.70
W6JCW7	7.00 52.07	Uncharacterized protein	0.51	0.80
W6JD06	12.00 85.55	Uncharacterized protein	0.83	0.98
W6JDH9	5.00 55.27	Uncharacterized protein	0.05	1.33
W6IXF3	3.00 28.27	Uncharacterized protein	0.02	1.56
W6JCD2	4.00 43.00	Uncharacterized protein	0.05	1.68
W6JCH5	6.00 41.53	Uncharacterized protein	0.01	2.64
W6J777	9.00 101.71	Universal stress protein	0.54	0.82
W6IZ14	17.00 142.48	Universal stress protein UspE	0.37	1.17
W6J4B2	11.00 82.10	Universal stress protein UspG	0.90	0.96
W6JBS2	7.00 61.96	UPF0227 protein C813_05510	0.15	0.66
W6J3T9	11.00 87.61	UPF0234 protein C813_09915	0.88	0.99
W6J5B5	2.00 11.79	UPF0253 protein C813_10840	0.02	0.43
W6JAX3	12.00 76.95	UPF0304 protein C813_23095	0.52	1.06
W6J585	8.00 51.22	UPF0307 protein C813_12635	0.42	1.52
W6JBT2	7.00 53.01	UPF0312 protein C813_05795	0.22	1.76
W6JCB2	12.00 86.10	UPF0325 protein C813_10965	0.17	0.78
W6JE31	16.00 123.73	Uracil phosphoribosyltransferase	0.14	0.73

Accession	Peptide count	Confidence score	Description	ANOVA	Fold_Change
W6J665	9.00	62.33	Uridine phosphorylase	0.85	1.01
W6J255	7.00	48.50	Uridylate kinase	0.98	1.02
W6J7U2	14.00	82.88	Urocanate hydratase	0.25	0.91
W6JCN5	14.00	96.14	Uroporphyrinogen-III C-methyltransferase	0.16	1.26
W6IY06	15.00	139.97	UTPglucose-1-phosphate uridylyltransferase	0.67	0.97
A0A059XPA9	2.00	9.90	Vancomycin high temperature exclusion protein	0.19	1.12
W6J3W3	8.00	46.92	Xaa-Pro dipeptidase	0.26	0.86
W6J423	4.00	38.30	Xanthine phosphoribosyltransferase	0.07	0.51
W6IXQ2	13.00	107.38	Zinc-dependent alcohol dehydrogenase	0.33	1.18