IDENTIFICAÇÃO E ANÁLISE DE PROTEÍNAS HEME-REGULADAS DA BACTÉRIA *Pseudomonas putida* ISOLADA DO MOSQUITO *Aedes aegypti*

(Diptera: Culicidae)

JOSIANE PESSANHA RIBEIRO

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO - UENF CAMPOS DOS GOYTACAZES - RJ MAIO DE 2016

IDENTIFICAÇÃO E ANÁLISE DE PROTEÍNAS HEME-REGULADAS DA BACTÉRIA *Pseudomonas putida* ISOLADA DO MOSQUITO *Aedes*

aegypti(Diptera: Culicidae)

Mestranda: Josiane Pessanha Ribeiro Orientador: Prof. Dr. Francisco José Alves Lemos

> Dissertação de Mestrado apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro como parte das exigências para a obtenção do título de Mestre em Biociências e Biotecnologia.

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO CAMPOS DOS GOYTACAZES MAIO DE 2016

IDENTIFICAÇÃO E ANÁLISE DE PROTEÍNAS HEME-REGULADAS DA BACTÉRIA *Pseudomonas putida* ISOLADA DO MOSQUITO *Aedes*

aegypti(Diptera: Culicidae).

Mestranda: Josiane Pessanha Ribeiro Orientador: Prof. Dr. Francisco José Alves Lemos

> Dissertação de Mestrado apresentada ao Centro de Biociências e Biotecnologia da Universidade Estadual do Norte Fluminense Darcy Ribeiro como parte das exigências para a obtenção do título de Mestre em Biociências e Biotecnologia.

Aprovada em 24 de maio de 2016.

Comissão Examinadora:

Dra. Tatiana Santos Barroso (UENF/CBB/LBT)

Dra. Tatiane Sanches Soares (UENF/CBB/LBCT)

Dr. José Roberto da Silva(UFRJ/Macaé)

Dr. Francisco José Alves Lemos (UENF/CBB/LBT - Orientador)

Dedico esta conquista ao meu pai Jocimar de Andrade Ribeiro (*in memorian*), pelo amor e exemplo de vida que me deste, por nunca ter poupado esforço para que meus sonhos se realizassem.

"Existem muitas hipóteses em ciências que estão erradas. Isso é perfeitamente aceitável, elas são a abertura para achar as que estão certas".

Carl Sagan

Agradecimentos

Ao prof. Francisco José Alves Lemos, pela acolhida no Laboratório de Biociências e Biotecnologia (LBT), orientação, confiança e oportunidade de realizar este trabalho.

Ao prof. André de Oliveira Machado, e à prof^a. Analiz de Oliveira Gaio pelas sugestões, discussões e incentivo na defesa do projeto de pesquisa.

Ao prof. Vanildo Silveira e a toda sua equipe, em especial aos doutorandos Ângelo Hering e Ricardo Reis pela colaboração e auxílio na espectrometria de massas.

À técnica e amiga Rívea Rodrigues, pela colaboração apoio e companhia;

À doutoranda e amiga Juliani Ramada pela colaboração e incentivo principalmente no início do presente estudo.

A doutoranda e revisora Sâmella da Hora Machado, pela amizade, companheirismo e ensinamentos no decorrer de todo este trabalho.

Aos amigos do LBT, Gabriela, Viviane, Natália, Dalvânia e aos demais colegas que sempre estiveram próximos e me incentivaram.

Ao Centro de Biociências e Biotecnologia da UENF, pela infraestrutura necessária para a conclusão deste trabalho.

Ao programa de pós-graduação do Centro de Biociências e Biotecnologia, aos professores desse programa e aos seus funcionários pela colaboração.

À CAPES pelo apoio financeiro.

Aos amigos que me incentivaram nas dificuldades e se alegraram com meu sucesso.

A avó Valquíria, à madrinha Michelly e ao padrinho André, dos meus filhos, pela presença e auxílio nos momentos de necessidade.

À minha querida auxiliar e amiga Valdéa Tavares, pela paciência e colaboração no decorrer de todo esse estudo, cuidando e educando dos meus filhos nos momentos de minha ausência.

À amiga Liana e seu Marido Josélio, por ter me ajudado no momento de dificuldade e ter me trazido paz para que eu pudesse concluir esse trabalho.

Aos meus amores Pedro Henrique, Alice e Matheus pelo carinho e pela alegria que me transmitem no dia a dia, me dando força e coragem para seguir a diante.

Aos meus pais, Jocimar de Andrade Ribeiro (*in memorian*) e Sônia Maria Pessanha Ribeiro, pelo exemplo de vida e por nunca terem poupado esforços para a realização dos meus sonhos.

À minha tia Ana Maria Pessanha e à minha cunhada Cristiane Maria pelo carinho e pela dedicação.

Ao meu irmão e amigo Sérgio Pessanha Ribeiro, por todo apoio e carinho; Ao criador por sua belíssima obra.

A todos que direta ou indiretamente contribuíram para a realização deste sonho, o meu muito obrigada.

Sumário

Índice de figurasx
Índice de tabelasxii
Lista de abreviaturasxiii
Resumoxv
Abstractxvi
1. Introdução1
1.1. Aedes aegypti
1.2. Digestão em mosquitos 4
1.3. Grupo prostético heme e hemeproteínas5
1.3.1. Aquisição de ferro e heme por bactérias
1.3.2. Mecanismos de detoxificação de heme em artrópodes 10
1.4. Espécie bacteriana em estudo 11
1.4.1. Pseudomonas putida 11
1.5. Proteoma
2. Justificativa 14
3. Objetivos 17
3.1. Objetivo geral 17
3.2. Objetivos específicos 17
4. Metodologia 18
4.1. Espécie bacteriana 18
4.2. Seleção do meio de cultivo 18
4.3. Crescimento bacteriano 18
4.3.1. Crescimento bacteriano na presença e na ausência de heme em meio líquido
4.3.2. Crescimento bacteriano em meio sólido enriquecido com heme 19

4.4.Extração de proteínas	19
4.5. Quantificação proteica	20
4.6. Concentração e digestão de proteínas	20
4.7. Digestão de proteínas	22
4.8. Análise por cromatografia e espectrometria de massas	23
4.9. Bioinformática	24
5. Resultados e discussão	25
5.2. Identificação de proteínas por LC-MS / MS	26
5.3. Análise do número de peptídeos	41
5.4. Classificação de <i>Gene Ontology</i> (GO)	43
5.4.1. Classificação de GO para proteínas <i>up</i> -reguladas	43
5.4.2 Classificação de GO para proteínas down-reguladas	52
5.5. Predição de atividades enzimáticas	59
5.5.1. Proteínas <i>up</i> -reguladas	60
5.5.2. Proteínas <i>down</i> -reguladas	61
5.6. Enzimas <i>up</i> -reguladas envolvidas em vias metabólicas	62
5.6.1. Ciclo do ácido cítrico	67
5.6.2. Metabolismo do piruvato	69
5.6.3. Glicólise/gliconeogêse	71
5.6.4. Fosforilação oxidativa	73
6. Conclusões	76
7. Referências bibliográficas	77
Anexos	.89

Índice de figuras

Figura 1. Fases do ciclo de vida do mosquito A. aegypti 4
Figura 2. Estrutura geral de uma porfirina genérica6
Figura 3. Estrutura das espécies Heme (A) e Clorofila (B)6
Figura 4. Grupo heme na mioglobina e na subunidade β da hemoglobina7
Figura 5. Fluxo de trabalho para extração de proteínas - amostra complexa 20
Figura 6. Fluxo de Trabalho para preparação do pool de proteínas 22
Figura 7. Incorporação de heme pela bactéria <i>P. putida</i>
Figura 8. Número de peptídeos por proteína up-reguladas
Figura 9. Número de peptídeos por proteína down-reguladas
Figura 10. Diagrama de Venn de proteínas up-reguladas de P. putida 44
Figura 11. Setores para cada categoria de GO para proteínas up-reguladas de
P. putida
Figura 12. Categoria de GO para função molecular para proteínas up-reguladas
de <i>P. putida.</i>
Figura 13. Categoria de GO função molecular agrupados em outros 46
Figura 14. Categoria de GO para processo biológico para proteínas up-
reguladas de <i>P. putida.</i>
Figura 15. Categoria de GO classificada em processo biológico agrupada em
outros
Figura 16. Categoria de GO para componente celular para proteínas up-
reguladas <i>de P. putida.</i>
Figura 17. Categoria de GO para componente celular agrupado em outros 52
Figura 18. Diagrama de Venn de proteínas down-reguladas de P. putida 53
Figura 19. Setores para cada categoria de GO para proteínas down-reguladas
de <i>P. putida.</i> 54
Figura 20. Categoria de GO para função molecular para proteínas down-
reguladas de <i>P. putida.</i>
Figura 21. Categoria de GO para função molecular agrupados em outros para
proteínas down-reguladas55
Figura 22. Categoria de GO para processo biológico para proteínas down-
reguladas

Figura 23. Categoria de GO para processo biológico agrupado como outros	. 58
Figura 24. Categoria de GO para componente celular para proteínas do	wn-
regulada	. 59
Figura 25. Categoria de GO para componente celular agrupados em outros	. 59
Figura 26. Ciclo do ácido cítrico	. 68
Figura 27. Integração do metabolismo energético	. 69
Figura 28. Metabolismo do piruvato	. 70
Figura 29. Via da glicólise/gliconeogênese	. 72
Figura 30. Representação esquemática da fosforilação oxidativa	. 74

Índice de tabelas

Tabela 1. Composição do meio CASO original e modificado em g/L. 18				
Tabela 2. Proteínas mais abundantes de P. putida				
Tabela 3. Proteínas menos abundantes de P. putida				
Tabela 4. Proteínas mais abundantes em P. putida				
Tabela 5. Proteínas menos abundantes de P. putida				
Tabela 6. Categoria de GO para função molecular de proteínas up-reguladas.				
Tabela 7. Categoria de GO para função molecular de proteínas down-				
reguladas				
Tabela 8. Classificação enzimática 60				
Tabela 9. Abundância de anotações e de atividades enzimáticas				
Tabela 10. Abundância de anotações e de atividades enzimáticas				
Tabela 11. Vias metabólicas mais abundantes 63				
Tabela 12. Relação entre as vias metabólicas64				

Lista de abreviaturas

- °C graus Célsius
- **µL-** microlitros
- **µM** micromolar
- ACN acetonitrila
- ADP- difosfato de adenosina
- ATP trifosfato de adenosina
- Cat catalase
- DNA ácido desoxirribonucleico
- DTT ditiotreitol
- EC comissão enzimática
- EROs espécies reativas de oxigênio
- ESI ionização electrospray
- FDR taxa de detecção falsa
- GLU1 fibrinogênio B humano
- GO ontologia gênica
- H₂O₂ peróxido de hidrogênio
- HPLC- cromatografia líquida de alta performance
- IMS mobilidade iônica
- KEGG kyoto enciclopédia de genes e genomas
- LC-MS/MS- cromatografia líquida acoplada a MS/MS
- MALDI-TOF ionização e dessorção a laser assistida por matriz (MALDI) -
- tempo-de-voo
- min minutos
- mL mililitros
- **mM** milimolar
- MP- matriz peritrófica
- MS espectrometria de massas
- MS/MS espectrometria de massas in tandem
- O⁻² radical superóxido
- OH' radical hidroxila
- OMS Organização Mundial da Saúde
- PBS tampão fosfato salino

- PHA poli-hidroxialcanoatos
- ppm partes por milhão
- Q-TOF analisador quadrupolo tempo de vôo
- RPM rotações por minuto
- SOD superóxido dismutase
- sp.- espécies
- TCA ciclo do ácido cítrico
- TFA ácido trifluoroacético
- TOF tempo de vôo

Resumo

Pseudomonas putida foi isolada a partir do intestino médio do mosquito Aedes aegypti alimentado com sangue. Nestes insetos, bactérias intestinais têm de lidar com o estresse oxidativo induzido pelo heme durante a digestão sanguínea. Assim, este trabalho teve como objetivo investigar a resposta molecular desta bactéria cultivada em meio com excesso de heme. A bactéria foi cultivada em meio CASO modificado suplementado com 0,1 mM de hemina. A análise proteômica foi realizada utilizando-se o método shotqun. Análise proteômica identificou um total de 545 proteínas, diferencialmente expressas. Com base no log₂ 0,5 identificamos 40 proteínas up-reguladas e 34 downreguladas na presença de hemina. Nesta bactéria, 15 e 10 proteínas de ligação a íons foram up e down-reguladas, respectivamente. Também foram identificadas várias proteínas induzidas pelo estresse, além disso, várias proteínas relacionadas com o metabolismo energético foram altamente expressas em especial proteínas relacionadas com o ciclo do TCA, o que possivelmente, representa uma reprogramação metabólica na bactéria causada pela grande concentração de heme no meio. Estes resultados sugerem que esta bactéria seja capaz de responder e adaptar-se ao stress oxidativo induzido por heme, podendo auxiliar no metabolismo do heme gerado durante o processo digestivo no mosquito.

Palavras-chaves: Aedes aegypti, heme, bactérias, proteômica.

Abstract

Pseudomonas putida isolated from midgut of blood-fed Aedes aegypti. In these insect, midgut bacteria have to deal with heme-induced oxidative stress during blood digestion. Thus, this work aimed to investigate the molecular response of these bacteria cultured in medium excess heme. The bacteria were cultured in CASO medium supplemented with hemin 0.1 mM. Proteomic analyses combined the shotgun method. Proteomic analysis identified a total 545 differentially expressed. Proteins were filtered on the basis of 0.5 log2, presenting 40 up-regulated proteins and 34 down-regulated in the presence of hemin. In this bacteria, 15 and 10 ion-binding proteins were up and downregulated, respectively. Also, several stress-induced proteins were identified, moreover, several proteins related to energy metabolism were highly expressed in particular related proteins TCA cycle, which possibly represents a metabolic reprogramming in the bacteria caused by high concentrations of heme in the medium. These results suggest that bacteria are able to respond and adapt to heme-induced oxidative stress and can assist in the metabolism of heme generated during mosquito digestion process.

Keywords: Aedes aegypti, heme, bacteria, proteomics.

1. Introdução

Doenças tropicais negligenciadas fazem parte dos maiores problemas em saúde pública no mundo. Causadas por agentes infecciosos ou parasitários, que em muitos casos necessitam de um vetor para transmissão, afetam normalmente regiões cuja população possui baixa renda, como países da África, Ásia e América, repercutindo diretamente em problemas sociais e econômicos pelas altas taxas de morbidade e mortalidade (Souza, 2010).

O mosquito *Aedes aegypti* é vetor de doenças graves como a dengue, a febre amarela, a febreChikungunya e a febre Zica, sendo por isso, considerado caso de saúde pública. Evolutivamente, seres eucariontes e procariontes mantiveram estreita aproximação, sendo hoje encontradas relações de simbiose entre estes organismos nas mais variadas espécies. Em insetos, existe uma ampla variedade de colônias bacterianas (Dillon e Dillon, 2004), que são responsáveis por auxiliar em estágios nutritivos, de desenvolvimento e reprodução (Minard *et al.*, 2013).

Em mosquitos, a alimentação do adulto é baseada em néctar de frutas, mas quando em período gestacional as fêmeas se alimentam de sangue para desenvolvimento dos ovos. Em *A. aegypti* essa hematofagia ocorre em períodos diurnos e é preferencialmente antropofílica (preferência por sangue humano) (Marques e Degomes, 1997).

A digestão do sangue no intestino médio do *A. aegypti* ocorre de forma coordenada e envolve a remoção do excesso de água ingerida, o rompimento dos eritrócitos, a degradação hidrolítica de macromoléculas e a absorção de pequenas moléculas pelas células epiteliais do intestino (Romoser, 1996). Ao longo deste processo, observa-se um aumento exponencial da população bacteriana intestinal que predomina, inicialmente, na região posterior do intestino, onde a atividade proteolítica é mais alta. No final da digestão, o lúmen intestinal torna-se completamente preenchido por bactérias (Gusmão *et al.*, 2010). Desta forma, as bactérias intestinais utilizam o sangue ingerido pelo mosquito como fonte de nutrientes para a sua multiplicação, podendo assim, ter um papel fisiológico importante para o mosquito.

A digestão sanguínea resulta na liberação de peptídeos, aminoácidos e grande quantidade de heme no lúmen intestinal dos mosquitos (Pascoa *et al.*,

2002). O grupo prostético heme está presente na hemoglobina e é constituído por uma parte orgânica e um átomo de ferro. Apesar de ser uma fonte potencial do íon ferro, sendo um importante cofator de muitos processos oxidativos biológicos, tais como: cadeia transportadora de elétrons (citocromos), detoxificação de drogas (citocromo P450) e transporte de oxigênio (hemoglobina, e hemocianina) em um número grande de organismos vivos, o heme, também, apresenta elevada periculosidade. Livre da cadeia polipeptídica da hemoglobina é altamente pró-oxidante (Dansa-Petretski *et al.*,1995; Ryter *et al.*, 2000).

Sendo uma molécula anfifílica (porções polares e apolares), pode se associar a membranas biológicas causando uma perturbação na integridade destas, além dos danos causados pela peroxidação dos lipídeos componentes destas membranas (Schmitt *et al.*,1993). Entretanto, dada a importância da participação do heme em vários processos oxidativos biológicos, a sua ingestão pelo inseto, a partir do sangue, poderia ser uma grande economia em termos metabólicos, pois poderia minimizar a utilização da via metabólica de biossíntese de heme, presente na maior parte dos seres vivos (Braz, 1999 e 2001).

As bactérias intestinais, assim como os mosquitos, têm que lidar com este excesso de estresse oxidativo. Diversos estudos, mostrando mecanismos de detoxificação de heme por parte de insetos hematófagos já foram descritos (Graça-Souza *et al.*, 2006), assim como por algumas bactérias, que possuem mecanismos de assimilação do heme, como por exemplo, receptores de superfície celular (Tong e Guo, 2009). Desta forma, pode-se inferir que bactérias intestinais de mosquitos apresentem mecanismos de detoxificação e sequestro deste excesso de heme, auxiliando este inseto no controle da atividade tóxica desta molécula.

Entre as bactérias comumente encontradas no intestino médio do mosquito *A. aegypti* alimentado com sangue, temos a *Pseudomonas putida* (Rodrigues, 2008; Alves *et al.*, 2010; Gaio *et al.*, 2011a e Djadid *et al.*, 2011). Estirpes desta bactéria têm se revelado bastante importante para a degradação de agentes tóxicos (O'Connor, 1996 e Otenio *et al.*, 2005). A análise do genoma dá uma visão sobre a natureza não-patogênica de *P. putida* e aponta para novas aplicações potenciais na agricultura, biocatálise, biorremediação e

produção de bioplástico (Nelson *et al.*, 2002), revelando esta bactéria como um sistema modelo útil para estudar aspectos bioquímicos, genéticos, evolutivos e ecológicos do catabolismo de compostos orgânicos (Jiménez, 2002).

1.1. Aedes aegypti

A. aegypti é uma espécie de mosquito da família Culicidae originária do Egito (Tauil, 2002). Atualmente, o mosquito encontra-se distribuído por quase todo o mundo, com ocorrência nas regiões tropicais e subtropicais, sendo dependente da concentração humana no local para se estabelecer. O mosquito está bem adaptado a zonas urbanas, mais precisamente ao domicílio humano, onde consegue reproduzir-se e pôr os seus ovos em pequenas quantidades em água, que preferivelmente estejam sombreados e no peridomicílio (Neves, 2004).

Este inseto é o agente transmissor de vários vírus causadores de doenças. Três dessas viroses (dengue, febre amarela e febre zica), são causadas por cepas de vírus do mesmo gênero, o *Flavivirus*, Família Flaviridae (Sime Dimopoulos, 2010). Já a febre Chikungunya é causada pelo vírus CHIKV, do gênero *Alphavirus* pertencente à família Togaviridae (Murphy *et al.*, 1995).

O mosquito *A. aegypti* é um culicídeo holometabólico, ou seja, desenvolve-se através de metamorfose completa. O adulto é escuro, possuindo faixas brancas nas bases dos segmentos tarsais, e um desenho em forma de lira no mesonoto (FUNASA, 2001). É um inseto hematófago, em que as fêmeas necessitam de sangue de vertebrados para a reprodução (Edman, 1992). Do sangue provêm nutrientes que irão contribuir para a formação dos ovos, como aminoácidos essenciais (Harrington *et al.*, 2001).O repasto sanguíneo pode também contribuir para a umentar a longevidade das fêmeas (Consoli e Oliveira, 1994; Tauil, 2001).

O controle deste inseto é difícil, por ser muito versátil na escolha dos criadouros onde deposita seus ovos, que são extremamente resistentes, podendo sobreviver vários meses até que a chegada de água propicie a eclosão. Uma vez imersos, os ovos eclodem liberando as larvas, que dão origem as pupas, das quais surge o adulto (imago), como mostrado na Figura 1.

Figura 1. Fases do ciclo de vida do mosquito *A. aegypti*. Em A ovos, B larvas, C pupa e em D adulto do mosquito *Aedes aegypti*. Fonte: adaptado de Centers of diseases control (2013).

1.2. Digestão em mosquitos

O intestino médio consiste no sítio da digestão do sangue em mosquitos, um processo que dá início a eventos fisiológicos importantes, tais como a vitelogênese e a reprodução, e é também considerado o principal sítio de interação entre o inseto e os patógenos que ele transmite (Consoli e Oliveira, 1994).

A parede do intestino médio pode ser considerada uma barreira de defesa do mosquito, pois é o primeiro tecido que os patógenos tem que atravessar e é o maior determinante da capacidade vetorial do culicídeo. Os arbovírus, por exemplo podem replicar-se no epitélio intestinal ou em outros lugares do corpo, antes de infectar as glândulas salivares. Quando as glândulas estão infectadas com o vírus, a fêmea torna-se competente para a transmissão durante toda sua vida (Travanty *et al.*, 2004).

No processo alimentar, os açúcares ingeridos são armazenados numa estrutura denominada divertículo ventral, de onde passam lentamente para o estômago, sendo aí gradualmente digeridos. Esse mecanismo permite à fêmea manter o estômago vazio e pronto para receber o repasto sanguíneo (Consoli e Oliveira, 1994).

Logo após a ingestão de sangue, forma-se uma camada de material acelular, quitinoso, secretado pelas células do estômago, que reveste todo o intestino médio dos insetos, separando o sangue ingerido das células do epitélio digestivo, e que constitui a matriz peritrófica. Essa matriz é permeável às enzimas proteolíticas secretadas pelas células estomacais e também aos produtos da digestão que são aí absorvidos. Quando a digestão se aproxima do seu final, a membrana torna-se novamente macia e em seguida é eliminada do organismo juntamente com as fezes (Billingsley e Rudin 1992).

O sangue de vertebrados é um alimento rico em nutrientes, constituído principalmente por hemoglobina, albumina e imunoglobulina. A hemoglobina é a proteína mais abundante nas células vermelhas dos vertebrados, representando mais de 80% do total de proteínas do sangue (Wicher e Fries, 2006). As hemácias representam o maior componente celular do sangue e, como a hemoglobina está contida dentro das hemácias, a lise destas células é o passo inicial para a digestão nos insetos hematófagos (Horn *et al.,* 2009). Durante a digestão da hemoglobina, além dos aminoácidos liberados, o grupamento prostético dessa proteína, o grupo heme, também é liberado.

1.3. Grupo prostético heme e hemeproteínas

Um grupo prostético é um componente de natureza não-proteica de proteínas conjugadas que é essencial para a atividade biológica dessas proteínas. São um grupo de cofatores, que ao contrário das coenzimas, encontram-se ligados de forma permanente à proteína (Bolster, 1997).

A ferroprotoporfirina IX ou heme é o grupamento prostético da hemoglobina. Ela faz parte de uma classe de compostos orgânicos denominada porfirinas. As porfirinas se caracterizam por um macrociclo contendo quatro anéis pirrólicos (4 C e 1 N) unidos por ligações de metilenos(Xu *et al.*, 2005; Caummette *et al.*, 2009; Duyck *et al.*, 2011), conforme mostrado na Figura 2.

Figura 2. Estrutura geral de uma porfirina genérica.

Como pode ser observado nas Figuras 2 e 3, as porfirinas possuem uma cavidade interna apropriada para acomodar íons metálicos, onde estes são complexados por quatro átomos de nitrogênio formando as chamadas metaloporfirinas. Os representantes mais comuns desta classe de compostos são o grupo heme e a clorofila (Mokhtari e Pourabdollah, 2012), como mostrado na Figura 3.

Figura 3. Estrutura das espécies Heme (A) e Clorofila (B).

O heme apresenta estrutura cíclica formada por 4 anéis pirrólicos (parte orgânica) ligados a um átomo de ferro no estado ferroso [Fe(II)]. Nesse anel tetrapirrólico estão ligados também dois grupamentos vinílicos (CH₂=CH-), 2 grupamentos carboxílicos (COOH) e 4 radicais metil (CH₃-) (Milgrom, 1997),

como pode ser observado na (Figura 3 A). Sua fórmula molecular é $C_{34}H_{32}FeN_4O_4$ e tem uma massa molecular de 616,487 g/mol.

As hemeproteínas são constituídas por um grupo prostético, o heme e por uma parte proteica, são responsáveis por diversos tipos de atividades catalíticas e desempenham várias funções nos sistemas biológicos. Na Figura 4 é mostrado a mioglobina e a hemoglobina que são consideradas hemeproteínas respiratórias, são responsáveis pelo armazenamento e transporte de oxigênio molecular respectivamente e possuem uma sequência aminoacídica semelhante entre si. Nos citocromos, o heme está envolvido com o transporte de elétrons na cadeia respiratória mitocondrial. Ainda podemos destacar outras proteínas em que o heme é o grupo próstético, como catalase, óxido nítrico sintase e glutationa peroxidase (Halliwell e Gutteridge, 2004). O heme é uma das principais fontes de ferro desempenhando um papel crítico no crescimento e virulência bacteriana (Mayfield *et al.*, 2011).

Figura 4. Grupo heme na mioglobina e na subunidade β da hemoglobina.(Adaptado de Nelson e Cox, 2004).

1.3.1. Aquisição de ferro e heme por bactérias

Em geral, as bactérias precisam de ferro para sobreviver, este íon é essencial em processos biológicos fundamentais, tais como a respiração celular, glicólise e síntese de DNA (Haas *et al.*, 2008 e Bou-Abdallah, 2010).

Dada à importância da captação de ferro, as bactérias desenvolveram mecanismos elaborados para a sua aquisição, incluindo a utilização de fontes de ferro presentes no hospedeiro, tais como, proteínas de transporte e estocagem de ferro (transferrina, lactoferrina e ferritina) (Rudolph *et al.*, 2006) e a secreção de quelantes de ferro de alta afinidade, denominados sideróforos (pequenas proteínas que têm alta afinidade pelo ferro e pelo heme),que podem extrair o heme das proteínas heme-portadoras e entrega-lo para as células através de receptores específicos da superfície (Létoffé *et al.*, 1994; Ghigo *et al.*, 1997). Os sideróforos são geralmente produzidos e secretados pela bactéria em resposta a limitação de ferro (Wandersman e Delepelaire, 2004).

Algumas bactérias possuem receptores de superfície celular para o heme ou para hemeproteinas (heme ligado a proteínas, como hemoglobina e hemopexina) (Tong e Guo, 2009) ou ambos. Um sistema bem caracterizado é o da *Serratia marcescens*, esta bactéria, secreta a proteína Hasa que capta heme da hemoglobina e entrega a HasR (receptor de membrana externa) (Ghigo *et al.*, 1997 e Létoffé *et al.*, 1999). Uma vez dentro da célula, o heme é apresentado a heme oxigenase, o anel tetrapirrólico é clivado afim de liberar o ferro (Tong e Guo, 2009). O sistema Hasa (sistema de aquisição de heme) já foi encontrado em *Serratia marcescens* (Létoffé, 1994; Arnoux, 2000), *Pseudomonas aeruginosa* (Létoffé, 2000; Létoffé 1999), *P. fluorescens* (Létoffé 2000, Idei *et al.*, 1999)e Yersinia enterolítica (Rossi *et al.*, 2001).

Além disso, várias bactérias secretam hemóforos, que são pequenas proteínas que têm alta afinidade pelo heme, e pode, por conseguinte, extrair o heme das proteínas heme-portadoras e entrega-lo para as células através de receptores específicos (Létoffé *et al.,* 1994 e Ghigo *et al.,* 1997).

Alguns autores acreditam que a incorporação de heme por bactérias esteja ligada a sua virulência (Olczak *et.al* 2001;Litwin e Calderwood, 1993). Acredita-se que o heme possa fornecer a quantidade de ferro necessária para

que fatores de virulência possam se expressar, como citotoxinas (Litwin e Calderwood, 1993).

A captação de ferro e sua estocagem são reconhecidos como problemas complexos para as bactérias: elas precisam evitar o excesso de ferro livre que causam danos a proteínas, lipídios e DNA, e também precisam encontrar fontes adequadas de ferro que permitam seu crescimento. Dentro da homeostase do ferro, os mecanismos de excreção são menos desenvolvidos e eficazes do que aqueles que regulam a absorção e distribuição, e nesses processos várias células, hormônios e proteínas de transporte e armazenamento de ferro estão envolvidas (Beaumont *et al.*, 2006; Donovan *et al.*, 2006).

As proteínas estocadoras de ferro (ferritinas) ajudam a prevenir danos causados pelo metal removendo-o do citoplasma, e também servem como uma fonte de ferro quando este se torna escasso (Theil, 2007).

Organismos aeróbicos utilizam oxigênio molecular (O_2) para respiração ou oxidação de nutrientes para obter energia. Durante esses processos, subprodutos do oxigênio como o radical superóxido (O^{2^-}), peróxido de hidrogênio (H_2O_2) e radicais hidroxila (OH^{*}), são constantemente gerados nas células em crescimento aeróbico. Essas espécies reativas de oxigênio (EROs) podem danificar as células. Muitos dos danos causados pelo H_2O_2 ocorrem pela reação de Fenton, que se dá na presença de ferro (Cabiscol *et al.*, 2000), onde, íons ferrosos (Fe²⁺) reagem com H_2O_2 gerando radicais hidroxila altamente reativos e extremamente danosos. A reação a seguir, ilustra tal interação.

Reação de fenton: $Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + HO^-$

A reatividade do ferro é amenizada pelas bactérias pelo sequestro do metal pelas proteínas estocadoras de ferro. Comumente, o ferro é sequestrado de maneira reversível pelas ferritinas e as EROs são destoxificadas por enzimas específicas. Assim, os organismos desenvolveram estratégias que permitem a captação de ferro para solubilizá-lo e estoca-lo de maneira não tóxica, deixando-o pronto para o uso (Chiancone *et al.*, 2004).

1.3.2. Mecanismos de detoxificação de heme em artrópodes

Alguns artrópodes possuem mecanismos de detoxificação do heme. A primeira linha de defesa antioxidante do hemíptero *Rhodnius prolixus,* vetor da doença de chagas, é a formação de um agregado cristalino de heme conhecido com hemozoína, que é formado ainda no interior do intestino (Oliveira, *et al.*, 1999). Este agregado evita a passagem de heme, em larga escala, do lúmem para a hemolinfa.

Na hemolinfa, o grupo heme, que atravessa a barreira digestiva, se associa a Proteína Ligadora de Heme (RHBP), que exerce ação antioxidante, já que a forma associada não gera ou gera muito menos radicais livres. A RHBP tem portanto, uma clara função antioxidante protegendo as moléculas da hemolinfa (Dansa-Petreski *et al.*, 1995).

Além desses mecanismos de neutralização dos efeitos do heme livre no *R. prolixus*, foram descritas neste inseto, enzimas que degradam o heme como a heme oxigenasse (HO) (Paiva-Silva *et al.*, 2006), frequentemente descrita como antioxidante. Esta enzima é expressa por diversos organismos tais como, bactérias e plantas (Tenhunen *et al.*, 1969; Ortiz de Montellano, 2000). Outro mecanismo encontrado neste inseto, é a presença de altas concentrações de ácido úrico na hemolinfa (souza *et al.*,1997), mostrando que a adaptação à dieta de sangue requer uma adaptação de um eficiente sistema de defesa antioxidante.

Em *A. Aegypti,* grande parte do heme gerado durante a digestão sanguínea liga-se fortemente à matriz peritrófica, que retém, no lúmen intestinal, praticamente todo heme gerado na digestão da hemoglobina. Este resultado sugere que a matriz peritrófica pode funcionar como uma barreira contra o heme (Pascoa *et al.*, 2002).

Em trabalho, realizado por nosso grupo, Gusmão *et al.*, (2010) mostrou que bactérias intestinais do mosquito *A. aegypti* apresentam um crescimento exponencial, 48 horas após a ingestão de sangue, coincidindo com o final do processo digestivo e, que essas bactérias encontram-se localizadas predominantemente na matriz peritrófica, local onde a maior parte do heme encontra-se aderido.

Diante do exposto, podemos inferir que bactérias de mosquitos podem desempenhar papel cooperativo no processo de detoxificação do grupo prostético heme, e consequentemente de ferro, em insetos hematófagos.

1.4. Espécie bacteriana em estudo

1.4.1.Pseudomonas putida

O gênero *Pseudomonas* compõe a família Pseudomonadaceae, os membros desta família caracterizam-se como bacilos gram-negativos retos ou ligeiramente curvos, não esporulados. São aeróbios estritos, a maioria das cepas, apresenta motilidade por meio de um ou mais flagelos polares, utilizam glicose e outros carboidratos oxidativamente e, em geral, são citocromo oxidase positivos (Koneman *et al.*, 2001 e Winn *et al.*, 2008). São agentes patogênicos oportunistas que podem causar doenças. Encontram-se amplamente distribuídos no solo (Yamaoka-Yano e Mazzafera, 1999), na água (Igbinosa, 2012) e em vegetais (Ruiz, 2004 e Igbinosa 2012). Podem também fazer parte da microbiota normal do trato intestinal e pele de 3 a 5% da população, sendo encontrada com maior frequência na pele de pacientes hospitalizados e imunodeprimidos (Winn *et al.*, 2008; Koneman *et al.*, 2001).

Pseudomonas é um gênero que contém mais de quarenta espécies de bactérias, que se encontram divididas em cinco grupos, de acordo com as similaridades do RNAr e relacionamentos filogenéticos. As bactérias do primeiro grupo são consideradas as verdadeiras *Pseudomonas*e, a *P. putida* pertence a este grupo (Brooks, 2014).

Oficialmente descoberta em meados de 1900 e encontrada em vários ambientes, a *P. putida* é uma bactéria gram-negativa não patogênica. Esta bactéria é encontrada como saprófita, em plantas, é conhecida principalmente por ser benéfica aos vegetais (Di Fiore e Del Gallo, 1995). Apresenta um metabolismo aeróbico muito diverso que é capaz de degradar solventes orgânicos, tais como o tolueno e o xileno (Otenio *et al.*, 2005) e também de converter óleo de estireno (óleo remanescente de isopor superaquecido), que pensava-se não ser biodegradável, em poli-hidroxialcanoatos (PHA) (plástico útil e biodegradável) (O'Connor, 1996).

Devido à alta capacidade de degradar poluentes orgânicos, os pesquisadores estão utilizando *P. putida* para a investigação sobre bactérias remediadoras (utilizadas na recuperação de áreas contaminadas) de processos do solo (Kowalski, 2002;Teixeira e Bento, 2007). Esta bactéria tem a maioria dos genes envolvidos na quebra de hidrocarbonetos aromáticos ou alifáticos, que são substâncias químicas perigosas geradas por combustível, carvão, tabaco e outros materiais inflamáveis. Apresentam sideróforos, um composto quelante de ferro que permite que as bactérias aumentem os níveis de ferro e mantenham a cadeia de transporte ativo (Boopathi, 1999).

Estirpes de *P. putida* possuem receptores de membrana externa que ajudam o transporte do complexo de ferro para os sideróforos, especificamente conhecidos como pioverdinas, que são encontrados na célula bacteriana. De lá, o ferro é utilizado em processos metabólicos, onde o oxigênio é o receptor de elétrons (Lopez, 1999). Os derivados de oxigênio, no entanto, são tóxicas para as bactérias, incluindo superóxido e peróxido de hidrogênio. Em resposta, *P.putida* produz catalase para proteger a célula das propriedades reativas dos subprodutos (Miller, 1997).

Em mosquitos, essa bactéria, já foi isolada do trato digestivo de fêmeas de *Lutzomia longipalpis* (Oliveira, 2000), fêmeas de *A. stephensi* (Rani, 2009), *C. quinquefasciatus* (Alves *et al.*, 2010), *Anopheles gambie* (Wang *et al.*, 2011), e intestino de *A. aegypti* (Rodrigues, 2008; Alves *et al.*, 2010; Gaio *et al.*, 2011a e Djadid *et al.*, 2011).

O organismo modelo da bactéria *P. putida* utilizada em vários trabalhos, é a *P. putida* KT2440 que encontra-se com a sequência completa do genoma disponível desde 2002 (Nelson *et al.*, 2002). Esta bactéria tem considerável potencial para aplicações biotecnológicas.

Embora não haja um elevado nível de conservação do genoma da *P. putida* com a bactéria patogênica *P. aeruginosa*, 85% das regiões previstas são partilhadas. Contudo, fatores de virulência principais que incluem o sistema de secreção tipo III de exotoxicina A estão ausentes (Nelson *et al.*, 2002).

Seguindo a análise genômica, Heim e colaboradores (2003) realizaram a primeira análise proteômica da estirpe KT2440 de *P. putida,* onde observou respostas distintas de KT2440 e *P. aeruginosa* estirpe *PAO1* à privação de ferro e uma nova forma de superóxido dismutase. As proteínas foram

identificadas por análise de dessorção/ionização a laser assistida por matriz de tempo-de-voo (MALDI-TOF), em conjunto com uma base de dados interna desenvolvida a partir de dados da sequência do genoma de KT2440, e cerca de 200 pontos de gel bidimensionais foram atribuídos. A partir de então, várias análises do proteôma global de *P. putida* na presença de um meio estressante tem sido revelado (Kurbatov *et al.*, 2006; Verhoef *et al.*, 2010; Simon *et al.*, 2014).

1.5. Proteoma

O Proteoma é expressão funcional do genoma, representado pelas proteínas, que pode esclarecer melhor os mecanismos bioquímicos e fisiológicos a nível molecular (Wasinger *et al.*, 1995; Dut e Lee, 2000).

As proteínas são macromoléculas que exercem funções importantes nos sistemas biológicos, tais como, enzimas, anticorpos, hormônios, componentes estruturais, receptores celulares etc, além de serem responsáveis pelo fenótipo definitivo da célula. Suas atividades específicas, modificações, associações com outras biomoléculas e os seus níveis de expressão são essenciais para a descrição dos sistemas biológicos. Todas as proteínas resultam da expressão gênica em uma célula, isto é, o processo de transcrição do gene produzindo uma molécula de mRNA e o processo de tradução da informação genética contida na sequência de nucleotídeos deste RNA em uma sequência de aminoácidos que irá constituir a proteína (Ban *et al.*, 1999).

Embora já sejam conhecidas as sequências de bases do genoma de diversos organismos, o conhecimento adquirido com o estudo do proteoma, tem demonstrado que a informação genética sozinha é insuficiente para explicar eventos biológicos e padrões de expressão do RNAm e que nem sempre essa informação se correlaciona com o nível de expressão proteica (Anderson eSeilhamer, 1997). Desta forma, o estudo dos produtos gênicos representados pelas proteínas, tornou-se essencial para o completo entendimento e a determinação do padrão de expressão celular. Surgiu assim um novo campo experimental conhecido como análise proteômica. Esta análise consiste na aplicação de um conjunto de métodos visando caracterizar o conjunto de proteínas expressas por um determinado genoma em uma célula,

tecido, ou sistema biológico num determinado momento ou em uma determinada situação. Esta nova ferramenta foi chamada de proteômica e proposta pela primeira vez por Wilkins e Willians em 1994 (Wilkins *et al.*, 1996).

Em condições fisiológicas específicas, o proteoma reflete o estado atual de funcionamento do sistema, ou seja, a expressão funcional do genoma. Embora o estudo do proteoma seja considerado um desafio, visto que, a expressão gênica de uma célula é bastante dinâmica, a proteômica é a ferramenta mais usada para entender o funcionamento dos genes por analisar o produto final dos mesmos (Pandey e Mann, 2000).

A aplicação da espectrometria de massas (MS) e o seu acoplamento com técnicas de separação, especialmente a cromatografia líquida (LC-MS), tem sido reconhecida como a técnica de separação direta mais eficiente em análises, possibilitando a identificação e a quantificação de grande parte das proteínas expressas em um único experimento (Altelaar *et al.*, 2013). A espectrometria de massas, especialmente quando é possível a realização da fragmentação dos compostos em série (MS/MS), pode ser usada para detectar analitos com maior sensibilidade e seletividade, através da análise da razão massa-carga (m/z) (Lanças, 2009).

A identificação de cada proteína é feita pela análise de sequências parciais com o auxílio de ferramentas de bioinformática. Em geral, a proteômica possui diversas aplicações que permitem realizar avaliações quantitativas e qualitativas de proteínas do sistema biológico em estudo, avaliar as modificações pós-traducionais, a expressão diferencial dos genes e interação proteína-proteína (Chen e Harmon, 2006).

2. Justificativa

Bactérias presentes no intestino de insetos hematófagos podem ter um importante papel na epidemiologia de doenças infecciosas humanas, uma vez que podem interferir com o desenvolvimento de patógenos importantes. Por exemplo, bactérias gram-negativas são conhecidas por reduzir, significativamente, o número de oocistos em mosquitos infectados por *Plasmodium* (Seitz *et al.*, 1987; Beier *et al.*, 1994).

Dados de Schlein e colaboradores (1985) mostraram que um efeito negativo na transmissão de Leishmaniose em áreas endêmicas estava correlacionado com uma alta prevalência de infecção microbiana no trato digestivo de fêmeas de flebótomos coletados na natureza.

Com o avanço das técnicas de identificação proteica e os recentes proteômica combinados desenvolvimentos em com término do 0 sequenciamento do genoma de A.gambiae e de A. aegypti, adquirimos as ferramentas necessárias para o aprofundamento do estudo molecular da microbiota de insetos vetores. Como a transmissão de patógenos está ligada à alimentação sanguínea, a compreensão da importância das bactérias do intestino médio para a fisiologia do mosquitos poderá ajudar a desenvolver abordagens que limitem a disseminação de doenças transmitidas por estes insetos. Proteínas importantes na interação bactéria-mosquito poderão ser utilizadas, no futuro, como alvo para novas metodologias de controle deste inseto ou para impedir a transmissão de patógenos que utilizam os mosquitos como vetores.

Em recente trabalho realizado por nosso grupo, foi sugerido que, bactérias residentes no intestino médio do mosquito incorporam heme (dados ainda não publicados). Estes dados vêm confirmar resultados similares obtidos por Gusmão (2007) que utilizou outros isolados bacterianos obtidos de *A. aegypti.* Vale ressaltar que estes microrganismos, como esperado, foram extremamente resistentes à presença de heme, visto que foram capazes de se multiplicar na presença de 5mM de hemina (dados ainda não publicados). Na literatura, relata-se que concentrações de hemina na faixa de 25-40µM são tóxicas para bactérias (Wyckoff *et al.*, 2005; Stauff *et al.*, 2008).

A partir de dados gerados por Gusmão (2007) e, por dados ainda não publicados, podemos concluir que bactérias de mosquitos podem desempenhar papel adicional no processo de detoxificação do grupo prostético heme nestes insetos, e que para isso algumas proteínas possam estar sendo expressas para atuar no processo de detoxificação do heme por esses organismos.

Sendo assim, o estudo comparativo dos perfis de expressão diferencial de proteínas de bactérias residentes no trato intestinal do mosquito, na presença e na ausência de heme, pode revelar aquelas proteínas bacterianas envolvidas no processo de detoxificação de heme neste inseto vetor. Os dados gerados

poderão contribuir para a identificação de possíveis alvos proteicos, em bactérias residentes intestinais, para o controle deste inseto.

3. Objetivos

3.1. Objetivo geral

Este trabalho tem como objetivo a identificação e análise de proteínas heme-reguladas da bactéria *P. putida* isolada do intestino médio do mosquito *A. aegypti.*

3.2. Objetivos específicos

- Verificar a influência do heme sobre o crescimento da bactéria *P.putida*;
- Identificar e quantificar proteínas bacterianas que sejam diferencialmente expressas na presença de heme, utilizando-se a metodologia Shotgun;
- Especificar a função molecular de proteínas diferencialmente expressas;
- Identificar proteínas relacionadas com a atividade de ligação a íon na presença de heme;
- Mostrar proteínas relacionadas com a atividade oxirredutase na presença de heme;
- Analisar vias metabólicas mais representativias de proteínas hemereguladas.

4. Metodologia

4.1. Espécie bacteriana

A espécie bacteriana utilizada neste estudo (*P. putida*) foi isolada por nosso grupo (Gaio, 2011b) e armazenada em stab (cultura bacteriana congelada em nitrogênio líquido com adição de glicerol).

4.2. Seleção do meio de cultivo

A seleção do meio de cultivo foi realizada com a colaboração da Prof^a. Marília Berbert-Molina (LBT/UENF). Foram pesquisados e testados diferentes meios com o objetivo de selecionar um meio em que houvesse um bom crescimento bacteriano e ausência de heme. O meio selecionado foi o meio CASO que passou por modificação. A composição do meio de cultura original e modificado é mostrado na Tabela 1. Todos os experimentos realizados no presente estudo foram conduzidos com o meio CASO modificado descrito.

Tabela 1. Composição do meio CASO original e modificado em g/L.Nesta modificação foi retirado a peptona de soja e aumentado a concentração de glicose de modo a igualar a relação C:N

Componente Meio ((origin	Meio CASO	MeioCASO
	(original)	(modificado)
Peptona de caseína	17,0	15.0
Peptona de soja	3.0	
K2HPO4	2.5	2.5
NaCl	5.0	5.0
Glicose	2.5	10.0

4.3. Crescimento bacteriano

4.3.1. Crescimento bacteriano na presença e na ausência de heme em meio líquido

O meio de cultura foi feito e autoclavado, e após o resfriamento, 10 mL do meio foi distribuído em frascos de 50 mL. Para ativação da bactéria, foi

descongelado um *stab* e utilizado uma proporção de 0.05% v/v (50µL) no meio. A bactéria foi cultivada a 28 °C por 12h a 14h (D.O.₆₀₀ igual a 1). Após este período, foi feito uma segunda passagem (crescimento), onde uma proporção de 0,5% v/v (500µL) foi adicionado em 10 mL do meio, desta vez, em meio contendo 0,1 mM de hemina (teste) e o outro sem adição de hemina (controle). Após o período de incubação (12h - 14h) foi verificado se houve crescimento bacteriano na presença e na ausência de heme. Em seguida, estas amostras foram utilizadas para extração de proteínas. O meio controle líquido, foi utilizado também para crescimento em meio sólido enriquecido com heme (teste) e na ausência de heme (controle).

4.3.2. Crescimento bacteriano em meio sólido enriquecido com heme

Dez microlitros do cultivo bacteriano crescido em meio líquido sem heme, como descrito no item 4.3.1, foi utilizado para plaqueamento em meio sólido na ausência e na presença de 0,1 mM de hemina. As placas foram mantidas em estufa a 28 °C por 48 h e o crescimento bacteriano foi observado.

4.4.Extração de proteínas

A bactéria crescida em meio líquido como descrita no item 4.3.1 foi utilizada para extração de proteínas. As células foram centrifugadas por 20 min a 20.817 g a 5°C. O sobrenadante foi transferido para tubos e armazenado a 4°C para posterior quantificação e análise. O *pellet* resultante foi ressuspendido e lavado com tampão fosfato-salino - PBS [1x] e centrifugado a 20.817 g por 20 min a 5°C. Esse procedimento foi realizado por duas vezes. Após as lavagens as células foram ressuspendidas com 1ml de Tris-HCl 20mM PH 7,5 e sonicadas no Sonic Dismembrator (Fisher Scientific) com 8 ciclos de 7 segundos de ultrassom. Em seguida as amostras foram centrifugadas a 20.817 g por 20 minutos a 5°C e o sobrenadante transferido para novos tubos e congeladas para posterior análise. O fluxo de trabalho é apresentado de forma resumida na Figura 5.

Figura 5. Fluxo de trabalho para extração de proteínas - amostra complexa. A bactéria crescida em meio líquido com e sem hemina foi utilizada para extração de proteínas. As células foram centrifugadas e o sobrenadante transferido para tubos e armazenado para posterior quantificação e análise. O *pellet* resultante foi lavado com tampão fosfato-salino e centrifugado. Após duas lavagens, as células foram ressuspendidas com Tris-HCI e sonicadas. Em seguida as amostras foram centrifugadas e o sobrenadante transferido para novos tubos que foram posteriormente usados para quantificação.

4.5. Quantificação proteica

A quantificação de proteínas obtidas nos extratos proteicos foi realizada com o kit 2D-Quant (GE-Healthcare®) seguindo o protocolo do fabricante, que se baseia na quantificação por cobre residual, com a utilização de albumina de soro bovino (BSA) como padrão.

4.6. Concentração e digestão de proteínas

Inicialmente, cinco tubos contendo 20 µg de proteínas cada foram combinados para se obter uma amostra reunida (Luge *et al.*; 2014) de 100 µg de proteínas por tratamento como ilustrado na figura 6. Em seguida, as amostras complexas foram concentradas e dessalinizadas em membranas 5000 MWCO Vivaspin (GE Healthcare, Reino Unido), utilizando 50 mM de bicarbonato de amônia, pH 8,5 (Sigma-Aldrich) como tampão. As membranas
foram cheias até sua capacidade máxima com bicarbonato de amônia e centrifugado a 15.000 g durante 20 minutos a 8 °C. Este procedimento foi repetido por pelo menos três vezes, resultando em aproximadamente 50µL por amostra.

Em seguida, as proteínas concentradas, foram digeridas com tripsina e os peptídeos resultantes submetidos a uma cromatografia de fase reversa em colunas de C18 (*Waters*) para separação dos peptídeos trípticos. Os peptídeos foram então analisados por um espectrômetro de massas SYNAPT G2-Si HDMS (*Waters*, Manchester, Reino Unido), com fonte de ionização *eletrospray* (nanoLC-ESI-MS/MS), através da colaboração com o Prof. Vanildo Silveira (LBT/CBB/UENF). O controle do instrumento e a aquisição de dados foram realizados pelo *software MassLynx* (versão 4.1, *Waters*) e o processamento dos dados foi realizado com *software Progenesis QI for Proteomics*.

Durante todo o processo, cuidados especiais foram tomados para prevenir a massiva contaminação com queratina e polímeros. Tais cuidados foram a utilização de luvas de nitrila, máscara e lavagem de vidrarias com águametanol-água.

Figura 6. Fluxo de Trabalho para preparação do pool de proteínas. Cinco tubos contendo 20 µg de proteínas cada foram combinados para se obter uma amostra reunida de 100 µg de proteínas por tratamento. Em seguida, as amostras complexas foram concentradas e dessalinizadas e posteriormente digeridas com tripsina, os peptídeos resultantes foram submetidas a uma cromatografia de fase reversa e então analisados por um espectrômetro de massas.

4.7. Digestão de proteínas

A metodologia utilizada para a digestão de proteínas, foi como previamente descrito por Calderan-Rodrigues e colaboradores (2014). Para cada amostra, 25 μl de RapiGest® 0,2% (v/v) (*Waters*, Milford, CT, EUA) foi adicionado e as amostras foram brevemente vortexadas e incubadas num Eppendorf Thermomixer® a 80 °C durante 15 min. Em seguida, 2,5 μL de ditiotreitol (DTT) 100 mM (Bio-Rad Laboratories, Hercules, CA, EUA) foi adicionado, e os tubos foram agitados e incubados a 60 °C durante 30 min sob agitação. Em seguida, 2,5 μL de 300 mM de iodoacetamida (GE Healthcare) foi adicionado, e as amostras foram agitadas e, em seguida, incubadas no escuro durante 30 min à temperatura ambiente. A digestão foi realizada por adição de 20 μl de solução de tripsina (50 ng/mL; V5111, Promega, Madison, WI, EUA) preparado em bicarbonato de amônia 50 mM, e as amostras foram incubadas a 37 °C *overnight*. Para precipitação do RapiGest®, 10 μL de ácido trifluoroacético (TFA, Sigma-Aldrich) 5% (v/v) foi adicionado e incubado a 37

°C durante 90 min, seguido por um passo de centrifugação de 30 min a 16.000
g. As amostras foram transferidas para *vials* Total Recovery (*Waters*).

4.8. Análise por espectrometria de massas

O passo de cromatografia foi realizado por injecção de 1 uL das amostras digeridas para normalização no aparelho antes da quantificação relativa de proteínas. Para garantir os valores molares padronizados para todas as condições, a normalização entre as amostras foi baseada em medições estequiométricas de contagens totais de íonsantes das análises. A corrida consistiu-se de três repetições técnicas por amostra coletiva. Durante a separação, as amostras foram carregadas no nanoACQUITY UPLC em uma coluna *trap* 5 µm C18 (180 um x 20 mm) com 5 µL/min, durante 3 minutos e, em seguida, em uma coluna analítica de 1,8 µm de fase reversa nanoACQUITY HSS T3 (100 um x 100 mm) a 600 nL/min, com uma temperatura de coluna de 60 °C.

Para eluição dos peptídeos, um gradiente binário foi usado, com a fase móvel A que consiste em água (Tedia, Fairfield, Ohio, EUA) e 0,1% de ácido fórmico (Sigma-Aldrich) e a fase B móvel composta por acetonitrila (ACN) (Sigma-Aldrich) e 0,1% de ácido fórmico. O gradiente de eluição começou a 7% de B e manteve-se durante 3 min, em seguida, foi aumentado de 7% de B até 40% B até 90,09 min, e desde 40% de B até 85% B até 94,09 min, sendo mantida a 85% até 98,09 min, em seguida, diminuindo para 7% de B até 100.09 min e mantido 7% de B até o final do experimento no 108,09 min.

A espectrometria de massas foi realizada no modo positivo e de resolução (modo V), 35.000 FWHM, com mobilidade iônica, e em modo de aquisição de dados independente (Data Independent Acquisition). A velocidade da onda de IMS (mobilidade iônica) foi definida como 600 m/s; a transferência de energia de colisão em rampade 19V e 45V no modo de alta energia. A tensão do cone e dos capilares foi de 30V e 2800V, respectivamente, e a temperatura da fonte de 70 °C.

Nos parâmetros de TOF (tempo de vôo), o tempo de verificação foi ajustado em 0,5s no modo contínuo com uma faixa de massa de 50 a 2000Da.

Foi utilizado 100 fmol/µl de fibrinopeptideo B humano (GLU1) (Sigma-Aldrich) como um calibrador externo ea aquisição de massa foi realizada a cada 30 s.

4.9. Bioinformática

O processamento dos espectros de massas e a busca em banco de dados foram realizados utilizando-se o *Software Progenesis QI* for Proteomics *v. 2.0* (Nonlinear Dynamics, Newcastle, Reino Unido) com banco de dados próprio da espécie bacteriana, obtido no Uniprot (www.uniprot.org).

A análise realizada utilizou os seguintes parâmetros: o número de íon mínimo por fragmentação peptídica foi igual a um, íon mínimo por fragmentação de proteína igual a três, peptídio mínimo por proteína igual a um, modificações fixas de carbamidomethyl (C) e modificações variáveis de oxidação (M) e de fosforilação (STY), e um valor padrão para taxa de detecção falsa (FDR) com um máximo de 4%, a pontuação superior a cinco, e erros máximos em massa de 10 ppm.

Análises quantitativas relativas foram realizadas com base na relação de contagem de íon de proteína entre as amostras contrastantes. Após o processamento de dados e para assegurar a qualidade dos resultados, utilizaram-se os seguintes parâmetros de refinamento de proteína: apenas proteínas presentes em três de três corridas e com um coeficiente de variação menor que 0,3 foram incluídas. Além disso, as proteínas diferencialmente abundantes foram selecionadas com base na mudança de diferença relativa de, pelo menos, 2 vezes na primeira análise e de pelo menos 1,5 na segunda análise. A anotação funcional das proteínas foi realizada usando o *software Blast2Go* v. 3.0 PRO (www.blast2go.com) e *UniProtKB* (http://uniprot.org).

5. Resultados e discussão

Esta é a primeira análise proteômica da bactéria *P. putida* isolada do intestino médio do mosquito *A. aegypti* cultivada na presença de elevada concentração de heme. Bactérias e outros seres vivos possuem respostas adaptativas a níveis elevados de estresse oxidativo, indicando que suas células percebem elevações nos níveis de EROs e transmitem o sinal, levando ao aumento da expressão de proteínas relacionadas à defesa. Para se protegerem dos danos causados pelo estresse oxidativo, as células possuem inúmeras enzimas antioxidantes e atividades de reparo, muitas delas expressas em níveis baixos durante crescimento normal (Storz e Imlay, 1999).

Em recente revisão, foi mostrado que a *P. putida* é uma bactéria versátil capaz de viver em diversos ambientes, tais como: solo, água, raízes de plantas e em ambientes contendo solventes contaminantes e metais-pesados(Kim e Park 2014). Estas características fisiológicas são atribuídas à alta flexibilidade metabólica do organismo e à capacidade desta bactéria em controlar a homeostase celular (Nelson *et al.*, 2002; Puchałka *et al.* 2008; Poblete-Castro *et al.* 2012), mostrando-se capaz de aliviar o stress oxidativo endógeno e exógeno. Para superar os efeitos nocivos do estresse oxidativo, esta bactéria apresenta sistemas celulares de proteção bem desenvolvidos e alguns reguladores conhecidos, tais como SoxR, oxyR, HexR e FinR (Hishinuma *et al.*, 2006; Kim *et al.*, 2008; Yeom *et al.*, 2012; Chavarría *et al.*, 2013).

5.1.Incorporação de heme

A capacidade de incorporação de heme pela *P. putida* pode ser observada através do seu cultivo em meio de cultura suplementado com alta concentração deste composto. Esta bactéria foi capaz de crescer no meio e apresentou uma coloração marrom escura, sugerindo a capacidade de incorporação de heme como mostrado na Figura 7. Trabalho realizado por nosso grupo confirmou que concentrações crescentes de hemina induz o crescimento desta bactéria (dados ainda não publicados).

Estudos têm identificado efeitos tóxicos diretos do heme em diversas espécies bacterianas (Anzaldi e Skaar, 2010). Entretanto, em estudo realizado

com a bactéria gram-negativa *Francisella tularensis*, Lindgren e colaboradores (2015) mostraram que a utilização de heme como fonte exclusiva de ferro, induz o crescimento desta bactéria. Esse resultado apoio os dados que encontramos após expormos a bactéria *p. putida* a elevada concentração de heme. Assim, podemos inferir, que a *P. putida* isolada do intestino médio do mosquito *A. aegypti* incorpora heme disponível em meio de cultura podendo, portanto, ajudar no processo de detoxificação do heme neste inseto vetor.

Figura 7. Incorporação de heme pela bactéria *P. putida.* Em A colônia de *P. putida.* crescida em meio CASO modificado sem adição de hemina, em B, meio contendo hemina a 0,1mM.

5.2. Identificação de proteínas por LC-MS / MS

Análise proteômica foi realizada em amostras de células de *P. putida* controle e tratamento com 0,1 mM de hemina comercial. A concentração de 0,1 mM de hemina foi utilizada, por se verificar que essa concentração, induz o crescimento desta bactéria quando comparado com concentrações menores. Esta concentração de hemina seria o bastante para causar um estresse oxidativo em bactérias que não apresentassem um sistema de metabolização deste composto, sendo assim, essa concentração foi pensada para ser crítica, proporcionando uma melhor compreensão da atuação de proteínas de bactérias residentes intestinais do mosquito *A. aegypti* durante o processo digestivo do sangue.

Como uma análise de quantificação relativa, a análise proteômica foi realizada com base em análises comparativas entre as amostras, onde cada comparação resultou numa lista de proteínas identificadas em ambas as amostras (tratamento e controle). Em cada lista, o refinamento da proteína foi realizado para garantir a qualidade dos resultados, que consiste em estabelecer um ponto de corte para as proteínas com um coeficiente de variação inferior a 0,3, o que exclui automaticamente proteínas presentes em apenas uma ou duas repetições, além da exclusão de falsos positivo, gerando dados confiáveis e importantes para o estudo da metabolização do heme.

Os dados obtidos foram contrastados com os dados depositados no *uniprot*. Utilizamos os dados de *P. putida* (*Pseudomonas NBR*) com 5.432 proteínas (versão 2015-06). Na espécie em estudo foram encontradas 545 proteínas (Anexo A), destas, 29 são proteínas ainda não caracterizadas.

Duas análises foram realizadas com os dados encontrados. Na primeira análise, as proteínas co-expressas (expressas em abas as amostras) foram filtradas com base no $\log_2 1,2$ e a determinação do coeficiente de variação foi feita baseada na triplicata das amostras. Foram classificadas como mais abundantes (*up*) quando \log_2 foi maior ou igual a 1,2 e como menos abundante (*down*) quando \log_2 foi menor ou igual a -1,2.

Não foi identificado proteína única nas amostras analisadas, ou seja, todas as proteínas que se encontram no controle foram também encontradas na amostra enriquecida com heme.

Com base no log₂ 1,2, as Tabelas (2 e 3) a seguir apresentam as proteínas caracterizadas que foram 2,3x mais ou menos expressas que o controle.

Após a obtenção da lista de identificações, as sequências em formato FASTA foram submetidas à análise pelo programa Blast2GO v. 3.0 PRO com parâmetros padrão.

A Tabela 2 apresenta as sete proteínas que foram mais abundantes na presença de 0,1 mM de hemina. Dentre elas, três proteínas ligadoras de íon, como: a lactoilglutationaliase (A0A059V325), a fosfo metil pirimidina quinase (A0A059V2B3) e a bacterioferritina (A0A059V534). Esta última apresenta além da função molecular de ligação a íon, também, a atividade oxidorredutase.

Bacterioferritinas são proteínas estocadoras de ferro (ferritinas) encontradas somente em bactérias. Há três tipos de ferritinas reconhecidas em bactérias: as arquetípicas ou bacterianas, como a ferritina A (FtnA), encontrada também em eucariotos; as pequenas proteínas ligantes de DNA (Dps), presentes em procariotos e as bacterioferritinas (Bfr), exclusivas de bactérias; (Andrews *et al.*, 2003; Velayudhan *et al.*, 2007). Os três tipos de proteínas de estocagem de ferro, podem estar presentes na mesma bactéria e múltiplos genes de ferritinas e bacterioferritinas são comuns.

As ferritinas, atuam de maneira importante no combate ao estresse oxidativo, protegendo os componentes celulares das EROs (Chiancone *et al.*, 2004). Entre as ferritinas, a Bfr foi a primeira a ser descoberta. Esta ferritina é mais comum em bactérias que as demais e, também, a única a conter grupos heme (Brun *et al.*, 2010). Os dados acima relatados, justificam o fato desta ferritina ter se mostrado abundante na presença de elevada concentração de heme.

Tabela 2. Proteínas mais abundantes de *P. putida.* Sete proteínas *up*-reguladas de células de *P. putida* cultivadas na presença de 0,1 mM de hemina (log₂ 1,2). Em verde, são apresentadas três proteínas ligadoras de íon. Bacterioferritina apresentada em duas cores (verde e marron) possui além da função molecular de ligação a íon também a atividade oxidorredutase.

Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de expressão	Log₂ (Ratio)	Quantificação
A0A059V325	5	4	37,53	Lactoilglutationa liase	3,33	1,73	79313,67
A0A059UQ63	3	3	26,55	50S proteína ribossômica L27	2,94	1,55	34572,25
A0A059UUI0	6	4	32,41	Aconitato hidratase	2,88	1,52	99684,22
A0A059V2B3	1	1	6,67	FosFo Metil Pirimidina quinase	2,66	1,41	4943,077
A0A059UYY7	2	2	11,69	DW66_1820 proteína UPF0434	2,62	1,39	11401,46
A0A059V534	4	4	40,16	Bacterioferritina	2,44	1,28	110316,26
A0A059USE9	1	1	6,99	2-desidro-3- deoxifosfogluconato aldolase	2,37	1,24	26554,62

Dentre as 15 proteínas encontradas como down-reguladas, duas ainda não foram caracterizadas. A Tabela 3 apresenta as 13 proteínas caracterizadas desta espécie, que se mostraram menos abundantes na concentração de hemina utilizada. Nas treze proteínas caracterizadas, três apresentam função molecular de ligação a íon, são elas: 3-metil crotonil carboxilase (A0A059V426), a desidrogenase de proteínas contendo o domínio acil-CoA (A0A059V0P2) e a serina - tRNA ligase (A0A059UUM7).

Duas proteínas apresentam atividade oxidorredutase, a oxidorredutase dependente de FAD (A0A059UVK5) e a proteína de ligação ao domínio NAD (A0A059UTQ4), esta última constitui um domínio conservado de proteínas (Hyde *et al.*, 1991). A oxidorredutase dependente de FAD é encontrada principalmente em bactérias. Esta enzima, pertence a uma classe de proteínas comumente encontrada em bactérias que crescem em meio deficiente em ferro e cobre (Morard *et al.*,1994). Estes dados corroboram com nossos resultados, já que, a oxirredutase dependente de FAD apresentou-se *down*-regulada em *P. putida* cultivada em meio com alta concentração de heme.

Tabela 3. Proteínas menos abundantes de *P. putida.* Treze proteínas *down*-regulada em células de *P. putida* cultivadas na presença de 0,1 mM de hemina (log₂ 1,2). Em verde, três proteínas ligadoras de íon e em vermelho, duas proteínas com atividade oxidorredutase.

Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de expressão	Log₂ (Ratio)	Quantificação
A0A059V426	8	5	56,16	3-Metil crotonil carboxilase	5,82	-2,54	49649,74
A0A059V400	1	1	6,68	Proteína contendo o domínio de ligação a lipídio	4,73	-2,24	7810,04
A0A059UVK5	6	5	36,18	Oxidoredutase dependente de FAD	4,7	-2,23	146424,76
A0A059UZM3	4	4	23,79	Gama-carboximetil-CoA hidratase	4,61	-2,2	40473,76
A0A059UUU1	9	8	77,39	Propionil-CoA carboxilase	3,31	-1,72	103126,64
A0A059V6H7	2	1	11,01	Proteína MerD2	3,03	-1,6	1776,63
A0A059UTQ4	3	2	17,71	Proteína de ligação ao domínio NAD	2,94	-1,55	64522,77
A0A059UZ41	1	1	5,96	RNA polimerase fator Sigma-29	2,92	-1,55	8377,93
A0A059V0P2	5	3	29,07	Desidrogenase contendo o domínio acil-CoA	2,86	-1,51	33875,81
A0A059UVS9	6	5	50,27	Citrato sintase	2,73	-1,44	133129,53
A0A059UUM7	8	5	56,62	Serina - tRNA ligase	2,72	-1,44	117704,56
A0A059V6E4	4	2	24,51	Proteína de ligação a DNA	2,48	-1,31	8026,65
A0A059V2N9	9	9	78,53	Proteína UPF0312 DW66_5215	2,42	-1,27	535555,73

A segunda análise foi realizada de forma a apresentar um maior número de proteínas que foram diferencialmente expressas na presença de uma elevada concentração de heme, em especial proteínas ligadoras de íon e proteínas com atividade oxidorredutase, além de, identificar nesta análise, algumas proteínas já conhecidas como atuantes no metabolismo do heme, tais como, a succinato desidrogenase, a componente E1 da subunidade alfa da piruvato desidrogenase, entre outras (Wang *et al.*, 2014).

Nesta segunda análise, as proteínas co-expressas foram filtradas com base no $\log_2 0.5$, a determinação do coeficiente de variação foi realizada baseada na triplicata das amostras, foram classificadas como mais abundantes (*up*) quando \log_2 foi maior ou igual a 0,5 e como menos abundantes (*down*) quando \log_2 foi -0,5 ou menor. Com base neste \log_2 , as Tabelas 4 e 5 apresentam as proteínas caracterizadas que foram 1,5x mais ou menos expressas que o controle.

Todas as demais análises, tais como, classificação de *GO* (*Gene Ontology*), análise do número de peptídeos, *EC* (*Enzyme Comission*) e vias metabólicas (KEGG *pathways*) foram realizadas nas proteínas filtradas com base no $log_2 0,5$, ou seja, proteínas que foram expressas, no mínimo 1,5x mais ou menos que o controle.

A Tabela 4 apresenta as 40 proteínas, da bactéria *P. putida*, que foram mais abundantes na presença de 0,1 mM de hemina, todas as 40 proteínas encontradas foram caracterizadas. Através desta tabela, podemos identificar 15 proteínas ligadoras de íon, que são mostradas em verde e 10 proteínas com atividade oxidorredutase que são apresentadas em vermelho. Entre as proteínas com atividade oxidorredutase, a alquil hidroperóxido redutase (AhpD)(A0A059V078), faz parte da família das peroxirredoxinas. Os membros desta família, são um importante componente de defesa bacteriana contra a toxidade dos peróxidos (Dubbs e Mongkolsuk, 2007). A componente E1 subunidade alfa da piruvato desidrogenase é uma proteína já descrita como atuante no metabolismo do heme em bactéria (Wang*et al*, 2014). As proteínas apresentadas em duas cores correspondem àquelas que apresentam duas funções moleculares entre as analisadas.

							(Continua)
Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de expressão	Log₂ (Ratio)	Quantificação
A0A059V325	5	4	37,53	Lactoilglutationaliase	3,33	1,73	79313,67
A0A059UQ63	3	3	26,55	50S proteína ribossômica L27	2,94	1,55	34572,25
A0A059UUI0	6	4	32,41	aconitato hidratase	2,88	1,52	99684,22
A0A059V2B3	1	1	6,67	Fosfo Metil Pirimidina quinase	2,66	1,41	4943,077
A0A059UYY7	2	2	11,69	DW66_1820 proteína UPF0434	2,62	1,39	11401,46
A0A059V534	4	4	40,16	Bacterioferritina	2,44	1,28	110316,26
A0A059USE9	1	1	6,99	2-desidro-3- desoxifosfogluconato aldolase	2,37	1,24	26554,62
A0A059UV45	1	1	6,32	Succinato desidrogenase	2,16	1,11	3219,42
A0A059V0J6	2	1	11,49	Desidrogenase de cadeia curta	2,13	1,09	85502,09
A0A059UQ90	6	5	46,41	Ubiquinol oxidase subunidade II	2,05	1,03	211398,87
A0A059UU77	9	9	71,66	Porina de membrana externa	2,02	1,01	129753,92
A0A059USP1	2	1	22,03	Proteína de ligação a soluto extracelular	2	1	6785,42
A0A059USH6	1	1	6,4	Quelatase de magnésio	1,86	0,9	6307,93
A0A059V0U7	1	1	5,73	Subunidade E da desidrogenase de NADH	1,83	0,87	5048,02

		-					(Continuação)
Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de xpressão	Log₂ (Ratio)	Quantificação
A0A059V1N6	4	4	22,78	50S proteína ribossômica L13	1,8	0,85	22562,19
A0A059V3Z7	7	5	69,23	Subunidade ferro-enxofre dasuccinato desidrogenase	1,8	0,84	217483,45
A0A059V3N1	1	1	5,69	Fosforribosil-AMP ciclohidrolase	1,77	0,82	33284,32
A0A059V2M8	12	11	90,28	Fosfoglicerato quinase	1,73	0,79	1163128,79
A0A059URU4	7	4	54,73	Subunidade 1- ubiquinol oxidase do Citocromo	1,72	0,78	44593,59
A0A059UR31	43	37	466,41	Componente E1 subunidade alfa da piruvato desidrogenase	1,72	0,78	1596430,16
A0A059V0G0	9	7	54,71	Transportador de magnésio MgtE	1,71	0,77	66531,62
A0A059V4S5	10	10	85,77	OPRL lipoproteína associada a peptídeoglicano	1,71	0,77	340433,15
A0A059UUT5	5	4	34,8	30S ribossomal S12 proteínas	1,69	0,76	40943,61
E2RY76	1	1	16,61	50S proteína ribossómica L30	1,67	0,74	27165,15

							(Continuação)
Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de xpressão	Log₂ (Ratio)	Quantificação
A0A059USQ4	13	13	116,62	Ceto-hidroxiglutarato- aldolase / ceto-desoxi- fosfogluconato aldolase	1,67	0,74	703670,11
A0A059V138	2	2	12,79	Permease da droga transportador / metabólito	1,67	0,74	9566,21
A0A059UQF3	5	4	29,22	chaperona membrana externa Skp	1,64	0,72	54416,59
A0A059UZR6	3	2	17	hidrolase Isochorismatase	1,62	0,7	8914,26
A0A059UWK9	1	1	6,57	Ornitina carbamoiltransferase	1,61	0,68	4108,07
A0A059UWN1	12	10	119,72	6-Fosfogluconolactona	1,58	0,66	307249,13
A0A059UW01	5	3	34,61	GTPase Der	1,58	0,66	10715,37
A0A059UT87	1	1	6,31	4Fe-4S ferredoxina	1,58	0,66	26781,91
A0A059UXF8	9	6	65,58	aldeído desidrogenase	1,56	0,64	247306,36
A0A059V578	24	20	199,26	Subunidade alfa hidro- liase Tipo Fe-S (Fumarato hidratase)	1,55	0,64	902145,26
A0A059V078	2	2	11,23	Alquil hidroperóxido redutase AhpD	1,54	0,63	12099,31
A0A059V5I9	4	4	38,65	Proteína 30S ribossomal S18	1,53	0,61	26169,73
A0A059UPZ4	24	20	221,42	acetiltransferase componente do complexo da piruvato desidrogenase	1,51	0,59	675584,54

·	3						(Conclusão)
A0A059UPS7	8	4	107,38	ATP sintase subunidade b	1,51	0,59	303979,64
A0A059V3K8	2	2	13,99	fator de iniciação da tradução IF-1	1,5	0,59	24061,68
A0A059UZU2	3	3	27,94	Subunidade ômega da RNA polimerase dirigida por DNA	1,5	0,58	99491,64

Foram encontradas 41 proteínas menos abundantes em *P. putida*, quando esta bactéria foi cultivada na presença de 0,1 mM de hemina. A Tabela 5 apresenta somente as proteínas que foram caracterizadas em *P. putida*. A análise das proteínas identificadas na Tabela 6, ilustra10 proteínas ligadoras de íon, que são mostradas em verde e sete proteínas com atividade oxidorredutase mostradas em vermelho, já as proteínas apresentadas em duas cores, correspondem àquelas que apresentam duas funções moleculares entre as analisadas. As análises revelam a importância de proteínas relacionadas com a função molecular de ligação a íon e atividade oxidorredutase para possível adaptação da bactéria a meio repleto de heme.

A proteína de membrana integral transportador ABC é uma proteína já descrita como atuante no metabolismo do heme em bactérias. Transportadores ABC constituem uma das maiores famílias de proteínas, estão presentes em todos os organismos vivos. Os membros desta família são proteínas transmembrana capazes de transportar diversos substratos através da membrana celular, com gasto de energia. Genes comuns desta proteína foram recentemente encontrados em cepas bacterianas de *P. veronii*, quando expostas a estresse hídrico (Moreno-Forero *et al.*, 2016).

Reforçando nossos resultados, Lindgren e colaboradores (2015), mostraram que a exposição de *Francisella tularensis* a elevada concentração de heme não induziu a expressão de homólogo de TonB, uma molécula necessária à maioria das bactérias para a translocação de moléculas ligadas a heme.

							(Continua)
Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de expressão	Log₂ (Ratio)	Quantificação
A0A059V426	8	5	56,16	3-Metil crotonil carboxilase	5,82	-2,54	49649,74
A0A059V400	1	1	6,68	Proteína contendo o domínio de ligação a lipídeo	4,73	-2,24	7810,04
A0A059UVK5	6	5	36,18	Oxidorredutase dependente FAD	4,7	-2,23	146424,76
A0A059UZM3	4	4	23,79	Gama-carboximetil-CoA hidratase	4,61	-2,2	40473,76
A0A059UUU1	9	8	77,39	Propionil-CoA carboxilase	3,31	-1,72	103126,64
A0A059V6H7	2	1	11,01	Proteína MerD2	3,03	-1,6	1776,63
A0A059UTQ4	3	2	17,71	Proteína de ligação ao domínio NAD	2,94	-1,55	64522,77
A0A059UZ41	1	1	5,96	RNA polimerase fator Sigma-29	2,92	-1,55	8377,93
A0A059V0P2	5	3	29,07	Desidrogenase de proteínas contendo o domínio acil-CoA	2,86	-1,51	33875,81
A0A059UVS9	6	5	50,27	Citrato sintase	2,73	-1,44	133129,53
A0A059UUM7	8	5	56,62	Serina-RNAt ligase	2,72	-1,44	117704,56
A0A059V6E4	4	2	24,51	Proteína de ligação a DNA	2,48	-1,31	8026,65
A0A059V2N9	9	9	78,53	Proteína UPF0312 DW66_5215	2,42	-1,27	535555,73
A0A059USY7	25	23	238,45	Proteína de ligação a solutoextracelular	2,22	-1,15	878843,58

							(Continuação)
Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de expressão	Log₂ (Ratio)	Quantificação
A0A059V4M1	4	4	25,95	2-oxoisovalerate desidrogenase	2,21	-1,14	76256,90
A0A059UX38	5	5	43,61	Proteína bifuncional na biossíntese de Arginina ArgJ	2,15	-1,1	73378,54
A0A059US53	7	5	91,56	Proteína contendo o domínio de ligação a DNA (choque-frio)	2,15	-1,1	431695,29
A0A059URC5	4	3	34,7	OsmC Proteína induzida osmoticamente	1,94	-0,96	70759,83
A0A059V4R2	3	3	18,45	RNA helicase	1,93	-0,95	42566,40
A0A059UW04	5	4	30,42	Álcool desidrogenase contendo zinco	1,86	-0,89	117543,88
A0A059UTF6	2	2	12,28	Regulador transcricional Cro/Cl	1,85	-0,89	48367,19
E2RXP9	7	7	56,99	30S proteína ribossômicaS11	1,74	-0,79	207072,12
A0A059V0H8	13	10	86,75	Acetil-coenzima A sintetase	1,73	-0,79	70090,38
A0A059V393	8	6	48,43	Homólogo do regulador de armazenamento de carbono	1,68	-0,75	64406,18
A0A059V5J0	3	3	17,39	Pantotenato-sintase	1,63	-0,71	108634,16
A0A059V242	5	4	35,11	Proteína de secreção tipo VI EvpB	1,6	-0,68	32110,18

							(Conclusao)
Acesso	Quantidade de peptídeos	Peptídeos únicos	Nível de confiança	Descrição	Nível de expressão	Log₂ (Ratio)	Quantificação
A0A059V4D1	11	10	76	Cadeia ramificada- desidrogenase alfa-ceto ácido de subunidade E2	1,6	-0,68	165804,56
A0A059UWX8	1	1	6,68	Endonuclease/exonuclease / fosfatase	1,54	-0,63	44446,01
A0A059UXE8	24	21	226,67	Proteína de membrana integral transportador ABC	1,53	-0,62	958056,26
A0A059UUI1	1	1	11,33	Proteína LysM	1,53	-0,61	1482,90
A0A059UUW5	4	4	22,6	Fosfoidrolase dependente de Metal	1,52	-0,6	89034,71
A0A059UWF6	7	5	48,13	NADH: flavina oxidorredutase	1,51	-0,59	52984,7
A0A059UYB7	2	2	10,89	Transferase hexapeptidase contendo-repetição	1,51	-0,59	4558,15
A0A059UR44	11	10	85,96	Malato sintase G	1,5	-0,59	237653,33

5.3. Análise do número de peptídeos

Uma abordagem para busca dos espectros de massas MS/MS fornecidos pelo Q-TOF (*Quadrupole time of flight*) está relacionada ao número de peptídeos. Foram consideradas todas as identificações caracterizadas, mesmo as contendo apenas um peptídeo. Nas proteínas mais abundantes de *P. putida* a maioria das identificações (22,5%) foi resultante de 1 peptídeo, seguido por 15% provenientes de 2 peptídeos e 10% com 4 peptídeos. Proteínas com 3, 4 e 9 peptídeos resultaram em 7,5% cada um, com 6 e 7 em 2,5% cada e apenas 2% das proteínas identificadas resultaram em 8 peptídeos. Um total de 17,5% das proteínas foram identificadas com 10 ou mais peptídeos como mostrado no Figura 8, sendo três acima de 20 peptídeos: a fumarato hidratase (A0A059V578), a acetiltransferase componente E1 da subunidade alfa da piruvato desidrogenase (A0A059UPZ4) e a componente E1 da peptídeos respectivamente, estes foram os maiores números de peptídeos por identificação obtidos.

A fumarato hidratase é uma enzima que catalisa a hidratação reversível de ácido fumárico a ácido L-málico. É uma das enzimas do ciclo do ácido cítrico. A acetiltransferase componente do complexo piruvato desidrogenase e a componente E1 da subunidade alfa da piruvato desidrogenase fazem parte do complexo da piruvato desidrogenase, sendo assim, participam da conversão do piruvato a acetil-CoA anterior ao ciclo do ácido cítrico no metabolismo energético (Nelson e Cox, 2014). Estas enzimas já foram encontradas em outras bactérias na presença de um meio estressante, tais como *Acinetobacter baumannii* (Nwugo *et al.*,2011), *Chromobacteruim violaceum* (Lima *et al.*, 2014) e *Streptococcus pyogenes* (Wang *et al.*, 2014).

Em análise realizada por Wange colaboradores(2014) foi mostrado que a enzima componente E1 da subunidade alfa da piruvato desidrogenase possui motivo de ligação a heme, podendo assim, desempenhar um papel importante no transporte e no metabolismo de heme em bactérias.

Figura 8. Número de peptídeos por proteína up-reguladas. Relação entre o número de peptídeos por identificação obtidos por meio de busca no banco de dados de *P. putida* para as proteínas *up*-reguladas quando esta bactéria foi cultivada em meio de cultura suplementado com 0,1 mM de hemina.

Entre as proteínas menos abundantes desta espécie, a maioria das identificações (14,7%) foi resultante de 4 peptídeos. Proteínas identificadas com 1 e 5 peptídeos resultaram em 11,7% cada uma, com 2, 3, 7 e 8 peptídeos em 8,8% e com 6 e 9 peptídeos em 5,8%. 14,7% das proteínas foram identificadas com 10 ou mais peptídeos, como mostrado na Figura 9. Obtivemos duas identificações acima de 20 peptídeos, são elas: a proteína de ligação de soluto extracelular (A0A059V5Y7) e a proteína integral de membrana, o transportador ABC (A0A059VXE8) com 24 e 25 peptídeos respectivamente.

Figura 9. Número de peptídeos por proteína down-reguladas. Relação entre o número de peptídeos por identificação obtidos por meio de busca no banco de dados de *P. putida* para as proteínas *down*-reguladas quando esta bactéria foi cultivada em meio de cultura suplementado com 0,1 mM de hemina.

5.4. Classificação de Gene Ontology (GO)

5.4.1. Classificação de GO para proteínas up-reguladas

As proteínas foram agrupadas e classificadas de acordo com três classificações geradas, são elas: processos biológicos, componentes celulares e função molecular. Basicamente essas três ontologias estão relacionadas às principais perguntas que os pesquisadores têm sobre uma determinada proteína: (1) em quais processos biológicos a proteína está envolvida; (2) qual a sua localização dentro da célula e; (3) como a proteína realiza sua função (Prosdocimi, 2007).

Entre as 40 proteínas *up*-reguladas, duas não geraram *GO* a proteína DW66_1820 UPF0434(A0A059UYY7) e a proteína de ligação a soluto extracelular (A0A059USP1) onze apresentaram apenas função molecular; duas apenas componente celular; oito apresentaram função molecular e processo biológico; uma apresentou componente celular e função molecular e 16 apresentaram as três categorias, como mostrado na Figura 10 e no Anexo B.

Figura 10. Diagrama de Venn de proteínas up-reguladas de *P. putida.* O diagrama apresenta as categorias de *GO* de 38 proteínas *up*-reguladas quando células de *P. putida* foram cultivadas em 0,1 mM de hemina.Onze proteínas apresentaram apenas função molecular, duas apenas componente celular, oito, função molecular e processo biológico, uma componente celular e função molecular e 16 apresentaram as três categorias.

Somando-se as três categorias de *GO*, 125 anotações foram geradas e distribuídas entre 38 proteínas mais abundantes. A categoria de *GO* mais abrangente foi função molecular com 62,8%, seguida por processo biológico (53,5%) e componente celular (29,1) como mostrado na Figura 11.

Figura 11. Setores para cada categoria de GO para proteínas up-reguladas de *P. putida.* Das 38 proteínas, 62,8% apresentam função molecular, 53,5% processo biológico e 29,1% componente celular em células de *P. putida* cultivadas na presença de 0,1mM de hemina.

Para função molecular, Quinze termos *GO* foram sugeridos e 53 anotações foram geradas, como pode ser observado na Tabela 6. Por meio de análise estatística, os termos *GO* mais abrangentes nessa categoria foram: ligação a íon com 27,8%, seguido por atividade oxidorredutase com 18,5%, constituinte estrutural do ribossomo e atividade de transporte transmembrana com 9,3% cada, como ilustrado na Figura 12. Os termos *GO* com menores proporções, abaixo de cinco anotações, foram designados como outros e mostrados na Figura 13. Essa classificação de *GO* é generalista, pois se não existe o conhecimento prévio e a informação anotada nos bancos de dados sobre a função de proteínas identificadas, são observadas anotações pouco específicas como "função molecular" e, assim, a classificação aparenta ambiguidade.

Figura 12. Categoria de GO para função molecular para proteínas up-reguladas de *P. putida.* Aproximadamente vinte e oito por cento das proteínas foram classificadas como ligação a íon, 18,5% com atividade oxirredutase; 9,3% como constituinte estrutural do ribossomo e 9,3% como atividade de transporte transmembrana quando células de *P. putida* foi crescida na presença de 0,1mM de hemina.

Figura 13. Categoria de GO função molecular agrupados em outros. Os termos de *GO* abaixo de cinco anotações foram designados como outros para proteínas *up*-reguladas de células de *P. putida* cultivadas na presença de 0,1mM de hemina.

A categoria de oxidorredutases são enzimas que catalisam reações de transferência de elétrons, ou seja, reações de oxi-redução, tais como, as desidrogenases e oxidases, que desempenham papéis importantes na respiração; e as peroxidades que protegem o organismo contra lesão causada por radicais livres (Murray *et al.*, 2013).

Pela verificação da expressão diferencial de proteínas distribuídas de acordo com a categoria funcional, identificamos 10 proteínas com atividade oxidorredutase aumentada na presença de heme. As proteínas encontradas foram: subunidade E da desidrogenase de NADH(A0A059V0U7), aldeído desidrogenase(A0A059UXF8), bacterioferritina (A0A059V534), succinato desidrogenase (A0A059UV45), componente E1 subunidade alfa da piruvato desidrogenase (A0A059UR31), subunidade ferro-enxofre da succinato desidrogenase(A0A059V3Z7), alquil hidroperóxido redutase AhpD (A0A059V078), subunidade 1- ubiquinol oxidase do citocromo (A0A059URU4),

ubiquinol oxidase subunidade II (A0A059UQ90) e a desidrogenase de cadeia curta (A0A059V0J6), como ilustrado na Tabela 6.

Enzimas específicas conhecidas por diminuírem os estados reativos de EROs, como é o caso das superóxidos dismutases (SODs), que convertem O²⁻ a H₂O₂ e O₂, e catalases (Cats) que em sequência, reduzem o peróxido de hidrogênio a oxigênio e água (Cabiscol et al., 2000), não foram up-reguladas nesse estudo, indicando que a P. putida apresenta outros mecanismos de regulação de EROs na presença de elevada concentração de heme. Isto pode sugerir que o estresse causado pelo heme não é um forte indutor dos genes responsáveis pela expressão de tais proteínas, amplamente conhecidas por atuarem na defesa do estresse oxidativo, e que a *P. putida* pode utilizar outros mecanismos de defesa contra o estresse causado por heme. Resultados similares foram encontrados por Svenningsen e colaboradores (2015), ao expor a P. putida mt-2 à estresse hídrico e por Kim e colaboradores (1999) ao expor uma estirpe de P. putida a um herbicida altamente tóxico (paraguat) em que eles observaram que o paraquat não induz a transcrição dos genes SODs em P. putida. Esses resultados contrastam com dados encontrados na bactéria modelo de estudo Escherichia coli (Kim et al, 1999).

Em nosso estudo, uma peroxidase (alquil hidroperóxido redutase AhpD), que assim como as catalases (catE e catG) removem o peróxido de hidrogênio (H₂O₂), apresentou sua expressão aumentada em resposta a elevada concentração de heme.

Tabela 6. Categoria de GO para função molecular de proteínas up-reguladas. Foram identificadas 53 entradas de funções e 15 funções distintas foram geradas quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina. As proteínas sombreadas em cinza pertencem aquelas que foram agrupadas em outros.

$(\cap$		``
(1)	ntini	ເລໂ
100		101

Número de acesso	Descrição	Função molecular
A0A059UT87	Ferredoxina	ligação a íon

Tabela 6.Categoria de GO para função molecular de proteínas up-reguladas.Foram identificadas 53 entradas de funções e 15 funções distintas foram geradas quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina. As proteínas sombreadas em cinza pertencem aquelas que foram agrupadas em outros.

		(Continuação)
Número de acesso	Descrição	Função molecular
A0A059V534	Bacterioferritina	ligação a íon
A0A059UQ90	Ubiquinol oxidase subunidade II	ligação a íon
A0A059V2B3	Fosfometilpirimidine quinase	ligação a íon
A0A059UWK9	Ornitina carbamoiltransferase	ligação a íon
A0A059V3N1	Fosforribosil-AMP ciclohidrolase	ligação a íon
A0A059V0U7	Subunidade E da	ligação a íon
	desidrogenase de NADH	
A0A059V3Z7	Subunidade ferro-enxofre da	ligação a íon
	succinato desidrogenase	
A0A059V325	Lactoilglutationa liase	ligação a ion
A0A059V0G0	Transportador de magnésio	ligação a ion
A0A059UW01	Proteína de ligação a GT	ligação a ion
A0A059USH6	Quelatase de magnésio	ligação a íon
A0A059URU4	Subunidade 1- ubiquinol	ligação a íon
A0A059\/2M8	Eosfoglicerato guinase	ligação a íon
A0A059V2IVIO A0A050LIV/45	Succinato desidrogenase	ligação a ion
A0A059UV4J	Subunidado E da	nyação a lon
A0A0331007	desidrogenase de NADH	
A0A059UXF8	Aldeído desidrogenase	atividade oxidorredutase
A0A059V534	Bacterioferritina	atividade oxidorredutase
A0A059UV45	Succinato desidrogenase	atividade oxidorredutase
A0A059UR31	Componente E1 subunidade	atividade oxidorredutase
	alfa da piruvato desidrogenase	
A0A059V3Z7	Subunidade ferro-enxofre da	atividade oxidorredutase
	succinato desidrogenase	
A0A059V078	Alquilhidroperoxidase	atividade oxidorredutase
A0A059URU4	Subunidade 1 - ubiquinol oxidase do citocromo	atividade oxidorredutase
A0A059UQ90	Ubiquinol oxidase subunidade II	atividade oxidorredutase
A0A059V0J6	Desidrogenase de cadeia curta	atividade oxidorredutase
E2RY76	Proteína 50s ribosomal I30	constituinte estrutural do ribossomo
A0A059UUT5	Proteína 30s ribosomal s12	constituinte estrutural do ribossomo
A0A059UQ63	Proteína 50s ribosomal I27	constituinte estrutural do
A0A059V5I9	Proteína 30s ribosomal s18	constituinte estrutural do
A0A059V1N6	Proteína 50s ribosomal I13	constituinte estrutural do ribossomo

Tabela 6.Categoria de GO para função molecular de proteínas up-reguladas. Foram identificadas 53 entradas de funções e 15 funções distintas foram geradas quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina. As proteínas sombreadas em cinza pertencem aquelas que foram agrupadas em outros.

	(Continua)	
Número de acesso	Descrição	Função molecular
A0A059UPS7	ATP sintase subunidade b	Atividade de transporte transmembrana
A0A059UU77	Proteína de membrana	Atividade de transporte transmembrana
A0A059V0G0	Transportador de magnésio	Atividade de transporte transmembrana
A0A059URU4	Subunidade 1- ubiquinol oxidase do Citocromo	Atividade de transporte transmembrana
A0A059UQ90	Ubiquinol oxidase subunidade	Atividade de transporte transmembrana
A0A059USQ4	Ceto-hidroxiglutarato-aldolase / ceto-desoxi-fosfogluconato aldolase	atividade liase
A0A059V578	Subunidade alfa hidro-liase tipo Fe-S (Fumarato hidratase)	atividade liase
A0A059V325	lactoildutationa liase	atividade liase
A0A059UUI0	aconitato hidratase	atividade liase
A0A059USH6	Quelatase de magnésio	atividade ATPase
A0A059UPS7	ATP sintase subunidade b	atividade ATPase
A0A059UZR6	Hidrolase Isocorismatase	funcão molecular
A0A059UWN1	6-Fosfogluconolactona	função molecular
		a thidda da bha an
A0A059V2M8	Fostoglicerate quinase	atividade kinase
AUAU59V2B3	Fostometilpirimidine quinase	atividade kinase
A0A059UUT5	30s ribosomal protein s12	ligação a rRNA
A0A059V5I9	30s ribosomal protein s18	ligação a rRNA
A0A059UQF3	Chaperona de membrana externa Skp	ligação a proteínas mal enoveladas
A0A059UZU2	Subunidade ômega da RNA	ligação a DNA
A0A059V3K8	Fator de iniciação da tradução	atividade do fator de tradução
A0A059UPZ4	Acetiltransferase componente	atividade
	do complexo da piruvato	transferase, transferência de
	desidrogenase	grupos acilo

Tabela 6. Categoria de GO para função molecular de proteínas up-reguladas. Foram identificadas 53 entradas de funções e 15 funções distintas foram geradas quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina. As proteínas sombreadas em cinza pertencem aquelas que foram agrupadas em outros.

		(Conclusão)
Número de acesso	Descrição	Função molecular
A0A059UZU2	Subunidade ômega da RNA polimerase dirigida por DNA	atividade nucleotidiltransferase
A0A059V3N1	Fosforribosil-AMP ciclohidrolase	atividade hidrolase, agindo em ligações carbono- nitrogênio (diferentes de peptídeos)

Em processo biológico, 13 termos *GO* foram sugeridos e 46 anotações foram geradas. Os termos *GO* mais abrangentes nesta categoria foram: geração de precursores metabólicos e energia, e processo metabólico de pequenas moléculas com 15,2% cada um, seguido por processo biológico e, processo metabólico do componente celular de nitrogênio com 13,0% cada, tradução com 10,9% e outros com 32,6%, como ilustrado nas Figuras 14 e 15.

Figura 14. Categoria de GO para processo biológico em proteínas up-reguladas de *P. putida.* Aproximadamente quinze por cento das proteínas foram classificadas como precursores de metabólicos e energia, 15,2% como processo metabólico de pequenas moléculas,13,0% processo biológico, 13,0% processo metabólico do componente celular de nitrogênio, 10,9% tradução e outros com 32,6% quando células *P. putida* foram cultivadas na presença de 0,1mM de hemina.

Figura 15. Categoria de GO classificada em processo biológico agrupada em outros. Os termos de *GO* abaixo de cinco anotações foram designados como outros para proteínas *up*-reguladas em células de *P. putida* cultivadas na presença de 0,1mM de hemina.

Em componente celular nove termos GO foram fornecidos e 25 anotações foram geradas. O termo GO citoplasma foi o mais abundante com 24%, seguido por membrana plasmática e ribossomo com 20% cada, e outros com 36% como pode ser observado nas Figuras 16 e 17. Assim como foi observado em função molecular a classificação de GO é generalista, pois se não existe o conhecimento prévio e a informação anotada nos bancos de dados sobre a localização subcelular de proteínas identificadas, são observadas anotações pouco específicas como "célula".

Figura 16. Categoria de GO para componente celular para proteínas up-reguladas *de P. putida*. Vinte e quatro por cento das proteínas foram classificadas em citoplasma; 20,0% em membrana plasmática; 20,0% em ribossomo e outros com 36,0%.

Figura 17. Categoria de GO para componente celular agrupado em outros. Aproximadamente 33% foram classificadas como componente celular; 22,2% como complexo de proteínas; 11,1% para as demais (célula, citosol, estrutura externa de encapsulamento para proteínase intracelular).

As proteínas mais abundantes de *P. putida* identificadas e classificadas nesse grupo foram principalmente a 2-desidro-3-deoxifosfogluconato aldolase (A0A059USE9), a bacterioferritina(A0A059V534) e a 50S proteína ribossômica L27 (A0A059UQ63). Essas proteínas se encontram no citoplasma, na célula e em ribossomos respectivamente.

Para as três categorias geradas pelo Blast2GO, pode existir um termo *GO* que seja integrante de um outro termo *GO* mais abrangente e ambos serem considerados classificações distintas, por exemplo, o Blast2*GO* classifica proteínas em atividades de hidrolase e peptidase, sendo que essa última é uma atividade de hidrolase.

5.4.2Classificação de GO para proteínas down-reguladas

Entre as 34 proteínas *down*-reguladas em análise, três não geraram *GO*, a proteína de ligação a soluto extracelular (A0A059USY7), a proteína LysM (A0A059UUI1) e a proteína de secreção tipo VI EvpB (A0A059V242). Doze proteínas apresentaram apenas função molecular, 1 apenas componente celular, 11 apresentaram função molecular e processo biológico e 7 apresentaram as três categorias, como ilustrado na Figura 18 e Anexo C.

Figura 18. Diagrama de Venn de proteínas down-reguladas de *P. putida.* O diagrama apresenta as categorias de *GO* de 31 proteínas *down*-reguladas quando células de *P. putida* foram cultivadas em 0,1 mM de hemina, 12 proteínas apresentaram apenas função molecular, 1 apenas componente celular, 11 função molecular e processo biológico e 7 apresentaram as três categorias.

Somando-se as três categorias de *GO* 86 anotações foram geradas e distribuídas entre as 31 proteínas identificadas e caracterizadas como menos abundantes. A categoria de *GO* mais abrangente foi função molecular com 50%, seguida por processo biológico (40,7%) e componente celular (9,3%) como mostrado na figura 19.

Figura 19. Setores para cada categoria de GO para proteínas down-reguladas de *P. putida.* Das 31 proteínas, 9,3% são de componente celular; 40,7% processo biológico e 50,0% função molecular quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina.

Para função molecular obtivemos 14 termos e 43 anotações foram geradas, como pode ser observado na Tabela 7. O termo *GO* ligação a íon apresentou a maior porcentagem de anotações (37%), depois apareceram atividade oxidorredutase (25,9%%), ligação a DNA e atividade ligase com 18,5% cada um, como mostrado naFigura 20.A figura 21 mostra os termos de *GO* classificados como outros, são os que apareceram em menores proporções, abaixo de cinco anotações.

Figura 20. Categoria de GO para função molecular em proteínas down-reguladas de *P. putida*. Trinta e sete por cento das proteínas foram classificadas como ligação a íon; 25,9% com atividade oxirredutase; 18,5% ligantes de DNA; 18,5% atividade liase e 37,2% como outros quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina.

Figura 21. Categoria de GO para função molecular agrupados em outros para proteínas down-reguladas. Os termos de GO abaixo de cinco anotações foram designados como outros para proteínas *down*-reguladas em células de *P. putida* cultivadas na presença de 0,1 mM de hemina.

Identificamos sete proteínas com atividade oxidorredutase diminuída na presença de heme. As proteínas encontradas foram: NADH: flavina oxidorredutase (A0A059UWF6), álcool desidrogenase contendo zinco (A0A059UW04), oxidorredutase dependente FAD (A0A059UVK5), desidrogenase de proteínas contendo o domínio acil-CoA (A0A059V0P2), OsmC proteína induzida osmoticamente (A0A059URC5), proteína de ligação ao domínio NAD (A0A059UTQ4) e a proteína de membrana integral transportador ABC (A0A059UXE8), como pode ser observado na Tabela 7.

Entre essas proteínas, a OsmC induzida osmoticamente (A0A059URC5), também descrita como peroxideroxina, foi anotada quatro vezes na via de Fenilpropanóide. tal como seu homólogo bem caracterizado, o hidroperóxido de proteína Ohr, a OsmC induzida osmoticamente (A0A059URC5), está envolvida na defesa contra o estresse oxidativo causado por exposição a hidroperóxidos orgânicos (Lesniak *et al*, 2003) e a osmolaridade elevada (Gutierrez e Devedjian, 1991 e Dubbs e Mongkolsuk, 2007). Entretanto, Park e colaboradores (2008) identificaram a OsmC como uma proteína que é upregulada em resposta a estresse osmótico, mas não sob estresse oxidativo causado pelo calor. Segundo Dubbs e Mongkolsuk (2007) a regulação da expressão de OsmC não é induzida por estresse oxidativo, mas é controlada por vários reguladores de resposta a estresse geral. Esses dados colaboram com resultados que encontramos nesta análise em que esta proteína mostrouse *down*-regulada, em meio estressante, devido à elevada concentração de heme.

Tabela 7. Categoria de GO para função molecular de proteínas down-reguladas. Foram identificados 14 termos distintos e 43 entradas de funções foram geradas quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina. As proteínas sombreadas em cinza pertencem aquelas que foram agrupadas em outros.

		(Continua)
Número de acesso	Descrição	Função molecular
A0A059UWF6	NADH:flavina oxidoredutase	ligação a íon
A0A059V5J0	Pantotenato-sintase	ligação a íon
A0A059V426	3-Metil crotonil carboxilase	ligação a íon
A0A059UR44	malato sintase G	ligação a íon
A0A059UUM7	serina-RNAt ligase	ligação a íon
A0A059V0P2	Desidrogenase de proteínas contendo o domínio acil-CoA	ligação a íon
A0A059V0H8	acetil- coenzime A sintetase	ligação a íon
A0A059UW04	álcool dedesidrogenase contento zinco	ligação a íon
A0A059V4R2	RNA helicase	ligação a íon
A0A059UXE8	Proteína de membrana integral transportador ABC	ligação a íon
A0A059UWF6	NADH:flavina oxidoredutase	atividade oxidorredutase
A0A059UW04	álcool desidrogenase contento zinco	atividade oxidorredutase
A0A059UVK5	fad-dependent oxidoreductase	atividade oxidorredutase
A0A059V0P2	Desidrogenase de proteínas contendo o domínio acil-CoA	atividade oxidorredutase
A0A059URC5	(Osmotically inducible protein OsmC) peroxiredoxin	atividade oxidorredutase
A0A059UTQ4	Proteína de ligação ao domínio NAD	atividade oxidorredutase
A0A059UXE8	Proteína de membrana integral transportador ABC	atividade oxidoredutase
A0A059V6H7	Proteína MerD2	ligação a DNA
A0A059UZ41	RNA polimerase fator Sigma-29	ligação a DNA
A0A059US53	Proteína contendo o domínio de ligação a DNA (choque-frio)	ligação a DNA
A0A059V6E4	Proteína de ligação a DNA	ligação a DNA
A0A059UTF6	Regulador transcricional Cro/Cl	ligação a DNA
A0A059V5J0	Pantotenato-sintase	atividade ligase
Tabela 7. Categoria de GO para funções moleculares de proteínas *down***-reguladas.** Foram identificados 14 termos distintos e 43 entradas de funções foram geradas quando células de *P. putida* foram cultivadas na presença de 0,1 mM de hemina. As proteínas sombreadas em cinza pertencem aquelas que foram agrupadas em outros.

		(Conclusão)
Número de acesso	Descrição	Função molecular
A0A059V426	3-Metil crotonil carboxilase	atividade ligase
A0A059UUU1	Propionil-CoA carboxilase	atividade ligase
A0A059UUM7	serina-RNAt ligase	atividade ligase
A0A059V0H8	acetil-coenzime A sintetase	atividade ligase
A0A059UVS9	Citrato sintase	atividade transferase,
A0A059UR44	malato sintase G	transferência de grupos acilo atividade transferase,
		transferência de grupos acilo
A0A059UX38	Proteína bifuncional na biossíntese	atividade transferase,
	de Arginina ArgJ	transferência de grupos acilo
A0A059V4D1	Cadeia ramificada-desidrogenase	atividade transferase,
	alfa-ceto acido de subunidade E2	transferencia de grupos acilo
A0A059UYB7	l ransferase hexapeptidase contendo-repetição	funçao molecular
A0A059UUW5	Fosfoidrolase dependente de Metal	função molecular
A0A059V4M1	2-oxoisovalerate desidrogenase	função molecular
A0A059UZM3	Gama-carboximetil-CoA hidratase	função molecular
A0A059V393	Homólogo do regulador de armazenamento de carbono	ligação a RNA
E2RXP9	30s proteína ribosomal s11	ligação a rRNA
E2RXP9	30s proteína ribosomal s11	constituinte estrutural do ribossomo
A0A059UZ41	RNA polimerase fator Sigma-29	atividade do fator de transcrição de ligação a
A0A059V400	Proteína contendo o domínio de ligação a lipídeo	ligação a lipídio
A0A059UZ41	RNA polimerase fator Sigma-29	atividade do fator de
		transcrição de ligação a acído nucleico
A0A059V4R2	RNA helicase	atividade helicase
A0A059UWX8	Endonuclease/exonuclease/fosfatase	atividade nuclease

Em processo biológico, 14 termos *GO* foram sugeridos e 35 anotações foram geradas. O único termo *GO* considerado como mais abrangente, acima de quatro anotações, nesta categoria foi processo biossintético com 17,1% de anotações, todos os demais termos gerados foram designados como outros, representando 82,9% das anotações como mostrado nas Figuras 22 e 23.

Figura 22. Categoria de *GO* **para processo biológico em proteínas** *down***-reguladas.** Aproximadamente dezessete por centos das anotações foram consideradas processos biossintéticos e o restante foram consideradas como outros, pois não passaram de cinco anotações, quando células de *P. putida* foram cultivadas na presença de 0,1mM de hemina.

Figura 23. Categoria de GO para processo biológico agrupado como outros. Os termos de GO com menos de cinco anotações para proteínas *down*-reguladas quando célula de *P. putida* foram crescidas na presença de 0,1mM de hemina.

Em componente celular apenas três termos GO foram gerados, o termo citoplasma com 75% foi o mais abundante nesta categoria e, outros correspondeu a 25%, sendo representado pelos termos célula e ribossomos

como pode ser observado na figura 24 e 25. Somente oito anotações foram geradas em componente celular.

As proteínas menos abundantes na presença de heme identificadas e classificadas nesse grupo foram principalmente: Citrato sintase (A0A059UVS9), RNA polimerase fator Sigma-29 (A0A059UZ41), proteína de ligação a DNA (A0A059V6E4), serina - RNAt ligase (A0A059UUM7), e a proteínaUPF0312 DW66_5215 (A0A059V2N9). Estas proteínas foram expressas duas vezes ou menos que o controle, ou seja, foram fortemente inibidas na presença de heme.

Figura 24. Categoria de *GO* **para componente celular de proteínas** *down*-reguladas. Setenta e cinco por cento localizam-se no citoplasma, em células de *P. putida* cultivadas na presença de 0,1mM de hemina.

Figura 25. Categoria de *GO* **para componente celular agrupados em outros.** Cinquenta por cento localizam-se em ribossomos e 50% na célula, em células de *P. putida* crescidas na presença de 0,1mM de hemina.

5.5. Predição de atividades enzimáticas

As proteínas identificadas foram pesquisadas para atividades enzimáticas segundo a classificação da Nomenclatura de Enzimas definida pelo

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NCIUBMB). As enzimas são classificadas em seis classes de acordo com a reação que catalisam como mostrada na Tabela 8 e são atribuídos números de EC (*Enzyme Comission*) a elas. Assim como para anotações de *GO*, pela classificação do Blast2*GO*, uma mesma identificação pode receber mais de uma anotação de EC.

Tabela 8. Classificação enzimática. As enzimas são classificadas em seis classes de acordo com as reações que catalisam.

Número	Classificação	Propriedades bioquímicas
1	Oxidorredutases	Agem em muitos grupos químicos, adicionando ou removendo hidrogênio.
2	Transferases	Transferem grupos funcionais entre moléculas doadoras e moléculas aceptoras.
3	Hidrolases	Adicionam água a uma ligação, hidrolisando-a.
4	Liases	Adicionam água, amônia ou dióxido de carbono a duplas ligações, ou removem estes elementos para produzirem duplas ligações.
5	Isomerases	Catalisam uma variedade de reações de isomerização: do tipo L para D, reações de mutação (troca de grupos químicos) entre outras.
6	Ligases	Catalisam reações em que dois grupos químicos são unidos utilizando energia fornecida pelo ATP.

Fonte: adaptado de (Nelson e Cox, 2014).

5.5.1. Proteínas up-reguladas

Foram anotadas 21 proteínas para *EC* e, de um total de 51 anotações, as classes representativas foram *EC* 1 (oxidorredutases), *EC* 2 (transferases), *EC* 3 (hidrolases) e *EC* 4 (liases) com 20, 11, 8 e 12 anotações, respectivamente, como ilustrado na Tabela 9. Essa grande quantidade de anotações de oxidorredutases está condizente com a alta porcentagem de anotações para o termo *GO* de função molecular com atividade de oxirredutase. *EC* 1 também foi a classe mais diversificada, com 7 atividades enzimáticas diferentes como mostrado na Tabela 9.

De forma global, as atividades enzimáticas mais numerosas em relação a anotações de todos os seis *ECs* foram: proteína piruvato desidrogenase (EC 1.2.4.1) com 7 anotações e aconitato hidratase (4.2.1.3) com 6 anotações.

Tabela 9	9. A	bundânc	ia de anota	ações	e de	atividade	s enzimáticas	. Pa	ira	cada	uma da	is s	eis
classes	de	Enzyme	Comission	(EC)	para	proteínas	up-reguladas	de	Ρ.	utida	cultiva	da	na
presença	a de	e 0,1 mM	de hemina.										

Classe de EC	Anotações ^a	Atividades enzimáticas ^b
Oxidorredutases	20	7
Transferases	11	5
Hidrolases	8	5
Liases	12	4
Isomerases	0	0
Ligases	0	0
Total	51	21

^aNúmero de anotações de EC pelo Blast2GO.

^b Número de Enzyme ID distintos do sistema EC.

5.5.2. Proteínas down-reguladas

Dez proteínas foram anotadas e geraram um total de 25 anotações, as classes mais representativas foram *EC* 1 (oxidorredutases), *EC* 2 (transferases), *EC* 3 (hidrolases) e *EC* 6 (ligases)com 9, 4, 2 e 10 anotações, respectivamente. Assim como as proteínas *up*-reguladas, as *down*-reguladas, também resultaram numa grande quantidade de anotações de oxidorredutases, condizente com a alta porcentagem de anotações para o termo *GO* de função molecular atividade de oxidorredutase. *EC* 1, 2 e 6 foram as classes mais diversificadas, com 3 atividades enzimáticas diferentes cada um, como mostrada na Tabela 10.

Classe de EC	Anotações ^a	Atividades enzimáticas ^b
Oxidorredutases	9	3
Transferases	4	3
Hidrolases	2	1
Liases	0	0
Isomerases	0	0
Ligases	10	3
Total	25	10

Tabela 10. Abundância de anotações e de atividades enzimáticas. Para cada uma das seis classes de *Enzyme Comission* (EC) para proteínas *down*-reguladas de *P. putida* cultivada na presença de 0,1 mM de hemina.

^aNúmero de anotações de EC pelo Blast2GO.

^b Número de Enzyme ID distintos do sistema EC.

De forma global, as atividades enzimáticas mais numerosas em relação a anotações de todos os seis *ECs* foram: acetil sintetase (EC 6.2.1.1) com 7 anotações e a OsmC proteína induzida osmoticamente (EC 1.11.1.7) com 4 anotações.

Foi observado que pode haver uma mesma identificação de EC para proteínas com números de acesso diferentes, como por exemplo, a proteína OsmC induzida osmoticamente (peroxideroxina) de número de acesso A0A059URC5 e de *EC* 1.11.1.7 que mostrou-se *down*-regulada na presença de heme e, a proteína Alquil hidroperóxido redutase AhpD (A0A059V078) de mesmo *EC* 1.11.1.7,que apresentou-se *up*-regulada na presença de heme. O mesmo foi verificado na proteína RNA helicase (A0A059V4R2) de *EC* 3.6.1.15 que mostrou-se *down*-regulada na presença de heme e a ATP sintase subunidade b (A0A059UPS7) com mesmo EC 3.6.1.15 que resultou entre as proteínas *up*-reguladas na presença de heme.

5.6. Enzimas up-reguladas envolvidas em vias metabólicas

O Blast2GO faz buscas das proteínas identificadas no KEGG pathways Database (Kanehisa, 1997). Foram geradas 21 vias metabólicas entre as proteínas mais abundantes, das quais as quatro mais representativas em relação ao número de anotações por via estão listadas na Tabela 11. A via metabólica do ciclo do citrato apresentou o maior número de anotações de proteínas com sete anotações. Esta via também apresentou a maior variedade de atividades enzimáticas, com cinco atividades enzimáticas diferentes, seguida por metabolismo do piruvato com cinco anotações e quatro atividades, glicólise/gliconeogênese com quatro anotações e três atividades enzimáticas e fosforilação oxidativa com três anotações e três atividades enzimáticas distintas, como ilustradas na Tabela 11.

Tabela 11. Vias metabólicas mais abundantes. O número de anotações e os respectivos números de atividades enzimáticas em proteínas *up*-reguladas de *P. putida* cultivada na presença de 0,1 mM de hemina.

Via metabólica ^a	Anotações ^b	Atividades enzimáticas ^c
Ciclo do ácido cítrico (ciclo TCA)	7	5
Metabolismo do piruvato	5	4
Glicólise/gliconeogênese	4	3
Fosforilação oxidativa	3	3

^aVia metabólica sugerida por KEGG *pathways* Database.

^b Número de anotações (pode haver uma proteína anotada mais de uma vez na mesma via metabólica).

^c Número de Enzyme ID distintos no sistema EC.

Bactérias usam a glicose como principal fonte de energia. Uma sucessão de etapas bioquímicas é realizada para degradar a molécula de glicose, de modo que haja um maior rendimento energético. As bactérias podem produzir energia a partir da glicose por respiração aeróbica ou anaeróbica (fermentação), havendo uma ordem decrescente de eficiência da primeira para a última. Pela respiração aeróbica a conversão da glicose é total, convertendo-se os seis carbonos deste açúcar em água, dióxido de carbono e energia (Nelson e Cox, 2014). Assim, a alta frequência de anotações nas vias metabólicas de geração de energia seria uma consequência disso. Na Tabela 12, estão detalhadas as atividades enzimáticas e os nomes de entrada relativos às seis vias metabólicas mais abundantes em número de anotações.

			(Continua)
Via metabólica ^a	Descrição ^b	Atividade enzimática ^c	Número de acesso ^c
	Acetiltransferase componente do complexo da piruvato desidrogenase	Transferase (acetiltransferase) (2.3.1.12)	A0A059UPZ4
Ciclo do citrato (ciclo TCA)	Componente E1 subunidade alfa da piruvato desidrogenase	Oxidorredutase (desidrogenase) (1.2.4.1)	A0A059UR31
	Componente E1 subunidade alfa da piruvato desidrogenase	Oxidorredutase (desidrogenase) (1.2.4.1)	A0A059UR31
	Subunidade alfa hidro-liase Tipo Fe-S (Fumarato hidratase)	Liase (4.2.1.2)	A0A059V578
	Subunidade ferro-enxofre da succinato desidrogenase	Oxidorredutase (1.3.5.1)	A0A059V3Z7
	aconitato hidratase	Liase (4.2.1.3)	A0A059UUI0
	aconitato hidratase	Liase (4.2.1.3)	A0A059UUI0

Tabela 12. Relação entre as vias metabólicas. As mais representativas em número de anotações e as respectivas atividades enzimáticas em proteínas up-reguladas de *P. putida* cultivada na presença de 0,1 mM de hemina. (**O** and **i** and **i**)

^a Via metabólica sugerida por KEGG *pathways* Database. ^bDescrição da proteína identificada pelo Uniprot c Enzyme ID do sistema EC anotado na via metabólica ^d Número de acesso do Uniprot

			Continua)
Via metabólica ^a	Descrição ^b	Atividade enzimática ^c	Número de acesso ^c
	Lactoilglutationa liase (4.4.1.5)	Liase (4.4.1.5)	A0A059V325
Metabolismo do	Componente E1 subunidade alfa da piruvato desidrogenase	Oxidorredutase (desidrogenase) (1.2.4.1)	A0A059UR31
piruvato	Componente E1 subunidade alfa da piruvato desidrogenase	Oxidorredutase (desidrogenase) (1.2.4.1)	A0A059UR31
	Acetiltransferase componente do complexo da piruvato desidrogenase	Transferase Acetiltransferase (2.3.1.12)	A0A059UPZ4
	Subunidade alfa hidro-liase Tipo Fe-S (Fumarato hidratase)	Liase (4.2.1.2)	A0A059V578
	Fosfoglicerato quinase	Transferase (quinase) (2.7.2.3)	A0A059V2M8
Glicólise/glic oneogênese	Acetiltransferase componente do complexo da piruvato desidrogenase	Acetiltransferase (2.3.1.12)	A0A059UPZ4

Figura12. Relação entre as vias metabólicas. As mais representativas em número de anotações e as respectivas atividades enzimáticas em proteínas up-reguladas de *P. putida* cultivada na presença de 0,1 mM de hemina.

^aVia metabólica sugerida por KEGG *pathways* Database. ^bDescrição da proteína identificada pelo Uniprot ^c Enzyme ID do sistema EC anotado na via metabólica ^d Número de acesso do Uniprot

Figura12. Relação entre as vias metabólicas. As mais representativas em número de anotações e as respectivas atividades enzimáticas em proteínas up-reguladas de *P. putida* cultivada na presença de 0,1 mM de hemina.

			(Conclusão)
Via metabólica ^a	Descrição ^b	Atividade enzimática ^c	Número de acesso ^c
	Componente E1 subunidade alfa da piruvato desidrogenase	Oxidorredutase (desidrogenase) (1.2.4.1)	A0A059UR31
	Componente E1 subunidade alfa da piruvato desidrogenase	Oxidorredutase (desidrogenase) (1.2.4.1)	A0A059UR31
	Desidrogenase de NADH	Oxidorredutase (1.6.99.3)	A0A059V0U7
Fosforilação oxidativa	Subunidade ferro-enxofre da succinato desidrogenase	Oxidorredutase (1.3.5.1)	A0A059V3Z7
	Subunidade 1- ubiquinol oxidase do Citocromo	Oxidorredutase (1.9.3.1)	A0A059URU4

^aVia metabólica sugerida por KEGG *pathways* Database.
^bDescrição da proteína identificada pelo Uniprot
^c Enzyme ID do sistema EC anotado na via metabólica
^d Número de acesso do Uniprot

5.6.1. Ciclo do ácido cítrico

O ciclo de Krebs, tricarboxílico ou do ácido cítrico, hoje conhecido como ciclo dos ácidos tricarboxílicos, em inglês TCA, corresponde a uma série de reações químicas que ocorrem na vida da célula e seu metabolismo. O ciclo é executado na matriz da mitocôndria dos eucariontes e no citoplasma dos procariontes. Trata-se de uma parte do metabolismo dos organismos aeróbicos (utilizando oxigênio da respiração celular); organismos anaeróbicos utilizam outros mecanismos, como a fermentação lática, onde o piruvato (ácido pirúvico) é o receptor final de elétrons na via glicolítica, gerando lactato (Nelson e Cox, 2014).

Quanto às identificações atribuídas ao ciclo do citrato várias proteínas envolvidas no metabolismo energético, apresentaram-se *up*-reguladas após exposição ao heme, o que está de acordo com a existência de diversos mecanismos celulares de adaptação que são dependentes de energia (ATP), entre elas, uma succinato desidrogenase (A0A059V3Z7) de *EC* 1.3.5.1, a fumarato hidratase (A0A059V578) de *EC* 4.2.1.2 e duas subunidades da aconitato hidratase (A0A059UI0) de *EC* 4.2.1 como pode ser observado na Figura 26. Nesta via também foram mostradas duas subunidades do componente E1 subunidade alfa da piruvato desidrogenase (A0A059UR31) de *EC* 1.2.4.1 e uma acetiltransferase componente do complexo piruvato desidrogenase (A0A059UPZ4) de *EC* 2.3.1.12. Estas duas enzimas fazem parte do complexo da piruvato desidrogenase, que catalisam a conversão do piruvato em acetil-CoA.

Apoiando nossos resultados, Nwugo e colaboradores (2011) observaram um aumento na expressão de proteínas do TCA ao expor a bactéria *Acinetobacter baumanii* a um meio rico em ferro, assim como Lima e colaborados (2014) observaram na bactéria *Chromobacteruim violaceum*.

Figura 26. Ciclo do ácido cítrico. Os retângulos em destaque indicam as proteínas identificadas como mais abundantes na presença de 0,1mM de heme na bactéria *P. putida*. Fonte: KEGG *pathways* Database.

A figura 27 mostra a integração do metabolismo energético com as proteínas *up*-reguladas de *P. putida* na presença de heme. Resultados semelhantes também foram encontrados por Lima e colaborados (2014) ao expor a bactéria *Chromobacteruim violaceum* um meio rico em ferro.

Figura 27. Integração do metabolismo energético. A regulação positiva de enzimas com ferro em seu centro catalítico está levando a um aumento de proteínas que participam do TCA. Os números das enzimas preenchidos em azul correspondem às proteínas identificadas em *P. putida* cultivada em meio de cultura contendo 0,1 mM de hemina.

5.6.2. Metabolismo do piruvato

A conversão do piruvato em Acetil-CoA é catalisado por um complexo enzimático chamado de complexo piruvato desidrogenase, que é formado por 3 enzimas: piruvato desidrogenase (componente E1 da piruvato desidrogenase), diidrolipoil transacetilase (componente E2 da piruvato desidrogenase) e diidrolipoil desidrogenase (componente E3 da piruvato desidrogenase). Nesta análise proteômica, duas destas enzimas foram *up*-reguladas e apresentadas em três vias metabólicas: na via metabólica do ácido cítrico (ciclo do citrato), no metabolismo do piruvato e no ciclo da glicólise/gliconeogênese. As proteínas encontradas são: componente E1 subunidade alfa da piruvato desidrogenase (A0A059UR31) de *EC* 1.2.4.1 e acetiltransferase componente E2 do complexo piruvato desidrogenase (A0A059UPZ4) de *EC* 2.3.1.12 como ilustrado nas vias presentes nas Figuras 26, 28 e 29.

A figura 28 representa a via de metabolismo do piruvato com as proteínas identificadas, uma liase lactoilglutationa (A0A059V325) de *EC* 4.4.1.5, uma subunidade alfa hidro-liase tipo Fe-S (Fumarato hidratase) (A0A059V578) de *EC* 4.2.1.2, duas subunidades do componente E1 subunidade alfa da piruvato desidrogenase (A0A059UR31) de *EC* 1.2.4.1 e

uma acetiltransferase componente do complexo da piruvato desidrogenase (A0A059UPZ4) de *EC* 2.3.1.12, as duas últimas, possivelmente envolvidas na descarboxilação oxidativa do piruvato a acetil-CoA, no metabolismo do piruvato(Junqueira e Carneiro, 2012).

Figura 28. Metabolismo do piruvato. Os retângulos em destaque indicam as proteínas identificadas como mais abundantes na presença de 0,1mM de heme na bactéria *P. putida*. Fonte: KEGG *pathways* Database.

5.6.3. Glicólise/gliconeogênese

A glicólise é uma via metabólica comum a todos os seres vivos, consiste na oxidação incompleta da glicose em piruvato e ocorre no citoplasma de eucariotos e procariotos, na presença ou ausência de oxigênio. Consiste em 10 reações que convertem a molécula de glicose (6C) em duas moléculas de piruvato (3C), com produção de 2 ATPs e redução de 2 NAD⁺ em NADH + H⁺. Já a gliconeogênese é o processo através do qual precursores como lactato, piruvato, glicerol e aminoácidos são convertidos em glicose.

É importante ressaltar que bactérias usam glicose como fonte preferencial de energia. No meio CASO modificado, utilizado para cultura de *P. putida*, havia 10% de glicose e, portanto, a presença da via de glicólise entre as mais representativas está de acordo com a disponibilidade da fonte preferencial de energia no meio de cultura. Esses dados sugerem, ainda, um efeito indireto da resposta de *P. putida* em meio estressante, exigindo investimento pesado de NADPH, em vez de a presença ou ausência de um mecanismo adequado de defesa ao estresse por si só. Resultados similares foram encontrados por Moreno-Forero e colaboradores (2016) ao expor a *Pseudomonas veronii* à estresse hídrico e por Jacques 2005, quando observou a degradação de antroceno (composto aromático) em meio de cultura mineral por bactérias do gênero *Pseudomonas*.

A figura 29 ilustra as proteínas identificadas em *P. putida* que pertencem ao metabolismo de glicose. Como sete reações da via glicolítica são livremente reversíveis e as enzimas envolvidas atuam também na gliconeogênese, talvez por isso, o Blast2*GO* categorize essas duas vias metabólicas em uma só, via glicólise/gliconeogênese.

Figura 29. Via da glicólise/gliconeogêse. Os retângulos em destaque indicam as proteínas identificadas em *P. putida* quando cultivada na presença de 0,1 mM de heme. Fonte: KEGG *pathways* Database.

Por causa da interligação de vias metabólicas por seus produtos intermediários, as proteínas candidatas a membros do complexo da piruvato desidrogenase, também, foram enquadradas na glicólise/gliconeogênese. Nós também identificamos uma fosfoglicerato quinase

(PGK) (A0A059V2M8) de *EC* 2.7.2.3. Como todas as quinases são transferases, a enzima PGK catalisa a reação reversível de conversão de piruvato em fosfoenolpiruvato, ou seja, catalisa a transferência reversível de um grupo fosfato do 1,3-bisfosfoglicerato (1,3-BPG) na presença de ADP produzindo 3-fosfoglicerato (3-PG) e ATP. A PGK é uma enzima da glicólise, que intervém no 6º passo, que é a primeira reação produtora de ATP da via glicolítica. Também intervém na gliconeogênese, onde a enzima procede em direção oposta, já que a reação é reversível, gerando ADP e 1,3-BPG (Nelson e Cox, 2014).

5.6.4. Fosforilação oxidativa

A fosforilação oxidativa é uma via metabólica que utiliza energia liberada pela oxidação de nutrientes de forma a produzir trifosfato de adenosina (ATP). O processo refere-se à fosforilação do ADP em ATP, utilizando para isso a energia liberada nas reações de oxidação-redução. Os elétrons obtidos na oxidação de moléculas em diversas vias metabólicas, como por exemplo o ciclo dos ácidos tricarboxílicos, são transferidos para o dioxigênio, e a energia liberada é usada na produção de ATP.

Em eucariotos, este processo é feito por uma série de proteínas, pertencentes a cadeia transportadora de elétrons, que se encontram na membrana mitocondrial interna. Em procariotos, estas proteínas encontram-se na membrana celular interna (Hosler, *et al* 2006) e utilizam a energia obtida da oxidação de NADH para transportar prótons através da membrana (Schultz e Chan, 2001).

Foram anotadas três atividades enzimáticas distintas na via de fosforilação oxidativa. As enzimas identificas foram: desidrogenase de NADH (A0A059V0U7) de *EC* 1.6.99.3, uma subunidade ferro-enxofre da succinato desidrogenase (A0A059V3Z7) de *EC* 1.3.5.1 e uma subunidade 1- ubiquinol oxidase do citocromo (A0A059URU4) de *EC* 1.9.3.1, como ilustrado na Figura 30.

Figura 30. Representação esquemática da fosforilação oxidativa. Os retângulos em destaque indicam as proteínas identificadas como *up*-reguladas em *P. putida* na presença de 0,1mM de heme. Fonte: KEGG *pathways* Database.

Este estudo sugere que existe uma grande diversidade de mecanismos envolvidos na resposta da bactéria *P. putida* ao heme e que as proteínas diferencialmente expressas podem desempenhar um papel fundamental na sobrevivência das células quando expostas a concentrações tóxicas deste composto.

Apesar da recente expansão do conhecimento sobre a resposta desta bactéria em meio estressante, muitas questões biológicas importantes sobre proteínas heme-reguladas ainda precisam ser abordadas. Entretanto, estes resultados forneceram várias pistas sobre os determinantes de resistência e mecanismos de resposta à toxicidade causada pelo heme em células de *P. putida*, as quais deverão ser validadas e exploradas com o objetivo de elucidar os mecanismos subjacentes.

6. Conclusões

• *P. putida* foi capaz de crescer em meio de cultura contendo 0,1 mM de hemina.

• A *P. putida* tem sua expressão proteica alterada em resposta ao heme.

• Com base no log₂ 1,2 identificamos sete proteínas *up*-reguladas e 13 *down*-reguladas caracterizadas.

• Com base no log₂ 0,5 foram identificadas 40 proteínas *up*-reguladas e 34 *down*-reguladas caracterizadas.

• Foram encontradas 15 proteínas com função molecular de ligação a íon e 10 com atividade oxirredutase em proteínas *up*-reguladas.

• Encontramos 10 proteínas com função molecular de ligação a íon e sete com atividade oxirredutase em proteínas *down*-reguladas.

• Bacterioferritina foi 2,44 vezes mais espressa que o controle.

• Alquil hidroperóxido redutase AhpD foi *up*-regulada na presença de heme.

• Foi registrada a componente E1 subunidade alfa da piruvato desidrogenase, como uma das proteínas up-reguladas na presença de heme.

• A via do àcido cítrico foi a que apresentou maior número de atividades enzimáticas distintas.

7. Referências bibliográficas

Altelaar, A. F. M.; Munoz, J.; Heck, A. J. R. (2013). Next-generation proteomics: towards an integrative view of proteome dynamics. *Nature Rev. Genet.* v. 14, 35-48.

Alves, W. C. I.; Gorayeb, I. S.; Loureiro, E. C. B. (2010). Isolated bacteria from hematophagous Culicidae (Diptera: Nematocera) in Belém, Pará State, Brasil. *Ver. Pan-Amaz Saúde,* v.1, p. 131-141.

Anderson, L.; Seilhamer, J. A. (1997). Comparison of selected mRNA and protein abundantes in human liver. *Electrophor.*, v. 18, p. 533-537.

Andrews, S. C.; Robinson, A. K.; Rodrígues-Quinines, F. (2003). Bacterial iron homeostasis. FEMS Microbiol.Rev., v. 27, p.215-237.

Anzaldi, L. L.; Skaar, E. P. (2010). Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. *Infect. and Immun.*, v. 78, p. 4977-4989.

Arnoux, P.; Haser R.; Izadi-pruneyre N.; Lecroisey A.; Czjzek, M. (2000). Functional aspects of the heme bound hemophore HasA by structural analysis of various crystal forms. *Proteins.* v. 41, p. 202-210.

Ban, N.; Nissen, P.; Hansen, J.; Capel, M.; Moore, P. B. and T. A. Steitz.(1999). Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. *Nature.*, v. 400, p. 841-847.

Beaumont, C.; Vailont, S. Iron homeostasis. In: Beaumont, C.; Beris, P.; Beuzard, Y. Brugnara, C. (2006). *Disorders of iron homeostasis, erythrocytes, erythropoiesis*. Genova, Italy: Forum Service, p. 393-406.

Beier, M. S. (1994). Effects of para-aminobenzoic acid, insulin and gentamycin on *Plasmodium falciparum* development in anopheline mosquitoes (Diptera:Culicidae). *J.Med. Entomol.*, v. 31, p. 561-565.

Bilingsley, P. F.; Rudin, W. (1992). The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of plasmodium species. *Parasitol.*, v. 78, p. 430-440.

Bolster, M. W. G. (1997). *Glossary of Terms Used in Bioinorganic Chemistry*: Cofactors International Union of Pure and Applied. Chem., v. 69, p.1251-303.

Boopathi, E., Rao, K. S. (1999). A siderophore from *Pseudomonas putida* type A1: structural and biological characterization. *Biochim. Biophys. Acta,* v. 1435, p. 30-40.

Bou-Abdallah, F. (2010). The iron redox and hydrolysis chemistry of the ferritins. *Biochim. Biophys Acta*, v. 1800, p. 719-731.

Braz, G. R. C., Abreu, L., Masuda, H. & Oliveira, P. L. Heme biosynthesis in the bloodsucking bug, Rhodnius prolixus. Insect. Bioch. Mol. Biol. 31: 359-364 (2001).

Braz, G. R. C., Coelho, H. S., Masuda, H. & Oliveira, P. L. A missing metabolic pathway in the cattle tick Boophilus microplus.(1999). Curr. Biol. v. 13, p. 703-706.

Brooks, G. F.; Carrol, K. C, I.; Butel, J. S.; Morse, S. A.; Mietzner, T. A. (2014). *Microbiologia Médica*de Jawetz, Melnick e Adelberg (Lange) - Mc Graw Hill. 26^a ed. p. 872.

Brunn N. E.; Crow, A.; Murphy, M. E. P.; Mauk, A. G.; Moore, G. R. (2010). Iron core mineralization in prokaryotic ferritins. Biochim Biophys Acta., v. 1800, p. 732-744.

Cabiscol, E.; Tamarit, J.; Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. *Int. Microbiol.*, v. 3, p. 3-8.

Calderan-Rodrigues, M.J.; Jamet, E.; Bonassi, M.B.C.R.; Guidetti-Gonzalez, S.; Begossi, A.C.; Setem, L.V.; Franceschini, L. M.; Fonseca, J. G.; Labate, C. A. (2014). Cell wall proteomics of sugarcane cell suspension cultures. *Proteomics*, v. 14, p. 738-749.

Caummette, G.; Lienemann, C. P.; Merdrignac, I.; Bouyssiere, B.; Lobinski, R. (2009). Element speciation analysis of petroleum and related materials. *J. of Analyt Atomic. Spectr.*, v. 24, p. 263-276.

Centers of diseases control and prevention (Estados Unidos). *Public Health Image Library*. Disponível em (http://phil.cdc.gov/phil).Acesso em: 20 de janeiro de 2016.

Chavarría, M.; Nikel, P. I.; Pérez-Pantoja, D.; de Lorenzo, V. (2013). The Entner Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. *Environ Microbiol.*, v. 15, p. 1772-1785.

Chen, S.; Harmon, A. C. (2006). Advances in plant proteomics. *Proteomics*, v. 6, p. 5554-5516.

Chiancone, E.; Ceci, P.; Ilari,A.; Ribacchi, F.; Stefanini,S. (2004). Iron and proteins for iron storage and detoxification. *Biometals*. v. 17, p. 197-202.

Comparison of differential gene expression to water stress among bacteria with relevant pollutant-degradation properties. *Environ. Microbiol. report.*, v. 8, p. 91-102.

Consoli, R. A. G. B.; Oliveira, R. L. (1994). Principais mosquitos de importância sanitária no Brasil. 1ª Ed. Rio de Janeiro. Fiocruz. p. 228.

Dansa-Petretski, M.; Ribeiro, J. M.; Atella, G. C., Masuda, H.; Oliveira, P. L. (1995). Antioxidant role of *Rhodnius prolixus* heme-binding protein. *J. Biol. Chem.*, v. 270, p. 10893-10896.

Fundação Nacional de Saúde (FUNASA). Dengue instruções para pessoal de combate ao vetor : manual de normas técnicas. Ministério da Saúde.(2001). 3^a ed. *Ver. Brasília*, p. 83.

Di Fiore, S.; Del Gallo, M. (1995). Endophytic bacteria. their possible role in the rost plants. Fendrik, I.; Del gallo, M.; Vanderleyden, J.; De Zamaroczy, M. Ed. *Azospirillum VI and related microrganisms*. Berlin: Springer-Verlag. p. 169-187.

Dillon, R. J.; Dillon, V. M. (2004). The gut bacteria of insects: nonpathogenic interactions. *Annu. Ver. Entomol.*, v. 49, p. 71-92.

Djadid, N. D.; Jazayeri, H.; Raz, A.; Favia, G. Ricci, I.; Zakeri, S. (2011). Identification of the Midgut Microbiota of *An*. *stephensi* and *An*. *maculipennis* for Their Application as a Paratransgenic Tool against Malaria. *PLoS One*, v. 6, p. 28484.

Donovan A.; Roy C. N.; Andrews N. C. (2006). The ins and outs of iron homeostasis. *Physiol.*, (Bethesda). v. 21, p. 115-23.

Dubbs, J. M.; Mongkolsuk, S. (2007). Peroxiredoxins in bacterial antioxidant defense. In: peroxiredoxin Systems. *Spring. Netherl.*, v. 44, p. 143-193.

Dutt, M. J.; Lee, K. H. (2000). Proteomic analys. *Cur. Opin. Biotech.*, v. 11, p. 176-179.

Duyck, C. B.; Saint"Pierre, T. D.; Miekeley, N.; fonseca, T. C. O.; Szatmari, P. (2011). High Performance liquid chromatography hyphenated inductively coupled plasma mass spectrometry for V and Ni quantification as tetrapyrroles. *Spectr. Acta, Part B.* v. 66. p. 362-367.

Edman, J.D., Strickmam, D., Kittayapong, P., Scott, T.W. (1992). Female Aedes *aegypti* (Diptera: Culicidae) in Thailand rarely feed on sugar. *J. Med. Entomol.*, v. 29, p. 1035-1038.

Gaio, A. O.; Gusmão, D. S.; Santos, A. V.; Berbert-Molina, M. A.; Pimenta, P. F.; Lemos, F. J. (2011a). Contribution of midgut bacteria to blood digestion and egg production in *Aedes aegypti* (Diptera: Culicidae) (L.). *Parasit. Vec.*, v. 4, p.105.

Gaio, A. O. (2011b). Estudo da Microbiota intestinal de *Aedes aegypti* (Diptera:Culicidae) e sua contribuição para a digestão de sangue. Tese (Doutorado em Biociências e Biotecnologia), Campos dos Goytacazes-RJ, Universidade Estadual do Norte Fluminense (UENF), p. 99.

Ghigo, M. J., Letoffe S., Wandersman C. (1997). A new type of hemo-phoredependent heme acquisition system of *Serratia marcescens* reconstituted in *Escherchia coli. J. Bacteriol.*, v. 179, p. 3572-3579.

Graca-Souza, A. V.; Maya-Monteiro, C.; Paiva-Silva, G. O.; Braz, G. R. C.; Paes, M. C.; Sorgine, M. H. F.; Oliveira, M. F.; Oliveira, P. L. (2006). Adaptations against heme toxicity in blood-feeding arthropods. *Insect. Biochem. Mol. Biol.*, v.36, p. 322-335.

Gusmão, D. S.; Santos, A. V.; Marini, D. C.; Bacci, M.; Berbert-Molina, M. A.; Lemos, F. J. A. (2010). Culture-dependent and culture-independent characterization of microorganisms associated with *Aedes aegypti* (Diptera:Culicidae) (L.) and dynamics of bacterial colonization in the midgut. *Acta, Trop.,* v.115, p. 275-281.

Gusmão, D. S.; Santos, A. V.; Marini, D. C.; Russo, E. S.; Peixoto, A. M. D.; Bacci, M.; Berbert-Molina, M. A.; Lemos, F. J. A. (2007). First isolation of microorganisms from the gut diverticulum of *Aedes aegypti* (Diptera: Culicidae): new perspectives for an insect-bacteria association. *Mem. Inst. Oswaldo Cruz*, v. 102, p. 919-924.

Gutierrez, C.; Devedjian, J. C. (1991). Osmotic induction of gene osmC expression in Escherichia coli K12. *J. Mol. Biol.*, v. 4, p. 959-73.

Halliwell, B.; Gutteridge, J. M. C. (2004). Free Radicals in Biology and Medicine, 4^aed. Clarendon Press - Oxford, United Kingdon. p. 335.

Haas, H.; Eisendle, M.; Turgeon, B. G. (2008). Siderophores in fungal physiology and virulence. *Annu. Rev. Phytopathol.* v. 46, p. 149-187.

Harrington, L.C., Edman, J.D.; Scott, T.W. (2001). Why do female *Aedes aegypti* (Diptera: Culicidae) feed preferentially and frequently on human blood? *Soc. Med. Entomol.* v. 38, p. 411-422.

Heim, S.; Ferrer, M.; Heuer, H.; Regenhardt, D.; Nimtz, M.; Timmis, K. N. (2003). Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. *Environ Microbiol.* v. 12, p.1257-69.

Hishinuma, S.; Yuki, M.; Fujimura, M.; Fukumori, F. (2006). OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in *Pseudomonas putida*. *Environ Microbiol.*, v. 8, p. 2115-2124.

Horn, M.; Nussbaumerová, M.; Sanda, M.; Kovarova, Z.; Srba, J.; Franta, Z.; Sojka, D.; Bogyo, M.; Caffrey, C. R.; Kopacek, P.; Mares, M. (2009). Hemoglobin digestion in blood-feeding ticks: mapping multipeptidase pathway by functional proteomics. *Chem. Biol.*, v.16, p. 1053-1063.

Hosler, J.; Ferguson-Miller, S.; Mills, D. (2006). Energy transduction: proton transfer through the respiratory complexes. *Annu. Rev. Biochem.*, v. 75, p. 165-87.

Hyde, G. E.; Crawford, N. M.; Campbell, W. H. (1991). The sequence of squash NADH: nitrate reductase and its relationship to the sequences of other flavoprotein oxidoreductases. A family of flavoprotein pyridine nucleotide cytochrome reductases. *J. Biol. Chem.*, v. 35, p. 23542-23547.

Idei, A.; Kawai, E.; Akatsuka, H.; Omori, K. (1999). Cloning and Characterization of the *Pseudomonas fluorescens* ATP-Binding Cassette Exporter, HasDEF, for the Heme Acquisition Protein HasA. *J. Bacteriol.*, v. 181, p. 7545-7551.

Igbinosa, I. H.; Nwodo, U. U; Sosa, A.; Tom, M.; Okoh, A. I. (2012). Commensal *Pseudomonas* species isolated from wastewater and freshwater milieus in the eastern cape province, South Africa, as reservoir of antibiotic resistant determinants. *Int. J. Environ. Res. Public Health.*, v. 9, p. 2537-2549.

Jacques, R. J. S.; Santos, E. C.; Bento, F. M.; Peralba, M. C. R.; Selbach, P. S.; Sá, E. L. S.; Camargo, F. A. O. (2005). Anthracene biodegradation by *Pseudomonas sp.* isolated from a petrochemical sludge landfarming. *Int. Biodet. and Biodeg.*, v. 56, p. 150-156.

Jiménez, J. I.; Miñambres, B.; García, J. L.; Díaz, E. (2002). Genomic analysis of the aromatic catabolic pathways from *Pseudomonasputida KT2440*. *Environ.Microbiol.*v.12, p. 824-41.

Junqueira, L. C.; Carneiro, J. (2012). *Biologia Celular e Molecular* - 9^a 3d. Guanbara Koogan, p. 376.

Kanehisa, M. (1997). Linking databases and organisms: GenomeNet resources in Japan. *Trends Biochem Sci.*, v. 22, p. 442-444.

Kim, J.; Jeon, C. O.; Park, W. (2008). Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in *Pseudomonas putida*. Microbiol., v. 154, p. 3905-3916.

Kim, J.; Park, W. (2014). Oxidative stress response in Pseudomonas putida. *Appl Microbiol. Biotech.*, v. 98, p. 6933-6946.

Kim, Y. C.; Miller, C. D.; Anderson, A. J. (1999) Transcriptional regulation by iron of genes encoding iron- and manganese-superoxide dismutases from *Pseudomonas putida*. *Gene*, v. 239, p. 129-135.

Koneman, E. W.; Allen, S. D.; Janda, W. M.; Schrechenberger, P. C.; Winn, W. C. (2001). *Diagnóst. Microbiol.* 5^a ed. *Medsi*, São Paulo. p. 1465.

Kowalski, H. (2002). U. S. – German Research Consortium Sequences Genome of Versatile Soil Microbe. J. Craig Venter Archive. http://www.tigr.org/news/pr_12_02_02.shtml.

Kurbatov, L.; Albrecht, D.; Herrmann, H.; Petruschka, L. (2006). Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. *Environ Microbiol.*, v. 3, p. 466-78.

Lanças, F. M. (2009). *Cromatografia Líquida Moderna*: HPLC/CLAE. Campinas, São Paulo. ed. Átomo, v. 1, p. 382.

Lesniak, J.; Barton, W. A.; Nikolov, D. B. (2003). Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC. *Protein Sci.*, v. 12, p. 2838-2843.

Létoffé, S., Ghigo, J. M., Wandersman, C. (1994). Secretion of the Serratia marcescens HasA proteinby an ABC transporter. *J. Bacteriol.* v. 176, p. 5372-5377.

Létoffé, S.; Nato F.; Goldberg, M. E.; Wandersman C. (1999). Interactions of HasA, a bacterial hemophore, with hemoglobin and with its outer mem-brane receptor HasR. *Mol. Microbiol.*, v. 33, p. 546-555.

Létoffé, S.; Omori K.; Wandersman C. (2000). Functional characterization of the *hasapf* hemophore and itstruncated and chimeric variants: determination of a regioninvolved in binding to the hemophore receptor. *J. Bacteriol.*, v. 182, p. 4401-4405.

Lima, D. C.; Duarte, F. T.; Medeiros, V. K. S; Lima, D. B.; Carvalho, P. C.; Bonatto, D.; Medeiros, S. R. B. (2014). The influence of iron on the proteomic profile of *Chromobacterium violaceum*. *BMC Microbiol.*, v.14, p. 267-276.

Lindgren, H.; Lindgren, L.; Golovliov, I.; Sjöstedt, A. (2015). Mechanisms of heme utilization by Francisella tularensis. *PLoS One.*, v. 3, p. 119-143.

Litwin, C. M.; Calderwood, S. B. (1993). Role of iron in regulation of virulence genes. *Clin. Microbiol.* Rev., v. 6, p. 137-149.

Lopez, J. E., Henkels, M. D. (1999). Utilization of Heterologous Siderophores Enhances Levels of Iron Available to *Pseudomonas putida* in the Rhizosphere. *Appl. and Environ. Microbiol.*, v. 65. p. 5357-5363.

Luge, T.; Kube, M.; Freiwald A.; Meierhofer, D.; Seemuller E.; Sauer, S. (2014). Transcriptomics assisted proteomic analysis of *Nicotina occidentalis* infected by *candidatus phytoplasma mali* strainATP. Proteomics, v. 14, p. 1882-1889.

Marques, G. R. A. M. e Degomes, A. (1997). Comportamento antropofílico de *Aedes albopictus* (Skuse) (Diptera: Culicidae) na região do Vale do Paraíba, Sudeste do Brasil. *Rev. Saúde Públ.*, v. 2, p. 125-130.

Mayfield, J. A.; Dehner, C. A.; DuBois, J. L. (2011).Recent advances in bacterial heme protein biochemistry. *Curr. Opin. Chem. Biol.*, v. 15, p. 260-266.

Milgrom, L. R. (1997). *The colours of life*: An Introduction to the Chemistry of Porphyrins and Related Compounds.Oxford University Press, 1^a ed., p. 1656.

Miller, C. D.; Kim Y. C.; Anderson A. J. (1997). Cloning and Mutational Analysis of the Gene for the Stationary-Phase Inducible Catalase (catC) from *Pseudomonas putida. J. of Bacteriol.*,v. 179. p. 5241-5245.

Minard, G.; Mavingui, P.; Moro, C. V. (2013). Diversity and function of bacterial microbiota in the mosquito holobiont. *Paras. Vect.*, v. 146, p. 1-12.

Mokhtari, B.; Pourabdollah, K. (2012). Extraction of vanadyl porphyrins in crude oil by inclusion dispersive liquid-liquid microextraction and nano-baskets of calixarene. *J. of Incl. Phen. and Macroc. Chem.*, v. 74, p. 183-189.

Morard, L. Z.; Cheng, R. H.; Krogmann, D. W.; Ki HO, K. (1994). Soluble Electron Transfer Catalysists of Cyanobactéria. In.: *The Molecular Biology of Cyanobactéria*. Ed. Bryant, D. A. p. 881.

Moreno-Forero S.K.; Rojas E.; Beggah S.; van der Meer J.R. (2016). Comparison of differential gene expression to water stress among bacteria with relevant pollutant-degradation properties. *Environ. Microbiol. Rep.,* v. 81, p. 91-102.

Murray, R. k.; Bender, D. A.; Botham, K. M.; Kennelly, P. J.; Rodwell, V. W.; Weil, P. A. (2013). Bioquímica Ilustrada de Harper (Lange) - 29^a ed. *AMGH*., p. 826.

Murphy, F A.; Fauquet, C. M.; Bishop, D. H. L.; Ghabrial, S. A.; Jarvis, A. W.; Martelli, G. P.; Mayo, M. A.; Summers, M. D. (1995). *Virus Taxonomy: Classification and Nomenclature of Viruses*. Sixth Rep. Inter. Commette on taxonomy of viruses. Arch Virol., Suppl. 10. Springer-Verlag, *New York. P. 586.*

Nelson, D. L.; Cox, M. M. (2004). *Principles of Biochemistry. Lehninger,* 4^a ed. Worth Publishers, p. 1100.

Nelson, D. L.; Cox, M. M. (2014). *Princípios de Bioquímica de Lehninger*. 6^ª ed. Artmed, p. 1328.

Nelson, K. E.; Weinel, C. Paulsen, T. I.; Dodson, R. J.; Hilbert, H. Martins dos Santos, V. A.; Fouts, D. E.; Gill, S. R.; Pop, M.; Holmes, M.; Brinkac, L.; Beanan, M.; DeBoy, R. T.; Daugherty, S.; Kolonay, J.; Madupu, R.; Nelson, W.; Branco, Ó.; Peterson, J.; Khouri, H.; Hance, I.; Chris Lee, P.; Holtzapple, E.; Scanlan, D.; Tran, K.; Moazzez, A.; Utterback, T.; Rizzo, M.; Lee, K.; Kosack, D.; Moestl, D.; Wedler, H.; Lauber, J.; Stjepandic, D.; Hoheisel, J.; Straetz, M.; Heim, S.; Kiewitz, C.; Eisen, J. A.; Timmis, K. N.; Düsterhöft, A.; Tümmler, B.; Fraser, C. M. (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. *Environ Microbiol.*, v. 12, p. 799-808.

Neves, D. P. Parasitologia humana.(2004). 11^a ed. São Paulo: Atheneu, p. 494.

Nwugo, C.; Gaddy, J.A.; Zimbler, D.L.; Actis, L.A. (2011). Deciphering the iron response in *Acinetobacter baumannii*: A proteomics approach. *J. Proteom.*, v. 1, p. 44-58.

O'Connor, K., Duetz, W., Wind, B., Dobson, A. D. W. (1996). The Effect of Nutrient Limitation of Styrene Metabolism in *Pseudomonas putida* CA-3. *App. and Env. Microbiol.*, v. 62. p. 3594-3599.

Olczak, T.; Dixon, D. W.; Genco C. A. (2001). Binding specificity of the *Porphyromonas gingivalis* heme and hemoglobin receptor hmur, gingipain k, and gingipain r1 for heme, porphyrins, and metalloporphyrins *J. of Bacteriol.*, v. 183, p. 5599-5608.

Oliveira, M. F., Silva, J. R., Dansa-Petretski, M., de Souza, W., Lins, U., Braga, C. M., Masuda, H., Oliveira, P. L. (1999). Haem detoxification by an insect. *Nature*. V. 400, p. 517-518.

Oliveira, S. M. P.; Moraes B. A.; Gonçalves C. A.; Giordano-Dias C. M.; D'Almeida J. M.; Asensi M. D.; Mello R. P., Brazil R. P. (2000). Prevalence of the microbiota in the digestive tract of wild-caught females of *Lutzomyia longipalpis* (Lutz & Neiva) (Diptera: Psychodidae). *Rev. Soc. Bras. Med.Trop.*, v. 33, p. 319-322.

Ortiz de Montellano, P. R. (2000). Hydrocarbon Hydroxylation by Cytochrome P450 Enzymes. *Curr. Opin. Chem. Biol.*, v. 4, p. 221-227.

Otenio, M. H.; Silva, M. T. L.; Marques, M. L. O.; Roseiro, J. C.; Bidoia, E. D. (2005). Benzene, Toluene and Xylene biodegradation by *Pseudomonas putidaCCMI 852. Brazilian J. of Microbiol.*, v. 36, p. 258-261.

Paiva-Silva, G. O.; Cruz-Oliveira, C.; Nakayasu, E. S. Maya-Monteiro, C. M.; Dunkov, B. C.; Masuda, H.; Almeida, I. C.; Oliveira, P. O. (2006) A hemedegradation pathway in ablood-sucking insect. *PNAS*. v. 103, p. 8030-8035. Pandey, A.; Mann, M. (2000). Proteomics to study genes and genomes. *Nature*, v. 405, p. 837-846.

Pandey, A.; Mann, M. (2000). Proteomics to study genes and genomes. *Nature*, v. 405, p. 837-846.

Park, S. C.; Pham, B. P.; Van Duyet, L.; Jia, B.; Lee, S.; Yu, R.; Han, S. W.; Yang, J. K.; Hahm, K.;S, Cheong, G. W. (2008). Structural and functional characterization of osmotically inducible protein C (OsmC) from *Thermococcus kodakaraensis KOD1*. *Biochim. Biophys Acta.*, v. 5, p. 783-788.

Pascoa, V.; Oliveira, P. L.; Dansa-Ptretskl, M.; SILVA, J. R.; Alvarenga, P. H.; Jacobs-Lorena, M.; Lemos, F. J. A. (2002). *Aedes aegypti* peritrophic matrix

and its interaction with heme during blood digestion. *Insect. Biochem. and Mol Biol.*, v. 32, p. 517-523.

Poblete-Castro, I.; Becker, J.; Dohnt, K., dos Santos V. M.; Wittmann, C. (2012). Industrial biotechnology of *Pseudomonas putida* and related species. Prosdocimi, F. (2007). Introdução a Bioinformática. Curso online. p. 74. Disponínel em: http://www2.bioqmed.ufrj.br. Acessado em: 27/01/2016.

Prosdocimi, F. (2007). Introdução a Bioinformática. Curso online, p. 74. Disponínel em: http://www2.bioqmed.ufrj.br. Acessado em: 27/01/2016.

Puchałka J.; Oberhardt, M. A.; Godinho, M.; Bielecka, A.; Regenhardt, D.;Timmis, K. N.; Papin, J. A.; Martins dos Santos, V. A. (2008). Genomescale reconstruction and analysis of the *Pseudomonas putida KT2440* metabolic network facilitates applications in biotechnology. *PLoS Comput.* v. 4, e 1000210.

Rani, A.; Sharma, A.; Rajagopal, R.; Adak, T.; Bhatnagar, R. K. (2009). Bacterial diversity analysis of larvae and adult midgut microflora using culturedependent and culture-independent methods in lab-reared and field-collected *Anopheles stephensi* an Asian malarial vector. *BMC microbiol.*, v. 9, p. 96.

Rodrigues, R. C. C. (2008). Isolamento e caracterização parcial da microbiota intestinal do mosquito Aedes aegypti mantido em condições estéreis. Monografia - Campos dos Goytacazes - RJ, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, p. 67.

Romoser, W. S. (1996). The vector alimentary system. In: Beaty, B. J., Marquardt, W. C., *The Biol. of Dis. Vect.*, 1^a ed. Colorado University, p. 298-317.

Rossi, M. S.; Fetherston, J. D.; Létoffé, S.; Carniel, E.; Perry, R. D., GHIGO, J. M. (2001). Identification and characterization of the hemophore-dependent heme acquisition system of *Yersinia pestis*. *Infect. Immun.,* v. 69, p. 6707-6717.

Rudolph, G.; Hennecke, H.; Fischer, H. M. (2006). Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. *FEMS Microbiol. Rev.*, v. 30, p. 631648.

Ruiz, L. M.; Dominguez, A.; Ruiz, N.; Vinas, M. (2004). Relationship between clinical and environmental isolates of *Pseudomonas aeruginosa* in a hospital setting. *Arch. Med. Res.*, v. 35, p. 251-257.

Ryter, S. W.; Otterbein, L. E.; Morse, D.; Choi, A. M. K. (2000). Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. *Molec. Cell Biochem.*, v. 235, p. 249-63.

Schlein, Y.; Polacheck, I.; Yuval, B. (1985). Mycoses, bacterial infections and antibacterial activity in sandflies and their possible role in the transmission of leishmaniasis. *Parasitol.* v.90, p. 57-66.

Schmitt, T. H.; Frezzatti, W. A. Jr.; Schreier, S. (1993). Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis *Arch. Biochem. Biophys.*, v. 307, p. 96-103.

Schultz B, Chan S (2001). Structures and proton-pumping strategies of mitochondrial respiratory enzymes. *Annu. Rev. Biophys. Biomol. Struct.* v. 30, p. 23-65.

Seitz, H. M.; Maier, W. A.; Rottok, M., Becker-Feldmann, H. (1987). Concomitant infections of *Anopheles stephensi* with *Plasmodium berghei* and *Serratia marescens*: additive detrimental effects. *Zbl. Bakt. Mik. Hyg.*, v. 266, p. 155-166.

Sim, S.; Dimopoulos, G. (2010). Dengue Virus Inhibits Immune Responses in *Aedes aegypti* Cells. *PLoS One*, v.5, p. 10678.

Simon, O.; Klaiber, I.; Huber, A.; Pfannstiel, J. (2014). Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.*J. Proteomics*, v. 23, p. 212-227.

Souza, A. V.; Petretski, J. H.; Demasi, M.; Bechara, E. J.; Oliveira, P. L. (1997). Urate protects a blood-sucking insect against hemin-induced oxidative stress. *Free Radic. Biol. Med.* v. 22, p. 209-214.

Souza, W. (2010). Doenças negligenciadas. Rio de Janeiro: Acad. Bras. de Ciênc., p. 56.

Stauff, D. L.; Bagaley, D., Torres, V. J.; Joyce, R., Anderson, K. L.; Kuechenmeister, L.; Dunman, P. M.; Skaar, E. P.(2008). *Staphylococcus aureus* HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. *J. Bacteriol.*, v. 190, p. 3588-3596.

Storz, G.; Imlay, J. A. Oxidative stress. (1999). *Curr. Opin. Microbiol.*, v. 2, p. 188-194.

Svenningsen, N. B., Perez-Pantoja, D., Nikel, P. I., Nicolaisen, M. H., de Lorenzo, V., Nybroe, O. (2015) *Pseudomonas putida* mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. *BMC Microbiol.*, *v.* 15, p. 1-11.

Tauil, P. L. (2002). Aspectos críticos do controle do dengue no Brasil. *Cad. Saúde Pública*. v. 3, p. 867-871.

Tauil, P. L. (2001). Urbanization and dengue ecology. *Caderno de Saúde Pública*, Rio de Janeiro. v. 17, p. 99-102.

Teixeira, A. S.; Bento, F. M. (2007). *Isolamento e caracterização de bactérias degradadoras de gasolina comercial*. Dissertação (Mestrado em faculdade de Agronomia) - Universidade federal do Rio Grande do Sul. p. 82.

Tenhunen, R.; Marver, H. S.; Schmid, R. D. (1969). Microsomal heme oxygenase. Characterization of the enzyme. *J. Biol. Chem.*, 244: 6388-6394.

Theil, E. C. (2007). Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: the ferritin story. *Biometals*. v. 20, p. 513-521.

Tong, Y.; Guo, M. (2009). Bacterial heme-transport proteins and their hemecoordination modes. *Arch. Biochem. Biophys.*, v. 481, p. 1-15.

Travanty, E. A.; Adelman, Z. N.; Franz, A. W.; Keene, K. M.; Beaty, B. J.; Blair, C. D.; James, A. A.; Olson, K. E. (2004). Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. *Insect. Bioch. and Molec. Biol.*, v. 34, p. 607- 613.

Velayudhan, J.; Castor, M.; Richardson, A.; Main-Hester, K. L.; Fang, F. C. (2007). The role of ferritins in the fisiology of *Salmonella enterica sv.* Typhimurium: a unique role for ferritin B in iron-sulfur cluster repair and virulence. *Mol.Microbiol.*, v. 63, p. 1495-1507.

Verhoef, S.; Ballerstedt, H.; Volkers, R. J.; Winde, J. H.; Ruijssenaars, H. J. (2010). Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. *Appl. Microbiol. Biotechnol.*, v. 2, p. 679-90.

Wandersman C.; Depeleire P. (2004). Bacterial iron sources: from siderophores to hemophores. *Annu. Rev. Microbiol.*, v. 58, p. 611-647.

Wang, Y.; Gilbreath III, T. M.; Kukutla P.; Yan G.; Xu, J. (2011). Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. *PLoS One,* v. 6, e 24767.

Wang, N.; Zhang, J.; Zhang, L.; Yang, X. Y.; Li, N.; Yu, G; Han, J.; Cao, K.; Guo, Z.; Sun, X., He, Q. Y. (2014). Proteomic analysis of putative hemebinding proteins in *Streptococcus pyogenes. Metallom.*, v. 6; p. 1451-1459.

Wasinger, V. C.; Cordwell, S. J.; Ceroa-Poljak, A.; Yan, J. X.; Gooley, A. A.; Wilkins, K. L.; Humphery-Smith, I. (1995). Progress with gene-product mapping of the Mollicutes: *Mycoplasma genitalium*. *Electrophor*. v.16, p.1090-1094.

Wicher, K. B.; Fries, E. (2006). Haptoglobin, a hemoglobin-binding plasma protein, is present in bony fish and mammals but not in frog and chicken. *Proc. Natl. Acad. Sci.*, v. 103, p. 4168-73.

Wilkins, M. R.; Pasquali, C.; Appel, R. D.; OU, K.; Golaz, O.; Sanchez, J. C.; Jan, J. X.; Gooley, A. A.; Hughes, E.; Humphery-Smith, I.; Willians, K. L.; Hochstrasser, D. F. (1996). From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. *Nature Biotech.*, v.14, p. 61-65.

Winn, W. Jr.; Allen S. D.; Janda W. M.; Koneman E. W.; Procop, G.; Schrechenberger, P. C.; Woods, G. (2008). *Diagnóst. Microbiol.* 6^a ed. Guanabara Koogan, Rio de Janeiro. p. 1760.

Wyckoff, E. E.; Lopreato, G. F.; Tipton, K. A.; Payne, S. M. (2005). *Shigella dysenteriae* ShuS promotes utilization of heme as an iron source and protects against heme toxicity. *J. Bacteriol.*, v. 16, 5658-5664.

Xu, H.; Que, G.; Yu, D. (2005). Characterization of petroporphyrins using ultraviolet-visible spectroscopy and laser desorption ionization time-of-flight mass spectrometry. *Energy and Fuels*, v. 19, p. 517-524.

Yamaoka-Yano, D. M.; Mazzafera, P. (1999). Catabolism of caffeine and purification of a xanthine oxidase responsible for methyluric acids production in *Pseudomonas putida* L. *Rev. Microbiol.*, v. 30, p. 62-70.

Yeom, J.; Lee, Y.; Park, W. (2012). ATP-dependent RecG helicase is required for the transcriptional regulator OxyR function in *Pseudomonas species.J. Biol. Chem.*, v. 287, p. 24492-24504.

Anexos

				-		(Continua)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059V325	3,336028623	5	4	37,5317	5,11E-06	Lactoylglutathione lyase DW66_3663 PE=3 SV=1
A0A059UQ63	2,945626714	3	3	26,5538	6,90E-05	50S ribosomal protein L27 rpmA PE=3 SV=1
A0A059UUI0	2,884301877	6	4	32,4187	0,001823364	Aconitate hydratase DW66_2171 PE=4 SV=1
A0A059V2B3	2,660526988	1	1	6,6701	9,36E-06	Phosphomethylpyrimidine kinase DW66_5015 PE=4 SV=1
A0A059UYY7	2,623685055	2	2	11,6902	0,002399821	UPF0434 protein DW66_1820 DW66_1820 PE=3 SV=1
A0A059V534	2,444081787	4	4	40,1646	5,39E-08	Bacterioferritin DW66_4564 PE=3 SV=1
A0A059USE9	2,375748942	1	1	6,9985	0,000123215	2-dehydro-3-deoxyphosphooctonate aldolase kdsA PE=3 SV=1
A0A059UV45	2,16477559	1	1	6,3235	0,010117958	Succinate dehydrogenase, hydrophobic membrane anchor protein DW66_4036 PE=4 SV=1
A0A059V0J6	2,139967368	2	1	11,4914	8,55E-06	Short-chain dehydrogenase DW66_2381 PE=3 SV=1
A0A059UQ90	2,054175435	6	5	46,415	1,04E-06	Ubiquinol oxidase subunit II DW66_0828 PE=4 SV=1
A0A059UU77	2,0264414	9	9	71,6644	0,000477955	Outer membrane porin DW66_0273 PE=4 SV=1
A0A059USP1	2,003011862	2	1	22,0342	0,001111177	Extracellular solute-binding protein DW66_0857 PE=4 SV=1
A0A059USH6	1,866791292	1	1	6,4096	0,001404403	Magnesium chelatase DW66_2836 PE=4 SV=1
A0A059V0U7	1,830676337	1	1	5,7386	9,42E-06	NADH dehydrogenase subunit E DW66_3965 PE=4 SV=1

Anexo A. Tabela contendo todas as proteínas diferencialmente expressas que foram identificadas em *P. putida* na presença de 0,1 mM de hemina.

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059V1N6	1,804679263	4	4	22,7848	0,000103097	50S ribosomal protein L13 rpIM PE=3 SV=1
A0A059V3Z7	1,801569038	7	5	69,235	8,64E-06	Succinate dehydrogenase iron-sulfur subunit DW66_4034 PE=4 SV=1
A0A059V3N1	1,777533412	1	1	5,6944	5,35E-06	Phosphoribosyl-AMP cyclohydrolase hisl PE=3 SV=1
A0A059V2M8	1,737504418	12	11	90,2842	1,45E-07	Phosphoglycerate kinase pgk PE=3 SV=1
A0A059URU4	1,723896127	7	4	54,7331	5,91E-05	Ubiquinol oxidase subunit 1 DW66_0829 PE=3 SV=1
A0A059UR31	1,723590267	43	37	466,4195	6,48E-06	Pyruvate dehydrogenase E1 component DW66_0346 PE=4 SV=1
A0A059V0G0	1,714787477	9	7	54,7158	6,57E-05	Magnesium transporter MgtE DW66_4248 PE=3 SV=1
A0A059V4S5	1,710781561	10	10	85,7787	3,27E-05	Peptidoglycan-associated lipoprotein OprL DW66_4433 PE=3 SV=1
A0A059UUT5	1,694099486	5	4	34,8025	9,34E-06	30S ribosomal protein S12 rpsL PE=3 SV=1
E2RY76	1,679332911	1	1	16,6134	5,10E-05	50S ribosomal protein L30 rpmD PE=3 SV=1
A0A059USQ4	1,674839396	13	13	116,628	2,86E-07	Keto-hydroxyglutarate-aldolase/keto-deoxy-phosphogluconate aldolase DW66_1337 PE=4 SV=1
A0A059V138	1,67198204	2	2	12,798	0,007369319	Permease of the drug/metabolite transporter DW66_2799 PE=4 SV=1
A0A059UQF3	1,647304626	5	4	29,2282	1,54E-06	Outer membrane chaperone Skp DW66_1145 PE=4 SV=1

Anexo A. Tabela contendo todas as proteínas diferencialmente expressas que foram identificadas em *P. putida* na presença de 0,1 mM de hemina.

Anexo A. Tabela contendo todas as proteínas diferencialmente expressas que foram identificadas em *P. putida* na presença de 0,1 mM de hemina.

(Continuação)

Accession	Max fold	Peptide	Unique	Confidence	Anova (p)	Description
		count	peptides		0.00012544	laashariamataaa hudralaaa DWCC 2000 DE 1 SV 1
AUAUS9UZRO	1,62634724	3	2	17,0044	0,00013541	ISOCHONSMALASE NYOTOIASE DW66_2090 PE=4 SV=1
A0A059UWK9	1,612644152	1	1	6,5714	0,008111667	Ornithine carbamoyltransferase DW66_4567 PE=3 SV=1
A0A059UWN1	1,586275311	12	10	119,7265	2,18E-06	6-phosphogluconolactonase DW66_1011 PE=4 SV=1
A0A059UW01	1,58499264	5	3	34,6155	3,30E-05	GTPase Der der PE=3 SV=1
A0A059UT87	1,583951148	1	1	6,3108	0,002870655	4Fe-4S ferredoxin DW66_1169 PE=4 SV=1
A0A059UXF8	1,564823475	9	6	65,5821	4,52E-06	Aldehyde dehydrogenase DW66_3179 PE=3 SV=1
A0A059V578	1,559467394	24	20	199,2689	2,22E-06	Fe-S type hydro-lyase subunit alpha DW66_4684 PE=4 SV=1
A0A059V078	1,548184645	2	2	11,2394	0,000791178	Alkyl hydroperoxide reductase AhpD DW66_3724 PE=4 SV=1
A0A059V5I9	1,536383556	4	4	38,6512	6,25E-05	30S ribosomal protein S18 rpsR PE=3 SV=1
A0A059UPZ4	1,514030261	24	20	221,4209	2,94E-06	Acetyltransferase component of pyruvate dehydrogenase complex DW66_0345 PE=3 SV=1
A0A059UPS7	1,512993607	8	4	107,3821	0,000446074	ATP synthase subunit b atpF PE=3 SV=1
A0A059V3K8	1,508584474	2	2	13,9911	0,000558388	Translation initiation factor IF-1 infA PE=3 SV=1
A0A059UZU2	1,503736259	3	3	27,9485	2,13E-07	DNA-directed RNA polymerase subunit omega rpoZ PE=3 SV=1
A0A059UTG9	1,499058453	9	7	92,2846	5,23E-06	Protein OsmC DW66_1783 PE=4 SV=1
A0A059UXV9	1,482729465	1	1	5,4899	0,04104278	Uncharacterized protein DW66_4999 PE=4 SV=1
A0A059UW17	1,478811415	3	2	18,1264	0,000407529	Uncharacterized protein DW66_2701 PE=4 SV=1
A0A059V3T9	1,478209797	7	7	59,6148	3,00E-05	Exodeoxyribonuclease III DW66_5711 PE=4 SV=1
						(Continuação)
------------	--------------------	---------------	--------------------	---------------------	-------------	--
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UWZ2	1,457171645	18	14	200,4588	7,58E-05	Elongation factor Ts tsf PE=3 SV=1
A0A059UVQ6	1,454843505	8	6	63,0291	7,21E-05	Alkylphosphonate utilization operon protein PhnA DW66_0690 PE=4 SV=1
A0A059UWD1	1,45357812	14	9	98,1474	4,23E-05	Outer membrane porin DW66_4450 PE=4 SV=1
A0A059V5K0	1,431700138	9	8	81,4766	0,000237897	Protein GrpE grpE PE=3 SV=1
A0A059UV43	1,428397558	19	18	169,2511	0,000167619	Dihydrolipoyl dehydrogenase DW66_4031 PE=4 SV=1
A0A059UTI2	1,426825734	22	18	165,9492	1,45E-05	Glucose-6-phosphate 1-dehydrogenase zwf PE=3 SV=1
A0A059UQN7	1,423836952	21	14	166,7248	1,55E-05	Protein RecA recA PE=3 SV=1
A0A059UQA9	1,422883702	12	6	93,973	1,38E-06	Glutamyl-tRNA(GIn) amidotransferase subunit A gatA PE=3 SV=1
A0A059URD1	1,416197476	7	5	62,0812	6,18E-05	Inorganic pyrophosphatase ppa PE=3 SV=1
A0A059UVT5	1,416087764	43	29	388,5221	0,000614034	Aconitate hydratase B DW66_2174 PE=3 SV=1
A0A059V0U8	1,411388163	13	9	105,4974	3,59E-06	Phosphoribosylaminoimidazole-succinocarboxamide synthase purC PE=3 SV=1
A0A059USY3	1,407403659	23	20	170,7241	0,000158512	Phosphogluconate dehydratase DW66_0998 PE=4 SV=1
A0A059UX58	1,404603773	8	8	54,7054	0,007308041	Lipoprotein LppC DW66_4757 PE=4 SV=1
A0A059URC4	1,389199291	2	2	12,2556	0,00490095	Uncharacterized protein DW66_2164 PE=4 SV=1
A0A059US65	1,388575579	1	1	11,0838	0,000836553	Alcohol dehydrogenase DW66_0566 PE=4 SV=1
A0A059UYZ8	1,386221752	2	2	13,4784	0,000115935	Uncharacterized protein DW66_1830 PE=4 SV=1
A0A059UUY6	1,381537454	4	3	22,7119	0,000331464	O-succinylhomoserine sulfhydrylase DW66_1877 PE=3 SV=1
A0A059UV64	1,374893956	13	11	133,9236	3,39E-06	30S ribosomal protein S4 rpsD PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059USU7	1,373597465	3	3	19,0119	8,95E-05	Uncharacterized protein DW66_3082 PE=4 SV=1
A0A059V6F7	1,372417731	9	6	61,4713	0,00011679	Pyruvate carboxylase subunit A DW66_5767 PE=4 SV=1
E2RXP1	1,370957167	4	3	31,6201	0,00027291	50S ribosomal protein L14 rplN PE=3 SV=1
A0A059V5E3	1,367462182	1	1	7,5528	0,016839666	30S ribosomal protein S15 rpsO PE=3 SV=1
A0A059UQW3	1,366557557	11	10	119,8833	1,29E-05	Elongation factor P efp PE=3 SV=1
A0A059UZH7	1,363497968	6	3	45,7895	0,001162905	Uncharacterized protein DW66_5480 PE=4 SV=1
A0A059UR91	1,360979565	2	2	12,7386	1,89E-05	Bifunctional protein GImU glmU PE=3 SV=1
A0A059V0X3	1,358786224	1	1	6,8163	0,055325145	Alkyl hydroperoxide reductase/ thiol specific antioxidant/ Mal allergen DW66_4421 PE=4 SV=1
A0A059V2N7	1,356826097	3	2	23,5947	8,98E-06	Methylenetetrahydrofolate reductase DW66_5210 PE=3 SV=1
A0A059UXG9	1,355021676	22	21	248,3666	1,07E-05	Ornithine carbamoyltransferase DW66_0988 PE=3 SV=1
A0A059URV8	1,354797557	7	6	75,7503	4,96E-05	Phosphate-binding protein PstS DW66_2444 PE=3 SV=1
A0A059V3Y8	1,352376179	5	3	31,4815	0,001251688	3-oxoacyl-ACP synthase DW66_4019 PE=3 SV=1
A0A059V2H4	1,349269209	5	4	37,524	2,50E-05	Cell division protein FtsZ ftsZ PE=3 SV=1
A0A059UQQ4	1,348772432	32	29	411,9472	2,53E-05	ATP synthase subunit beta atpD PE=3 SV=1
A0A059UU32	1,34748544	6	5	49,2902	6,81E-05	Peroxidase DW66_0238 PE=4 SV=1
A0A059V0Y3	1,347481732	22	18	238,685	9,29E-07	Succinyl-CoA ligase [ADP-forming] subunit beta sucC PE=3 SV=1
A0A059UUJ9	1,341870408	6	6	50,3565	1,65E-05	Sterol-binding domain-containing protein DW66_3831 PE=4 SV=1

(Continuação) Max fold Peptide Unique Confidence Description Anova (p) Accession change peptides count score Outer membrane porin DW66 0237 PE=4 SV=1 A0A059UUF5 1.336473241 16 12 125,5838 1,13E-05 Ubiquinone biosynthesis O-methyltransferase ubiG PE=3 A0A059UUG7 1,334628205 11,2163 2 1 0.046289591 SV=1 Bifunctional purine biosynthesis protein PurH purH PE=3 A0A059UXZ7 1,333617508 0,000147344 119,8677 16 14 SV=1 Alcohol dehydrogenase DW66 3750 PE=3 SV=1 A0A059UUA4 1.332105416 123,392 6.68E-05 12 11 A0A059V4E6 1,332073695 12 9 115,1799 1,70E-05 Acetylornithine aminotransferase argD PE=3 SV=1 A0A059URR3 1,330095022 43,5374 3,81E-05 Aminopeptidase N DW66_0769 PE=4 SV=1 4 4 A0A059UTB9 1,329687494 5 3 34,4997 0,000213697 Phosphoglucomutase DW66 3344 PE=3 SV=1 8 6 58,3856 0,000239612 Superoxide dismutase DW66_4703 PE=3 SV=1 A0A059V1I3 1,321172619 1,319011504 5 4 35,1914 0.001364519 Alcohol dehydrogenase DW66 4987 PE=4 SV=1 A0A059V5F5 15 30S ribosomal protein S5 rpsE PE=3 SV=1 A0A059UQ21 1,316722688 15 137,0043 2,88E-06 E2RXN6 1,315755289 7 0.000815396 50S ribosomal protein L23 rpIW PE=3 SV=1 6 45,7823 28 21 Malate dehydrogenase DW66 5322 PE=3 SV=1 A0A059V5T5 1,313859481 294,0399 4,10E-07 1,313014841 10 8 7,60E-05 HflK protein DW66 5125 PE=4 SV=1 A0A059V2I4 62,8901 7 8 67.915 9.78E-05 Scaffold protein DW66 0872 PE=4 SV=1 A0A059USQ3 1.312835027 10 7 3,50E-06 OmpF protein DW66 1944 PE=3 SV=1 A0A059UTZ6 1,311397327 116,5949 A0A059UYL2 1.310778368 2 0.139392925 Gluconokinase DW66 3151 PE=4 SV=1 3 17.4718 1,309702222 7 0.000480202 Carbonic anhydrase DW66_0074 PE=3 SV=1 A0A059UPU0 5 66,4403 A0A059V5W4 1,30791596 14 13 118,3348 0,000132097 GTP-binding protein TypA DW66_5281 PE=4 SV=1 1,304425228 8 7 56,8238 Glutamine--tRNA ligase glnS PE=3 SV=1 A0A059UXP4 0.000276795 Ubiquinol-cvtochrome c reductase, cytochrome c1 A0A059V5A6 1,303761601 31,5418 0.008510299 2 4 DW66 4764 PE=4 SV=1

(Continuação) Max fold Peptide Unique Confidence Anova (p) Description Accession change peptides count score A0A059USP5 1,302613952 19,3036 0,000275016 Queuine tRNA-ribosyltransferase tgt PE=3 SV=1 2 1 Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C A0A059US26 1,301852201 41,461 0.001330279 4 4 gatC PE=3 SV=1 A0A059V3I5 1,301675678 6,4584 0,010217335 Uncharacterized protein DW66 3712 PE=4 SV=1 1 1 Protein TolB tolB PE=3 SV=1 A0A059V1W1 1,299285969 9 6 54,579 8,00E-05 Outer membrane lipoprotein OprI DW66 2153 PE=4 SV=1 1,296351957 6 72,9516 0,003297937 A0A059UVR4 6 A0A059UTI1 1,295183997 35 32 402,0876 2,55E-05 ATP synthase subunit alpha atpA PE=3 SV=1 A0A059UTS8 1,291615083 19 16 189,1011 1,12E-05 ATP synthase gamma chain atpG PE=3 SV=1 D-3-phosphoglycerate dehydrogenase DW66_5398 PE=3 1.291034103 0.000407568 A0A059V5W7 15 12 116,1753 SV=1 A0A059USN6 1.290891554 5 3 44.6782 0.005558759 Carbamate kinase DW66 0987 PE=3 SV=1 2 2 A0A059UTD4 0,007218934 Uncharacterized protein DW66 1717 PE=4 SV=1 1.288779109 11,4799 A0A059UXY2 3 2 16,87 0,000117673 UPF0250 protein DW66 5034 DW66 5034 PE=3 SV=1 1,288446188 A0A059UVY6 1,287944807 2 16,6425 Probable malate: quinone oxidoreductase mgo PE=3 SV=1 3 0.011992108 2-oxoglutarate dehydrogenase E1 component DW66 4033 1,287743922 386,9316 0.000677025 A0A059V4A1 41 36 PE=4 SV=1 A0A059V5J3 1.285249537 27 23 248.7425 9.25E-06 Polyribonucleotide nucleotidyltransferase pnp PE=3 SV=1 S-(Hydroxymethyl)glutathione dehydrogenase/class III alcohol A0A059USF2 1,285229962 2 30,1177 0.000610264 4 dehydrogenase DW66_1161 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UQA0	1,281954746	3	3	37,9741	0,00131454	Nucleoside diphosphate kinase ndk PE=3 SV=1
A0A059UTJ9	1,279560833	22	20	152,865	0,000215979	Ribonuclease E rne PE=3 SV=1
A0A059UZF9	1,274908039	1	1	5,3571	0,007696245	Sulfurtransferase TusA homolog tusA PE=3 SV=1
A0A059US56	1,273170113	27	13	200,6234	0,003341905	Aconitate hydratase B DW66_2650 PE=3 SV=1
A0A059UX71	1,271299579	7	6	78,9601	1,54E-05	30S ribosomal protein S9 rpsI PE=3 SV=1
A0A059V3C0	1,270790393	11	11	121,4393	0,000330117	30S ribosomal protein S6 rpsF PE=3 SV=1
A0A059UQB3	1,270496203	3	3	18,1155	0,012509047	ABC transporter ATP-binding protein DW66_0944 PE=3 SV=1
A0A059URH2	1,27013618	2	2	12,0227	0,035574212	Peptidyl-prolyl cis-trans isomerase DW66_0624 PE=4 SV=1
A0A059V315	1,26949114	5	4	40,9285	0,000291401	tRNA pseudouridine synthase B truB PE=3 SV=1
A0A059UTZ2	1,269466552	5	5	46,854	0,005396839	4-hydroxy-4-methyl-2-oxoglutarate aldolase DW66_1939 PE=3 SV=1
A0A059V5R4	1,268400321	6	3	36,2909	0,018516355	Fructose-1,6-bisphosphatase class 1 fbp PE=3 SV=1
A0A059UWA6	1,267128232	4	2	22,9541	0,050528617	Outer membrane protein assembly factor BamB bamB PE=3 SV=1
A0A059V2V4	1,264734356	7	7	69,7194	0,000394512	Protein-export protein SecB secB PE=3 SV=1
A0A059UT60	1,262863239	13	11	82,1408	0,000343312	Saccharopine dehydrogenase DW66_3253 PE=4 SV=1
A0A059UYR2	1,262698855	1	1	6,2317	0,000338662	50S ribosomal protein L31 rpmE PE=3 SV=1
A0A059V100	1,262500135	17	15	137,4742	7,88E-06	Ferritin Dps protein DW66_4446 PE=3 SV=1
A0A059UVN9	1,261109504	17	15	154,4071	0,000888975	Serine hydroxymethyltransferase glyA PE=3 SV=1

(Continuação) Max fold Peptide Unique Confidence Accession Anova (p) Description change peptides count score Malonyl CoA-acyl carrier protein transacylase DW66_1833 A0A059UQY3 0,000713571 7 5 1,260732236 52,5612 PE=3 SV=1 1.257661526 0.000507198 RNA polymerase sigma factor DW66 4613 PE=3 SV=1 A0A059V1C3 3 22,6475 4 Thiol:disulfide interchange protein DW66 0102 PE=3 SV=1 10 7 A0A059UTP6 1.255282869 68.7943 0.000228146 Delta-aminolevulinic acid dehydratase DW66_3265 PE=3 A0A059V2I1 1.253193538 2 2 19,9225 0.00145539 SV=1 A0A059UPS6 1.247415942 7 7 62.5194 0.000790818 ATP synthase epsilon chain atpC PE=3 SV=1 Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex DW66 4032 PE=3 A0A059UZY4 1,24671294 16 14 145,9106 1,56E-05 SV=1 A0A059UZV6 1,244229866 21 20 4,11E-05 Trigger factor tig PE=3 SV=1 228,135 A0A059UWU3 1.241294255 0.01973202 Oxaloacetate decarboxylase DW66_4652 PE=3 SV=1 2 12.1674 1 A0A059UX75 1,24105307 10 8 77,1507 0.010901563 Tryptophan--tRNA ligase trpS PE=3 SV=1 38 36 60 kDa chaperonin groL PE=3 SV=1 A0A059V2F7 1,241010883 405,1965 2,79E-05 6 6 61,4866 0.001134449 Probable thiol peroxidase tpx PE=3 SV=1 A0A059V2F4 1.240746748 A0A059V654 1.238669079 8 8 66.4211 0.000534487 Nitrogen regulatory protein P-II 1 DW66 5482 PE=3 SV=1 DNA polymerase III subunit beta DW66 0022 PE=4 SV=1 A0A059UTJ0 1.238353397 75.388 11 9 4.53E-05 1,237944796 2 30,2094 NADH pyrophosphatase nudC PE=3 SV=1 A0A059V0L6 3 0.056346736 9 5 Thioredoxin DW66 5464 PE=3 SV=1 A0A059V4E4 1,234840396 85,0308 0.001369131 Probable transcriptional regulatory protein DW66_2353 A0A059UWA2 | 1,23347773 4 4 24,7901 0.00646341 DW66 2353 PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UYH7	1,227738599	32	29	248,0649	3,14E-06	Ribonucleoside-diphosphate reductase DW66_3520 PE=3 SV=1
E2RY93	1,227494804	8	7	86,5305	9,28E-05	30S ribosomal protein S13 rpsM PE=3 SV=1
A0A059UQ17	1,223607266	42	28	399,7453	0,000331659	Elongation factor G fusA PE=3 SV=1
A0A059UTV3	1,223308329	22	12	145,1317	0,010477109	Argininosuccinate lyase argH PE=3 SV=1
A0A059UWJ6	1,222679119	7	5	90,1028	2,28E-06	Cold-shock domain-contain protein DW66_4547 PE=4 SV=1
A0A059UW34	1,22222577	16	13	110,6226	0,000236697	ThreoninetRNA ligase thrS PE=3 SV=1
E2RXN5	1,221250368	4	2	30,9498	0,259930403	30S ribosomal protein S10 rpsJ PE=3 SV=1
A0A059USE4	1,218665772	9	8	106,6779	6,73E-05	50S ribosomal protein L21 rpIU PE=3 SV=1
A0A059V4L1	1,215376748	8	5	55,0535	0,004963411	Acetylglutamate kinase argB PE=3 SV=1
A0A059V495	1,215166503	21	17	134,7943	0,000113866	Chaperone protein HtpG htpG PE=3 SV=1
A0A059UUU7	1,21256091	8	7	72,3687	0,000417578	50S ribosomal protein L6 DW66_0479 PE=3 SV=1
A0A059UUU2	1,209802744	6	5	56,982	0,000542071	50S ribosomal protein L22 DW66_0469 PE=3 SV=1
A0A059V3V7	1,209742915	6	5	37,3481	0,038503127	NADH-quinone oxidoreductase subunit C/D nuoC PE=3 SV=1
A0A059V1T8	1,208936573	8	7	48,7795	0,000346812	Type VI secretion system effector DW66_3105 PE=4 SV=1
A0A059UUV2	1,208021867	24	19	229,1206	9,28E-05	DNA-directed RNA polymerase subunit alpha rpoA PE=3 SV=1
A0A059UQ62	1,206690343	10	10	81,4453	9,22E-05	Peptidyl-prolyl cis-trans isomerase DW66_0688 PE=4 SV=1

Anexo A. Tabela contendo todas as proteínas diferencialmente expressas que foram identificadas em *P. putida* na presença de 0,1 mM de hemina.

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UUV5	1,206627581	3	2	24,8634	0,011436433	Transcriptional regulator TetR DW66_1842 PE=4 SV=1
A0A059UUH6	1,206014215	20	18	207,6321	9,50E-05	Phosphoenolpyruvate carboxykinase [ATP] pckA PE=3 SV=1
A0A059UY77	1,203621866	6	5	45,0108	0,000649482	Glucose-1-phosphate thymidylyltransferase DW66_1714 PE=3 SV=1
A0A059V5M8	1,201799709	22	18	169,485	1,75E-05	Transketolase DW66_5197 PE=3 SV=1
A0A059UV59	1,199497738	9	8	115,6252	4,36E-05	50S ribosomal protein L15 rpIO PE=3 SV=1
A0A059V5J1	1,198634071	19	13	137,2922	0,00053587	Iron ABC transporter periplasmic iron-binding protein DW66_5117 PE=4 SV=1
A0A059UQ80	1,198065331	5	4	30,6275	0,005416512	Peptidase M48 Ste24p DW66_0778 PE=3 SV=1
A0A059UVH7	1,195929471	4	2	21,9199	0,019253412	Protein phosphatase CheZ DW66_4182 PE=3 SV=1
A0A059UUF3	1,195895232	4	1	22,1402	0,034280816	DNA-binding protein DW66_2135 PE=3 SV=1
A0A059UQ30	1,192768339	7	5	40,5713	2,57E-05	3,4-dihydroxy-2-butanone 4-phosphate synthase ribB PE=3 SV=1
A0A059V5P4	1,192654871	2	2	12,2735	0,072203956	Bifunctional protein pyrR DW66_5232 PE=4 SV=1
A0A059V492	1,190269424	4	4	32,5135	0,005312393	3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase fabA PE=3 SV=1
A0A059V5J5	1,189248591	26	22	241,0907	0,001679378	Transcription termination/antitermination protein NusA nusA PE=3 SV=1
A0A059UV42	1,188418082	89	76	822,9851	2,77E-05	DNA-directed RNA polymerase subunit beta' rpoC PE=3 SV=1
A0A059V433	1,186973579	1	1	10,0288	0,099553065	Transposase DW66_5832 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UX94	1,185553721	25	19	203,4936	8,25E-05	Inosine-5'-monophosphate dehydrogenase guaB PE=3 SV=1
A0A059UZ06	1,183521236	4	4	29,6205	0,005374178	Glutathione reductase DW66_3731 PE=3 SV=1
A0A059UQA1	1,181260895	8	5	48,4273	0,021575179	HistidinetRNA ligase hisS PE=3 SV=1
A0A059UYE0	1,180888095	21	16	193,7623	0,000302793	Adenosylhomocysteinase ahcY PE=3 SV=1
A0A059URK8	1,180714462	6	6	35,4247	0,000969089	ATP-dependent protease DW66_0684 PE=4 SV=1
A0A059UTC3	1,18061347	8	6	50,0473	0,004370344	DNA gyrase subunit A gyrA PE=3 SV=1
A0A059UWX3	1,180407416	9	8	91,2741	0,031322947	Transcriptional regulator DW66_4677 PE=4 SV=1
A0A059USP3	1,179905163	12	11	121,4765	0,0023043	Glyceraldehyde-3-phosphate dehydrogenase DW66_1322 PE=3 SV=1
A0A059UTN5	1,178471879	12	10	93,4864	0,000930895	NLPA lipoprotein DW66_0087 PE=4 SV=1
A0A059V455	1,178194376	5	5	33,0311	0,098514958	NADH-quinone oxidoreductase subunit B nuoB PE=3 SV=1
A0A059UZZ0	1,17799292	1	1	5,7872	0,106519512	Methylisocitrate lyase DW66_2166 PE=3 SV=1
A0A059UUY0	1,177743732	9	8	55,1865	0,001500672	Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta accD PE=3 SV=1
A0A059V3Y5	1,173667637	17	11	126,0591	1,05E-05	Pyruvate carboxylase subunit B DW66_5766 PE=4 SV=1
A0A059V4K0	1,173114068	7	5	66,1816	0,000574764	Cytochrome c5 DW66_5689 PE=4 SV=1
B1Q4S5	1,175185801	5	4	39,3064	0,00501487	Chaperone protein DnaJ T3305 PE=3 SV=1
A0A059UX21	1,172782454	5	5	74,7555	0,000334244	10 kDa chaperonin groS PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059V2U3	1,17098051	7	5	46,5203	0,01024713	Ribonucleoside-diphosphate reductase subunit beta DW66_3522 PE=3 SV=1
A0A059UVC3	1,168037785	2	2	17,9733	0,006461638	UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso- diaminopimelate ligase DW66_0559 PE=3 SV=1
A0A059V4A3	1,167935176	25	22	252,0203	0,001118067	Citrate synthase DW66_4038 PE=3 SV=1
A0A059UYQ2	1,164647402	2	1	14,0827	0,009083253	Sporulation domain-containing protein DW66_5314 PE=4 SV=1
A0A059V178	1,164546905	26	18	213,5294	0,000498723	Argininosuccinate synthase argG PE=3 SV=1
A0A059V4D8	1,164334868	21	19	153,4073	0,004868911	Aspartokinase DW66_4250 PE=3 SV=1
Q9Z400	1,1640832	2	2	12,9415	0,002036889	Toluene tolerance protein ttg2C PE=4 SV=1
A0A059V1S9	1,164024584	2	2	11,983	0,00728157	4-hydroxy-tetrahydrodipicolinate synthase dapA PE=3 SV=1
A0A059UZT3	1,163964959	12	10	96,7714	0,001504471	NADH dehydrogenase subunit G DW66_3967 PE=4 SV=1
A0A059UTF5	1,16323362	1	1	11,3596	0,000719129	ABC transporter substrate-binding protein DW66_3399 PE=4 SV=1
A0A059UQ16	1,154998783	4	3	44,4398	0,000456337	50S ribosomal protein L7/L12 rpIL PE=3 SV=1
A0A059UPX1	1,154471184	5	5	35,0212	0,000254381	Cystine transporter subunit DW66_0230 PE=4 SV=1
A0A059V5R8	1,151790455	17	12	134,4046	0,000268425	Phosphomethylpyrimidine synthase thiC PE=3 SV=1
A0A059USA0	1,150006043	10	8	71,0836	0,002908898	IsoleucinetRNA ligase ileS PE=3 SV=1
A0A059UTW7	1,148998282	13	12	139,6556	0,000476588	30S ribosomal protein S2 rpsB PE=3 SV=1
A0A059V273	1,148559826	30	25	252,535	2,28E-05	Translation initiation factor IF-2 infB PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059US24	1,148007612	3	2	32,4228	0,002034105	Single-stranded DNA-binding protein DW66_0495 PE=3 SV=1
A0A059UXB7	1,146992838	36	27	234,3343	0,007112042	Phosphoribosylformylglycinamidine synthase purL PE=3 SV=1
A0A059V5N2	1,14695289	13	11	82,9671	0,000118938	Phosphoribosylamineglycine ligase purD PE=3 SV=1
A0A059UQ13	1,146132008	13	11	84,5938	0,000332709	N-acetyl-gamma-glutamyl-phosphate reductase argC PE=3 SV=1
A0A059UXE1	1,146088732	5	3	37,0806	0,006801398	Peptidyl-prolyl cis-trans isomerase DW66_1283 PE=4 SV=1
A0A059US11	1,144424769	12	11	119,9199	0,003728126	30S ribosomal protein S3 rpsC PE=3 SV=1
A0A059UZ35	1,144141629	16	11	109,9145	0,001276665	3-isopropylmalate dehydrogenase leuB PE=3 SV=1
A0A059URL0	1,141621051	8	5	47,0709	0,001365478	Translation initiation factor IF-3 infC PE=3 SV=1
A0A059UY63	1,138333444	13	11	85,0148	0,000224077	Chorismate mutase DW66_1699 PE=4 SV=1
A0A059V5G4	1,138190659	8	6	54,7394	0,000816434	Glutamate-1-semialdehyde 2,1-aminomutase hemL PE=3 SV=1
A0A059UY55	1,135550529	4	4	17,8962	0,022307989	Protein HfIC DW66_5124 PE=3 SV=1
A0A059V282	1,135047586	40	33	434,7899	0,001512203	Chaperone protein DnaK dnaK PE=2 SV=1
A0A059UUT7	1,132299566	15	14	158,2281	0,000196636	50S ribosomal protein L3 rpIC PE=3 SV=1
A0A059UR85	1,131934457	71	61	696,1739	0,000173724	DNA-directed RNA polymerase subunit beta rpoB PE=3 SV=1
A0A059V489	1,12960233	3	2	17,7946	0,00591923	Glycerol-3-phosphate dehydrogenase [NAD(P)+] gpsA PE=3 SV=1
A0A059UXP2	1,127346148	21	18	151,853	0,002895248	CTP synthase pyrG PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UQW7	1,125902252	9	9	55,182	0,006760672	ATP-dependent RNA helicase DeaD deaD PE=3 SV=1
A0A059UR94	1,125643788	2	2	20,1442	0,003070313	ATP synthase subunit delta atpH PE=3 SV=1
A0A059UVQ4	1,125377676	34	27	225,9866	0,000344894	AlaninetRNA ligase alaS PE=3 SV=1
A0A059UUL7	1,125099937	8	8	50,0807	0,009204852	1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4- carboxamide isomerase hisA PE=3 SV=1
A0A059V097	1,124881862	14	14	96,54	0,026284017	Glutaminase-asparaginase DW66_2273 PE=3 SV=1
A0A059UQ60	1,124695203	5	5	29,4246	0,010906375	ABC transporter ATP-binding protein DW66_0678 PE=3 SV=1
A0A059UVI1	1,121928066	20	18	157,9651	0,002602277	Ribose-phosphate pyrophosphokinase prs PE=3 SV=1
A0A059UUX1	1,121577217	3	3	24,6539	0,01354226	3-isopropylmalate dehydratase large subunit leuC PE=3 SV=1
A0A059URG6	1,120950433	11	8	71,1485	0,00013973	Methylmalonate-semialdehyde dehydrogenase DW66_0614 PE=3 SV=1
A0A059V5J4	1,120458682	13	12	99,7327	0,00036118	Adenylosuccinate synthetase purA PE=3 SV=1
A0A059V3B4	1,120349439	8	7	53,1042	0,128652491	Extracellular ligand-binding receptor DW66_5103 PE=4 SV=1
A0A059UQZ0	1,1201893	22	15	141,8293	0,004647425	Aromatic amino acid aminotransferase DW66_1848 PE=3 SV=1
M1LCX4	1,11904383	3	3	17,1619	0,007763665	RND efflux transporter, MFP subunit ttgA PE=4 SV=1
A0A059V6A1	1,118901093	3	3	17,5123	0,00839781	Phosphate-specific transport system accessory protein PhoU DW66_5743 PE=3 SV=1
A0A059UR09	1,117682428	12	9	75,5019	0,003444083	Aminopeptidase N DW66_1893 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UW77	1,117659786	4	3	36,6636	0,178024571	ATP phosphoribosyltransferase hisG PE=3 SV=1
A0A059UX95	1,115725416	1	1	6,2496	0,043221443	Uncharacterized protein DW66_3108 PE=4 SV=1
A0A059V5M5	1,114459746	16	12	153,791	0,003195035	Fructose-1,6-bisphosphate aldolase DW66_5192 PE=4 SV=1
A0A059V2Z2	1,114168797	8	5	63,5747	0,000647983	RNA polymerase-binding transcription factor DksA dksA PE=3 SV=1
A0A059V5Q8	1,113611185	4	4	38,9378	0,063104787	Proline iminopeptidase DW66_5262 PE=3 SV=1
A0A059US16	1,112300426	11	10	122,6758	0,00354623	50S ribosomal protein L18 rpIR PE=3 SV=1
A0A059V3K3	1,111719362	7	6	54,1804	0,393026515	Outer-membrane lipoprotein carrier protein loIA PE=3 SV=1
A0A059UZZ5	1,111163522	13	10	132,7975	0,067917606	Electron transfer flavoprotein alpha/beta-subunit DW66_4047 PE=4 SV=1
A0A059V551	1,111106436	14	11	127,365	0,000284881	UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase lpxC PE=3 SV=1
A0A059V2H1	1,110333713	14	12	126,171	0,000320849	NH(3)-dependent NAD(+) synthetase nadE PE=3 SV=1
A0A059UZU9	1,109567894	11	8	71,8852	0,011272084	PhenylalaninetRNA ligase alpha subunit pheS PE=3 SV=1
A0A059UT13	1,108055004	8	8	67,9251	0,000433959	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha accA PE=3 SV=1
A0A059USJ2	1,106813586	4	4	33,2355	0,002005574	Lipoprotein DW66_0772 PE=4 SV=1
A0A059USJ7	1,10440149	9	8	70,0751	0,001451259	Long-chain fatty acidCoA ligase DW66_0782 PE=4 SV=1
A0A059V6E0	1,102167087	2	1	18,5765	0,009171315	Endoribonuclease DW66_5722 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UVI6	1,101088346	4	2	30,3535	0,003737004	Uncharacterized protein DW66_0746 PE=4 SV=1
A0A059UYG7	1,098994512	7	6	47,5657	0,010228661	Dihydroorotase pyrC PE=3 SV=1
A0A059V5D6	1,098500043	21	17	186,0953	0,004740749	Putative reductase DW66_4854 DW66_4854 PE=3 SV=1
A0A059URZ5	1,096368531	6	5	46,5399	0,047054478	Anthranilate phosphoribosyltransferase trpD PE=3 SV=1
A0A059UWR4	1,095198627	8	5	49,5911	0,01011925	Phosphoribosylglycinamide formyltransferase 2 purT PE=3 SV=1
A0A059V4E3	1,093000577	3	3	26,1699	0,01418917	GTPases DW66_4255 PE=4 SV=1
A0A059UTL4	1,092393206	6	6	41,8967	0,016544628	Tryptophan synthase beta chain trpB PE=3 SV=1
A0A059V6G4	1,091496731	8	8	58,9476	0,001945443	Cyclopropane-fatty-acyl-phospholipid synthase DW66_5787 PE=4 SV=1
A0A059UXK4	1,091094643	17	16	162,614	0,001104905	OmpA/MotB domain-containing protein DW66_1434 PE=3 SV=1
A0A059UYP8	1,089913927	17	15	141,9039	0,001808481	Aspartate-semialdehyde dehydrogenase asd PE=3 SV=1
A0A059UR88	1,088911228	21	18	231,6928	0,000454872	50S ribosomal protein L2 rpIB PE=3 SV=1
A0A059V5E7	1,088616981	8	8	63,8735	0,003356042	Carbamoyl-phosphate synthase small chain carA PE=3 SV=1
A0A059UUL5	1,085705577	19	17	159,0818	0,004330356	Sulfite reductase (Ferredoxin) DW66_2212 PE=4 SV=1
E2RXN9	1,085020551	5	4	50,693	0,009565933	50S ribosomal protein L29 rpmC PE=3 SV=1
A0A059V5C7	1,083865667	16	16	163,0452	0,006691377	Ketol-acid reductoisomerase ilvC PE=3 SV=1

		-		-		(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059V5B3	1,083852391	19	14	192,4637	0,04021753	Amino acid ABC transporter periplasmic amino acid-binding protein DW66_4784 PE=4 SV=1
A0A059V3Z5	1,083445928	21	16	247,7754	0,001871657	Succinyl-CoA ligase [ADP-forming] subunit alpha DW66_4029 PE=3 SV=1
A0A059V5P9	1,083235026	6	4	44,9535	0,126929021	Poly(Hydroxyalcanoate) granule associated protein GA2 DW66_5242 PE=4 SV=1
A0A059V5J9	1,081175896	37	27	256,2854	0,002635905	Carbamoyl-phosphate synthase (glutamine-hydrolyzing) DW66_4961 PE=3 SV=1
A0A059UQS7	1,079560783	9	8	64,1614	0,129077352	Oligopeptidase A DW66_0070 PE=3 SV=1
A0A059V1H8	1,076897628	6	5	48,7874	0,004555612	NADH:flavin oxidoreductase DW66_4698 PE=4 SV=1
A0A059V3Q8	1,075906682	23	20	202,0613	0,039338961	Glutamine synthetase DW66_5283 PE=3 SV=1
A0A059V3L3	1,074571644	44	34	409,1301	0,003503189	Isocitrate dehydrogenase DW66_3869 PE=4 SV=1
A0A059UZD4	1,073323388	9	9	65,8699	0,056664252	ATP-dependent Clp protease proteolytic subunit clpP PE=3 SV=1
A0A059UQZ7	1,072684028	2	2	13,2253	0,160028648	33 kDa chaperonin hslO PE=3 SV=1
A0A059URL3	1,070932771	4	3	34,905	0,020368053	Integration host factor subunit alpha ihfA PE=3 SV=1
A0A059UQ19	1,070506202	8	8	87,7588	0,034091644	50S ribosomal protein L16 rpIP PE=3 SV=1
A0A059UT45	1,066332504	13	11	102,4451	0,007422011	Adenylate kinase adk PE=3 SV=1
A0A059UVX9	1,065851078	4	3	31,1796	0,170220902	Fe/S biogenesis protein NfuA nfuA PE=3 SV=1
A0A059V4X8	1,064234626	6	5	60,9416	0,01866718	Glutaredoxin DW66_4565 PE=3 SV=1
A0A059UUS0	1,062221256	2	1	12,3813	0,187889531	Protein OsmC DW66_0433 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UVC7	1,062161817	21	20	206,7046	0,000584936	Glyceraldehyde-3-phosphate dehydrogenase DW66_2007 PE=3 SV=1
A0A059UTL0	1,061756838	12	9	110,6299	0,028723723	3-ketoacyl-ACP reductase DW66_1834 PE=3 SV=1
A0A059UWI1	1,060986425	26	22	175,0229	0,010403947	Phosphoenolpyruvate carboxylase ppc PE=3 SV=1
A0A059UW39	1,057933144	3	3	18,1259	0,037241719	Aldehyde dehydrogenase DW66_2731 PE=4 SV=1
A0A059UZH3	1,05700354	5	4	34,9412	0,234153783	Diaminopimelate decarboxylase lysA PE=3 SV=1
A0A059UTY7	1,056494541	54	45	400,4113	0,028371769	NAD-glutamate dehydrogenase DW66_1934 PE=4 SV=1
A0A059UR75	1,056486605	21	17	155,2972	0,039668245	Anthranilate synthase component I DW66_0426 PE=4 SV=1
A0A059UX43	1,055756646	12	8	74,6429	0,099793159	Cell division protein ftsA DW66_4742 PE=3 SV=1
A0A059UWH0	1,055271651	12	9	75,5944	0,141149792	Rod shape-determining protein MreB DW66_0926 PE=4 SV=1
A0A059V4N5	1,054819514	5	4	39,0616	0,001196513	N5-carboxyaminoimidazole ribonucleotide mutase purE PE=3 SV=1
A0A059URS8	1,054023809	5	3	50,3329	0,002382142	Peptidyl-prolyl cis-trans isomerase DW66_0794 PE=4 SV=1
A0A059UQ48	1,052942584	2	2	23,9707	0,392447223	30S ribosomal protein S20 rpsT PE=3 SV=1
A0A059URE4	1,052798748	2	2	14,4545	0,487871424	Acetyl-CoA carboxylase biotin carboxyl carrier protein subunit DW66_0574 PE=4 SV=1
A0A059V2Z3	1,052070534	16	14	118,0844	0,02512888	Decarboxylase DW66_3436 PE=4 SV=1

				(Continuação)					
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description			
A0A059V0Y7	1,050057194	29	25	214,291	0,009910201	Succinate dehydrogenase, flavoprotein subunit DW66_4035 PE=4 SV=1			
A0A059UQH1	1,049736866	6	5	48,209	0,003237374	Phosphoribosylformylglycinamidine cyclo-ligase purM PE=3 SV=1			
A0A059V1J5	1,049283823	2	2	15,5551	0,030015164	Histidine kinase DW66_4718 PE=4 SV=1			
A0A059UZH6	1,048861459	4	3	23,7592	0,280074221	Universal stress protein DW66_1990 PE=3 SV=1			
A0A059V5C6	1,045327233	3	2	21,8777	0,278408599	D-isomer specific 2-hydroxyacid dehydrogenase NAD-binding protein DW66_4819 PE=3 SV=1			
A0A059UVP6	1,044763238	14	12	97,0971	0,104553919	ATP-dependent Clp protease ATP-binding subunit ClpX clpX PE=3 SV=1			
A0A059V0B0	1,044273724	8	8	76,0374	0,07911715	50S ribosomal protein L20 rpIT PE=3 SV=1			
A0A059V0M3	1,044125642	4	3	23,3737	0,494857488	Peptidyl-prolyl cis-trans isomerase DW66_4325 PE=3 SV=1			
A0A059US22	1,042952475	7	5	63,5422	0,080780389	50S ribosomal protein L17 rpIQ PE=3 SV=1			
A0A059V0U2	1,042945641	12	11	73,3836	0,120471776	Probable malate:quinone oxidoreductase mqo PE=3 SV=1			
A0A059UUJ7	1,042907312	8	6	52,1781	0,210302614	Acyl-CoA dehydrogenase domain-containing protein DW66_0378 PE=3 SV=1			
A0A059UV79	1,042239212	33	24	273,5117	0,018805909	Phosphoenolpyruvate synthase DW66_1937 PE=3 SV=1			
A0A059UVB7	1,039730552	21	14	143,2674	0,007945085	Fatty acid oxidation complex subunit alpha fadB PE=3 SV=1			
A0A059V3A6	1,038781212	6	5	42,3902	0,259221126	Ferritin Dps protein DW66_5093 PE=4 SV=1			

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059US05	1,037440666	15	10	138,5071	0,089968331	50S ribosomal protein L10 rplJ PE=3 SV=1
A0A059USZ2	1,036198565	22	17	172,8134	0,183585153	2-isopropylmalate synthase leuA PE=3 SV=1
A0A059UU79	1,035992046	10	9	88,5523	0,010488507	Alkyl hydroperoxide reductase subunit C DW66_3730 PE=4 SV=1
A0A059V2B1	1,034938089	16	11	120,5234	0,004202082	AMP nucleosidase amn PE=3 SV=1
A0A059UXE6	1,033360491	6	5	47,1297	0,096896725	Carboxyl-terminal protease DW66_1288 PE=3 SV=1
A0A059UQM2	1,032791186	18	16	159,5644	0,013430252	Enolase eno PE=3 SV=1
A0A059UQD8	1,031524299	20	15	147,9749	0,180976574	Threonine synthase DW66_1070 PE=4 SV=1
A0A059USH2	1,031388022	4	1	28,9928	0,044782446	Uncharacterized protein DW66_1196 PE=4 SV=1
A0A059UVC1	1,030645885	13	12	86,9424	0,016068245	Octaprenyl diphosphate synthase DW66_0691 PE=3 SV=1
A0A059URK6	1,029657852	27	21	223,2286	0,227842378	Succinate-semialdehyde dehdyrogenase DW66_0214 PE=3 SV=1
A0A059V0K3	1,02892281	11	10	64,0675	0,087311095	ATP-dependent Clp protease ATP-binding protein ClpA DW66_3865 PE=3 SV=1
A0A059V5U2	1,027904509	6	5	48,7939	0,516639761	Non-canonical purine NTP pyrophosphatase DW66_5337 PE=3 SV=1
A0A059UTC6	1,027161309	35	27	332,7782	0,245442027	30S ribosomal protein S1 DW66_1702 PE=3 SV=1
A0A059US39	1,026340555	6	5	42,9945	0,608426212	Thioredoxin DW66_0521 PE=4 SV=1
A0A059US04	1,022242496	32	28	423,5294	0,100233116	Elongation factor Tu tuf PE=3 SV=1
A0A059V0G9	1,021786034	6	6	34,2546	0,16942763	Arginine N-succinyltransferase DW66_4258 PE=4 SV=1
A0A059V3X0	1,021703671	8	7	73,476	0,433035472	Adenylosuccinate lyase DW66_3873 PE=3 SV=1
A0A059UTF4	1,021397024	1	1	6,3889	0,600055887	Isochorismatase hydrolase DW66_1753 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UZ53	1,020612499	11	10	89,8283	0,07273095	Transaldolase tal PE=3 SV=1
A0A059V632	1,020219718	21	18	217,5368	0,189672925	Putrescine ABC transporter periplasmic putrescine-binding protein DW66_5427 PE=4 SV=1
A0A059V276	1,020044719	3	3	29,6428	0,387737183	Peptidyl-prolyl cis-trans isomerase DW66_3276 PE=3 SV=1
A0A059V1F1	1,019885903	3	2	23,1716	0,624160497	N-succinylarginine dihydrolase astB PE=3 SV=1
A0A059UT62	1,01691799	3	3	19,3266	0,366787099	Arsenate reductase DW66_1220 PE=3 SV=1
A0A059UUT1	1,016904663	16	15	150,6649	0,233759158	50S ribosomal protein L1 rpIA PE=3 SV=1
A0A059UYI0	1,01675304	4	3	30,2663	0,852238129	Site-determining protein DW66_1303 PE=3 SV=1
A0A059UT39	1,015089336	21	17	135,6728	0,404743432	LysinetRNA ligase lysS PE=3 SV=1
A0A059UTK7	1,012575126	11	11	84,8514	0,569056607	Alcohol dehydrogenase DW66_0047 PE=4 SV=1
A0A059V5Y0	1,009813519	6	5	34,9726	0,413038787	ArgininetRNA ligase argS PE=3 SV=1
A0A059V3W5	1,009730297	11	10	107,2066	0,024415587	Isocitrate dehydrogenase [NADP] DW66_3868 PE=3 SV=1
A0A059V5V5	1,009606868	18	15	127,3884	0,305365406	Dihydroxy-acid dehydratase ilvD PE=3 SV=1
A0A059US48	1,008565826	3	1	38,3352	0,596269753	DNA-binding protein DW66_0965 PE=3 SV=1
A0A059V3N8	1,007017821	10	9	77,4502	0,68918621	Amino acid ABC transporter periplasmic amino acid-binding protein DW66_5258 PE=3 SV=1
A0A059UWQ1	1,006938364	11	5	83,156	0,752727681	Protein RecA recA PE=3 SV=1
A0A059UV63	1,006338634	40	30	311,5861	0,702805809	Chaperone protein ClpB clpB PE=3 SV=1
A0A059V2W8	1,005909257	5	4	29,3226	0,794108651	Acetolactate synthase 3 regulatory subunit DW66_4912 PE=4 SV=1
A0A059UQ72	1,005652846	16	13	109,9765	0,804692994	Ribosome-binding ATPase YchF ychF PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UTJ1	1,004399295	20	16	139,8024	0,834935188	GMP synthase [glutamine-hydrolyzing] guaA PE=3 SV=1
A0A059UY07	1,003884694	16	15	149,4586	0,650206141	Ribosome-recycling factor frr PE=3 SV=1
A0A059US09	1,00014345	8	7	91,1161	0,982436511	50S ribosomal protein L4 rpID PE=3 SV=1
A0A059V2F9	1,000921034	4	3	23,9271	0,995390851	Curved DNA-binding protein cbpA PE=3 SV=1
A0A059V6A7	1,002300715	5	5	40,7867	0,984686337	Aspartate ammonia-lyase DW66_5758 PE=3 SV=1
A0A059URL4	1,00235074	9	8	63,9026	0,892328904	GTPase Obg_obg PE=3 SV=1
A0A059UZB2	1,003682279	1	1	6,078	0,876963032	Sensory box protein DW66_2106 PE=4 SV=1
A0A059V6A5	1,009982675	7	6	55,9075	0,714479475	N5-carboxyaminoimidazole ribonucleotide synthase purK PE=3 SV=1
A0A059UQF0	1,012039343	12	11	95,2743	0,792834471	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N- succinyltransferase dapD PE=3 SV=1
A0A059V231	1,016034019	7	7	38,8853	0,500207592	Deoxycytidine triphosphate deaminase dcd PE=3 SV=1
A0A059UZ00	1,021059641	10	9	78,4783	0,490591924	NLPA lipoprotein DW66_5410 PE=4 SV=1
A0A059UUN6	1,022267072	2	2	11,129	0,874298076	ATP-dependent Clp protease adapter protein ClpS clpS PE=3 SV=1
A0A059V216	1,022306859	2	2	12,1656	0,622874569	17 kDa surface antigen DW66_4521 PE=4 SV=1
A0A059V5A8	1,026251082	3	1	17,3625	0,772957596	Aldo/keto reductase DW66_4769 PE=4 SV=1
A0A059UPW8	1,027735906	21	15	224,3256	0,034964046	4-aminobutyrate aminotransferase DW66_0215 PE=3 SV=1
A0A059V395	1,028171583	4	4	34,8092	0,167194854	Copper metallochaperone DW66_5073 PE=4 SV=1
A0A059UTF9	1,028499486	5	4	27,5137	0,140119775	Zinc-containing alcohol dehydrogenase DW66_1290 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059URP9	1,029325952	6	4	41,0422	0,138044116	Probable Fe(2+)-trafficking protein DW66_0289 PE=3 SV=1
A0A059V5T9	1,030117044	4	4	30,8856	0,472229693	Pyrroline-5-carboxylate reductase proC PE=3 SV=1
A0A059V3V1	1,030514162	15	9	109,4108	0,15588945	Elongation factor G fusA PE=3 SV=1
A0A059UV53	1,031581766	13	11	125,0187	0,478354474	Electron transfer flavoprotein subunit alpha DW66_4046 PE=4 SV=1
A0A059V5M7	1,037856574	2	2	20,544	0,092450272	Ribosomal silencing factor RsfS rsfS PE=3 SV=1
A0A059UWA9	1,038355021	4	4	30,9206	0,036272824	Carbohydrate-selective porin OprB DW66_1007 PE=4 SV=1
A0A059V244	1,039918949	8	8	54,8456	0,304675566	Glycerol kinase glpK PE=3 SV=1
A0A059V2S6	1,040824291	8	6	58,9598	0,306827019	Glucans biosynthesis protein G opgG PE=3 SV=1
A0A059USV1	1,043733777	29	24	188,6717	0,008361859	Aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B gatB PE=3 SV=1
A0A059UX60	1,045086643	25	24	223,7799	0,022301691	Arginine deiminase arcA PE=3 SV=1
A0A059US07	1,045996455	9	8	81,0915	0,11872588	30S ribosomal protein S7 rpsG PE=3 SV=1
A0A059UX81	1,046291255	17	15	139,4488	0,00557626	Sulfate adenylyltransferase subunit 1 cysN PE=3 SV=1
A0A059V3K1	1,048272611	2	2	20,5116	0,041182399	UTPglucose-1-phosphate uridylyltransferase DW66_3732 PE=3 SV=1
A0A059UQ11	1,048920801	8	5	52,5821	0,679929807	Indole-3-glycerol phosphate synthase trpC PE=3 SV=1
A0A059UVY3	1,050666849	15	12	103,5114	0,050419311	Cysteine desulfurase IscS iscS PE=3 SV=1
A0A059UVA3	1,051768838	2	1	11,3557	0,512253718	Uncharacterized protein DW66_1972 PE=4 SV=1
A0A059UQR5	1,053158905	6	6	40,4001	0,062964729	GlycinetRNA ligase beta subunit glyS PE=3 SV=1
A0A059UVV5	1,056083748	8	5	66,2363	0,055781601	50S ribosomal protein L25 rplY PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UTZ0	1,058591931	1	1	6,4158	0,646978835	Uncharacterized protein DW66_0076 PE=4 SV=1
A0A059UW22	1,061146669	7	6	56,1626	0,035940148	Cysteine synthase DW66_4365 PE=3 SV=1
A0A059V4T0	1,06363968	19	15	137,5571	0,04203758	Aspartyl-tRNA synthetase DW66_4443 PE=3 SV=1
A0A059UU49	1,064292844	18	15	132,2802	0,116297145	Soluble pyridine nucleotide transhydrogenase sthA PE=3 SV=1
A0A059UR83	1,06712754	9	9	74,3996	0,013296279	Transcription termination/antitermination protein NusG nusG PE=3 SV=1
A0A059V5G3	1,072315586	13	11	107,9579	0,031364248	Methylmalonate-semialdehyde dehydrogenase DW66_4900 PE=3 SV=1
A0A059UWB9	1,072520972	3	2	16,2933	0,210820333	7-cyano-7-deazaguanine synthase queC PE=3 SV=1
A0A059V3C9	1,072771837	9	8	58,7538	0,004041174	ATP phosphoribosyltransferase regulatory subunit hisZ PE=3 SV=1
A0A059UX70	1,073177177	11	9	84,8198	0,041509885	Oxidoreductase, FAD/NAD(P)-binding subunit DW66_1213 PE=4 SV=1
A0A059V3B0	1,073366355	4	2	31,002	0,616554088	Short-chain dehydrogenase/reductase SDR DW66_5098 PE=4 SV=1
A0A059UPX5	1,073705203	14	9	100,1433	0,053311841	Osmolarity response regulator DW66_0250 PE=4 SV=1
A0A059UQ20	1,076296471	15	13	145,4967	0,052766974	50S ribosomal protein L5 rpIE PE=3 SV=1
A0A059V452	1,078478074	16	13	118,6462	0,001200196	Isocitrate lyase DW66_3958 PE=4 SV=1
A0A059UTS0	1,079200464	16	13	125,3759	0,197771804	Acyl-CoA dehydrogenase domain-containing protein DW66_0137 PE=3 SV=1
A0A059UYC9	1,079482413	8	8	56,0442	0,025472447	S-adenosylmethionine synthase metK PE=3 SV=1
A0A059USW4	1,080263619	8	8	47,4863	0,005180405	Histidinol dehydrogenase hisD PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059URS2	1,081819696	16	15	99,4575	0,001102983	Uncharacterized protein DW66_0784 PE=4 SV=1
A0A059UVC8	1,087001771	7	7	38,5153	0,024937828	Sulfate ABC transporter substrate-binding protein DW66_4136 PE=4 SV=1
A0A059UZ42	1,088420251	3	1	19,0943	0,051690481	Glutamine synthetase DW66_5430 PE=3 SV=1
A0A059V4L4	1,088862757	3	2	16,6043	0,067256725	Protein YicC DW66_5714 PE=4 SV=1
E2RXP7	1,089588193	1	1	12,8604	0,096289693	50S ribosomal protein L36 rpmJ PE=3 SV=1
A0A059UZR9	1,090784019	14	13	158,626	0,037327709	Aldehyde dehydrogenase DW66_5700 PE=3 SV=1
A0A059USR2	1,092351341	3	3	19,036	0,007623875	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin) ispG PE=3 SV=1
A0A059V5W1	1,09267249	4	4	30,725	0,079540006	Thymidylate synthase thyA PE=3 SV=1
A0A059V4P6	1,092951034	5	5	42,3871	0,031327298	Import inner membrane translocase subunit Tim44 DW66_5774 PE=4 SV=1
A0A059UZS9	1,09459962	1	1	13,4042	0,09228476	NADH-quinone oxidoreductase subunit A nuoA PE=3 SV=1
A0A059V2C5	1,095640437	24	21	186,8144	0,000577654	Pyruvate kinase DW66_4681 PE=3 SV=1
Q307P9	1,095931119	7	7	57,337	0,001573709	Fumarylacetoacetase DW66_4836 PE=4 SV=1
A0A059V399	1,098031108	4	3	29,9944	0,015692393	Extracellular solute-binding protein DW66_5426 PE=4 SV=1
A0A059UVY5	1,099374499	8	8	55,5512	0,128494392	3-oxoacyl-(Acyl carrier protein) synthase III DW66_4329 PE=4 SV=1
A0A059V5E4	1,101522681	4	3	32,5752	0,008459608	Ribosome maturation factor RimP rimP PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UUF7	1,102624223	6	5	51,217	0,000962308	Peptide methionine sulfoxide reductase MsrA msrA PE=3 SV=1
A0A059UQJ0	1,105015131	4	3	39,1298	0,000885363	Sugar ABC transporter ATP-binding protein DW66_1006 PE=4 SV=1
A0A059UV37	1,106605517	15	14	135,1717	0,000679184	50S ribosomal protein L11 rplK PE=3 SV=1
A0A059V5Q0	1,117131394	13	10	131,4228	0,029183025	Azurin DW66_5106 PE=4 SV=1
A0A059V4D7	1,121297596	2	2	12,2281	0,087816352	UPF0149 protein DW66_5449 DW66_5449 PE=3 SV=1
A0A059UWK6	1,121632132	13	11	152,1545	5,08E-05	Anti-oxidant AhpCTSA DW66_4562 PE=4 SV=1
A0A059UVQ0	1,121940516	8	7	71,9129	0,048818631	Thioredoxin reductase DW66_0801 PE=3 SV=1
A0A059UUH2	1,129153657	18	15	126,2914	0,016195986	3-phosphoshikimate 1-carboxyvinyltransferase DW66_1700 PE=3 SV=1
A0A059V328	1,129712243	5	5	36,3011	0,000205334	Beta-ketothiolase DW66_3496 PE=3 SV=1
A0A059V685	1,131351206	11	10	77,7248	0,049104427	Phosphomannomutase DW66_5708 PE=3 SV=1
A0A059UVL8	1,134821681	3	2	17,8055	0,018038753	Beta-ketoacyl-ACP synthase DW66_4217 PE=4 SV=1
A0A059UR69	1,136834547	44	38	372,485	4,60E-05	Serine protein kinase PrkA DW66_0406 PE=4 SV=1
A0A059UQT6	1,136870163	1	1	5,4464	0,051143497	Periplasmic solute binding protein DW66_0095 PE=3 SV=1
A0A059V1F4	1,143652586	14	9	120,3113	0,075687664	ABC transporter substrate-binding protein DW66_4266 PE=4 SV=1
A0A059URQ2	1,146005118	2	2	11,5454	0,073220127	Imidazoleglycerol-phosphate dehydratase hisB PE=3 SV=1

					1	(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059UQZ6	1,147171861	5	4	29,4995	0,019430368	3-isopropylmalate dehydratase small subunit leuD PE=3 SV=1
A0A059V4Y0	1,151464797	23	21	246,3011	0,036210209	Extracellular solute-binding protein DW66_4575 PE=4 SV=1
A0A059UPZ0	1,154265469	4	3	30,7624	6,91E-06	L-threonine aldolase DW66_0325 PE=3 SV=1
A0A059V2V3	1,160944797	4	4	22,0223	0,024371512	Nadph-dependent fmn reductase DW66_3542 PE=4 SV=1
A0A059V3E1	1,162250905	6	5	36,5588	0,000806428	Transcriptional regulator MvaT, P16 subunit DW66_3662 PE=4 SV=1
A0A059V3A4	1,167108872	1	1	6,2144	0,004333547	Uncharacterized protein DW66_3612 PE=4 SV=1
A0A059V1P5	1,167237353	7	7	74,9123	0,00461301	PpiC-type peptidyl-prolyl cis-trans isomerase DW66_2893 PE=4 SV=1
A0A059UTP0	1,168120056	11	9	136,4224	8,42E-08	Outer membrane protein H1 DW66_3514 PE=4 SV=1
A0A059URE8	1,169748505	7	6	43,1392	0,006111203	Uncharacterized protein DW66_0579 PE=4 SV=1
A0A059UQQ7	1,17655561	9	7	76,0375	0,006020604	ABC transporter substrate-binding protein DW66_1296 PE=4 SV=1
A0A059V405	1,178536501	5	5	35,7256	4,82E-05	ATPases of the AAA+ class DW66_5399 PE=4 SV=1
A0A059UXQ9	1,180812979	6	6	62,256	0,000489471	50S ribosomal protein L19 rpIS PE=3 SV=1
A0A059URP6	1,185076636	13	10	123,871	0,004532486	Amino acid ABC transporter periplasmic amino acid-binding protein DW66_0284 PE=4 SV=1
A0A059URX1	1,187711899	8	2	63,1539	0,077983692	Aldehyde dehydrogenase DW66_2484 PE=3 SV=1
A0A059V280	1,189725514	4	3	42,9123	0,000633772	Transcription elongation factor GreA greA PE=3 SV=1
A0A059UTX4	1,189803376	1	1	13,978	0,00662129	Uncharacterized protein DW66_0061 PE=4 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059URU1	1,191628578	1	1	11,806	0,01642659	Ferredoxin DW66_2414 PE=4 SV=1
A0A059UQ39	1,192121601	27	20	245,3599	2,76E-05	Acetyl-CoA carboxylase biotin carboxylase subunit DW66_0573 PE=4 SV=1
A0A059V4S1	1,19290118	1	1	6,7015	0,017144701	Dehydratase DW66_4336 PE=4 SV=1
A0A059UU03	1,203402513	5	4	52,6417	0,001030103	Uncharacterized protein DW66_1954 PE=4 SV=1
A0A059UUZ3	1,203494915	22	16	203,1314	0,000245641	Aldehyde dehydrogenase DW66_0555 PE=3 SV=1
A0A059V2G5	1,204929127	4	4	23,0591	0,047788295	UPF0234 protein DW66_4731 DW66_4731 PE=3 SV=1
A0A059UW70	1,204947046	4	4	29,3527	0,000922307	3-deoxy-D-manno-octulosonate 8-phosphate phosphatase DW66_0947 PE=4 SV=1
A0A059US50	1,205886664	17	11	116,0689	0,000635264	Probable cytosol aminopeptidase pepA PE=3 SV=1
A0A059UZU4	1,212573069	3	2	26,5629	0,002142891	NADPH-dependent FMN reductase DW66_3982 PE=4 SV=1
A0A059V3W0	1,219243516	4	3	22,6162	0,042513195	NADH-quinone oxidoreductase subunit I nuol PE=3 SV=1
A0A059V2V0	1,2250799	2	2	12,2097	0,000210952	Acyl-CoA dehydrogenase DW66_3401 PE=4 SV=1
A0A059V0V6	1,225449694	2	2	11,1616	0,00232648	Hemerythrin HHE cation binding domain-containing protein DW66_2516 PE=4 SV=1
A0A059US73	1,22589646	2	2	18,581	0,013522101	Aldolase II DW66_2675 PE=4 SV=1
A0A059V5Z8	1,23107694	10	8	71,6847	0,000123312	Transcription termination factor Rho rho PE=3 SV=1
Q3ZDP3	1,232338899	9	8	122,3966	0,000176694	Cold shock protein A-2 cspA2 PE=4 SV=1
A0A059UQ86	1,234799663	1	1	5,6929	0,015161437	DNA-binding transcriptional regulator FruR DW66_0808 PE=4 SV=1
A0A059UTV2	1,238720122	8	7	60,3132	0,001380696	GlycinetRNA ligase alpha subunit glyQ PE=3 SV=1
A0A059UV55	1,242084625	8	4	55,957	0,000342817	30S ribosomal protein S8 DW66_0478 PE=3 SV=1

						(Continuação)
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description
A0A059V587	1,244115079	3	3	19,1528	0,000551235	Iron-regulated protein A DW66_4709 PE=4 SV=1
O52267	1,248811974	7	7	61,4675	0,000459535	CheW cheW PE=4 SV=1
A0A059UYK4	1,253884453	4	4	23,5485	0,000780606	Histidine ammonia-lyase hutH PE=3 SV=1
A0A059UZM5	1,261705986	1	1	13,8746	0,005062054	UspA domain-containing protein DW66_2045 PE=4 SV=1
A0A059UVN2	1,269920238	4	3	22,1042	1,91E-05	Transcriptional regulator ArsR DW66_2540 PE=4 SV=1
A0A059V2H5	1,279422355	13	12	125,0796	0,000571484	50S ribosomal protein L9 rpll PE=3 SV=1
A0A059UTC5	1,286520758	10	8	64,5725	1,54E-06	Aromatic amino acid aminotransferase DW66_3354 PE=3 SV=1
A0A059UVT9	1,291642022	3	3	24,9742	0,000477613	Peptidase DW66_2180 PE=4 SV=1
A0A059UQS1	1,292868687	3	3	17,3141	0,00043717	Uncharacterized protein DW66_1686 PE=4 SV=1
A0A059UQU6	1,294240499	11	10	71,2442	0,000212915	Alcohol dehydrogenase DW66_1742 PE=4 SV=1
A0A059UQ06	1,298290131	3	3	18,4013	6,60E-05	UPF0229 protein DW66_0405 DW66_0405 PE=3 SV=1
A0A059UWJ2	1,29947803	3	2	17,9577	0,054656824	Succinylglutamate desuccinylase/aspartoacylase DW66_4542 PE=4 SV=1
A0A059UVS6	1,299658762	9	8	99,5438	0,000344082	Putative pterin-4-alpha-carbinolamine dehydratase DW66_4272 PE=3 SV=1
A0A059UW63	1,322248133	13	11	81,3765	4,80E-05	Phosphonate ABC transporter periplasmic phosphonate- binding protein DW66_0845 PE=4 SV=1
A0A059UWK1	1,32529412	6	5	38,9467	0,002316103	Aminomethyltransferase DW66_0976 PE=3 SV=1
A0A059UTU4	1,326573803	6	6	52,7091	0,015376201	Uncharacterized protein DW66_1101 PE=4 SV=1

					(Continuação)			
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description		
A0A059V683	1,328635274	3	2	20,2844	0,000121231	50S ribosomal protein L28 rpmB PE=3 SV=1		
A0A059USH3	1,331764246	13	11	117,4447	7,21E-05	Branched-chain-amino-acid aminotransferase DW66_2831 PE:		
A0A059V145	1,33337329	23	21	207,3475	0,000137266	Extracellular ligand-binding receptor DW66_4513 PE=4 SV		
A0A059V5H2	1,337905797	2	2	12,034	0,000306715	Uncharacterized protein DW66_4915 PE=4 SV=1		
A0A059V0F2	1,347919432	6	5	34,9584	2,01E-05	3-methyl-2-oxobutanoate dehydrogenase DW66_4238 PE=4		
Q9Z3Z7	1,355578397	1	1	5,6679	0,001638551	BolA protein ttg2F PE=3 SV=1		
E2RY87	1,356319881	5	5	33,077	0,003835277	50S ribosomal protein L24 rplX PE=3 SV=1		
A0A059V258	1,358587833	3	3	18,488	0,001166386	Gluconate 2-dehydrogenase acceptor subunit DW66_3119 PE		
A0A059UXI9	1,358649762	3	1	28,6338	0,000189795	Gamma-aminobutyraldehyde dehydrogenase DW66_1080 PE=		
A0A059V5G0	1,362135852	1	1	5,0504	0,096003389	3-hydroxyisobutyrate dehydrogenase DW66_4895 PE=4 S		
A0A059UW67	1,363578076	5	4	35,8416	0,00238874	Sigma 54 modulation protein/ribosomal protein S30EA DW66 PE=4 SV=1		
A0A059UPU5	1,372297389	7	4	49,7951	6,60E-06	Probable GTP-binding protein EngB engB PE=3 SV=1		
A0A059UV12	1,373348946	2	1	12,3057	0,01187885	Ribonuclease H rnhA PE=3 SV=1		
A0A059UU24	1,400398868	1	1	12,4004	0,002369333	Molybdenum cofactor biosynthesis protein B DW66_1979 PE=		

					(Continuação)					
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description				
A0A059UVJ4	1,400901047	10	8	62,3256	0,000228704	Enoyl-CoA hydratase/isomerase DW66_2077 PE=3 SV=				
A0A059V1F9	1,406540006	2	2	20,1	0,000271164	Phenylalanine 4-monooxygenase DW66_4271 PE=4 SV:				
A0A059UQR4	1,411279007	6	6	47,6571	4,36E-05	Glycine betaine ABC transporter substrate-binding protein DW(PE=4 SV=1				
A0A059UVQ9	1,411401778	2	2	16,8107	4,38E-05	N-succinylglutamate 5-semialdehyde dehydrogenase astD PE=				
A0A059V4H0	1,425522779	1	1	5,8568	0,001156881	Uncharacterized protein DW66_4296 PE=4 SV=1				
A0A059UZQ0	1,438983799	5	4	27,791	1,09E-05	Acetyl-CoA acetyltransferase DW66_2075 PE=3 SV=1				
A0A059V221	1,477442888	3	2	22,5785	6,72E-05	3-oxoacid CoA-transferase subunit B DW66_3064 PE=4 SV=1				
A0A059UUE7	1,49662974	7	7	56,8736	5,72E-06	Formaldehyde dehydrogenase DW66_0333 PE=3 SV=1				
A0A059UR44	1,506905514	11	10	85,9689	0,00010544	Malate synthase G glcB PE=3 SV=1				
A0A059UYB7	1,512981427	2	2	10,8974	0,003343067	Hexapeptide repeat-containing transferase DW66_3051 PE=4 SV=1				
A0A059UWF6	1,514014915	7	5	48,136	5,83E-05	NADH:flavin oxidoreductase DW66_1078 PE=4 SV=1				
A0A059V5B0	1,521007904	4	4	23,8633	0,000140047	Uncharacterized protein DW66_4774 PE=4 SV=1				
A0A059UUW5	1,523787264	4	4	22,6043	0,000101614	Metal dependent phosphohydrolase DW66_2318 PE=4 SV=1				
A0A059UUI1	1,53296472	1	1	11,33	0,017988438	LysM protein DW66_0262 PE=4 SV=1				

					(Continuação)				
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description			
A0A059UXE8	1,537260673	24	21	226,6798	1,58E-05	4-hydroxyphenylpyruvate dioxygenase DW66_3169 PE=3 SV=1			
A0A059UWX8	1,54900802	1	1	6,6866	0,000308202	Endonuclease/exonuclease/phosphatase DW66_2968 PE=4 SV=1			
A0A059V1B7	1,577670326	1	1	6,1271	0,005404951	Uncharacterized protein DW66_2727 PE=4 SV=1			
A0A059V4D1	1,60909778	11	10	76,0017	4,18E-05	Branched-chain alpha-keto acid dehydrogenase subunit E2 DW66_4240 PE=3 SV=1			
A0A059V242	1,609726867	5	4	35,116	0,000115361	Type VI secretion protein EvpB DW66_3094 PE=4 SV=1			
A0A059V5J0	1,635918948	3	3	17,3922	6,46E-05	Pantothenate synthetase panC PE=3 SV=1			
A0A059V5K4	1,652590938	5	5	41,0919	0,000131533	Uncharacterized protein DW66_4976 PE=4 SV=1			
A0A059V393	1,683010604	8	6	48,4325	2,22E-06	Carbon storage regulator homolog csrA PE=3 SV=1			
A0A059V0H8	1,732861561	13	10	86,7549	5,33E-07	Acetyl-coenzyme A synthetase acsA PE=3 SV=1			
E2RXP9	1,740045292	7	7	56,9952	5,36E-06	30S ribosomal protein S11 rpsK PE=3 SV=1			
A0A059USD0	1,831339806	1	1	5,2886	0,00475398	Uncharacterized protein DW66_1121 PE=4 SV=1			
A0A059UTF6	1,856887722	2	2	12,2884	1,55E-05	Transcriptional regulator Cro/CI DW66_1285 PE=4 SV=1			
A0A059V0L5	1,860034684	2	2	11,5533	0,002557802	Uncharacterized protein DW66_4315 PE=4 SV=1			
A0A059UW04	1,863873986	5	4	30,4209	7,61E-06	Zinc-containing alcohol dehydrogenase DW66_2686 PE=3 SV=1			
A0A059V4R2	1,932781384	3	3	18,4571	2,05E-05	DEAD/DEAH box helicase DW66_4316 PE=3 SV=1			
A0A059URC5	1,946417513	4	3	34,7	8,32E-05	Protein OsmC DW66_0063 PE=4 SV=1			

	(Continuação)						
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description	
A0A059US53	2,15127104	7	5	91,5689	1,26E-06	Cold-shock DNA-binding domain-containing protein DW66_0975 PE=4 SV=1	
A0A059UX38	2,153022532	5	5	43,6122	4,51E-05	Arginine biosynthesis bifunctional protein ArgJ argJ PE=3 SV=1	
A0A059V4M1	2,212782852	4	4	25,9537	0,000242222	Transketolase, central region DW66_4239 PE=4 SV=1	
A0A059USY7	2,228526332	25	23	238,4592	1,30E-07	Extracellular solute-binding protein DW66_1003 PE=4 SV=1	
A0A059UQ87	2,412821439	5	5	39,7009	9,93E-05	Uncharacterized protein DW66_0813 PE=4 SV=1	
A0A059V2N9	2,422431498	9	9	78,5355	2,53E-06	UPF0312 protein DW66_5215 DW66_5215 PE=3 SV=1	
A0A059V6E4	2,480922357	4	2	24,5193	0,000178144	DNA-binding protein DW66_5732 PE=3 SV=1	
A0A059UUM7	2,721803778	8	5	56,6242	1,98E-06	SerinetRNA ligase serS PE=3 SV=1	
A0A059UVS9	2,731189897	6	5	50,276	1,90E-07	Citrate synthase DW66_2168 PE=3 SV=1	
A0A059V0P2	2,861086312	5	3	29,0772	1,41E-06	Acyl-CoA dehydrogenase domain-containing protein DW66_3915 PE=3 SV=1	
A0A059UZ41	2,929408898	1	1	5,9681	0,000122744	RNA polymerase sigma-29 factor DW66_3343 PE=4 SV=1	
A0A059UTQ4	2,943445782	3	2	17,7139	2,17E-05	NAD binding domain protein DW66_3539 PE=4 SV=1	
A0A059V6H7	3,034558673	2	1	11,01	4,83E-06	MerD2 protein DW66_5848 PE=4 SV=1	
A0A059UUU1	3,313774564	9	8	77,3904	2,22E-07	Propionyl-CoA carboxylase DW66_3916 PE=4 SV=1	
A0A059UZM3	4,615194513	4	4	23,7976	4,94E-07	Gamma-carboxygeranoyl-CoA hydratase DW66_3917 PE=3 SV=1	

				(Conclusão)					
Accession	Max fold change	Peptide count	Unique peptides	Confidence score	Anova (p)	Description			
A0A059UVK5	4,709869159	6	5	36,1867	2,81E-08	FAD dependent oxidoreductase DW66_0761 PE=4 SV=1			
A0A059V400	4,738822625	1	1	6,6857	2,73E-05	Lipid-binding START domain-containing protein DW66_4039 PE=4 SV=1			
A0A059V426	5,829399171	8	5	56,1621	5,40E-06	Acetyl-CoA carboxylase, biotin carboxylase DW66_3918 PE=4 SV=1			
A0A059UXA7	8,447168719	2	1	12,5607	3,41E-05	Uncharacterized protein DW66_2709 PE=4 SV=1			

SeqName	Description	#GO	GO Names list
A0A059V3K8	translation initiation factor if-1	2	C:cytoplasm; F:translation factor activity, RNA binding
A0A059UWN1	6-phosphogluconolactonase	5	P:small molecule metabolic process; P:carbohydrate metabolic process; P:cofactor metabolic process; P:cellular nitrogen compound metabolic process; F:molecular_function
A0A059UT87	ferredoxin	2	P:biological_process; F:ion binding
A0A059UQF3	skp	1	F:unfolded protein binding
A0A059USE9	2-dehydro-3-deoxyphosphooctonate aldolase	6	P:small molecule metabolic process; P:carbohydrate metabolic process; C:cytoplasm; P:lipid metabolic process; P:biosynthetic process; F:transferase activity, transferring alkyl or aryl (other than methyl) groups
E2RY76	50s ribosomal protein I30	3	F:structural constituent of ribosome; C:ribosome; P:translation
A0A059UPS7	atp synthase subunit b	8	F:ATPase activity; P:small molecule metabolic process; F:transmembrane transporter activity; C:protein complex; P:cellular nitrogen compound metabolic process; P:biosynthetic process; C:plasma membrane; C:intracellular

Anexo B – Tabela contendo ontologia gênica das proteínas *up*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Continua)

Anexo B – Tabela contendo ontologia gênica das proteínas *up*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Continuação)

SeqName	Description	#GO	GO Names list
A0A059UV45	succinate dehydrogenase	5	P:small molecule metabolic process; P:generation of precursor metabolites and energy; F:oxidoreductase activity; F:ion binding; C:cellular_component
A0A059V534	bacterioferritin	5	C:cell; F:oxidoreductase activity; P:homeostatic process; F:ion binding; P:transport
A0A059UZU2	dna-directed rna polymerase subunit omega	4	F:DNA binding; F:nucleotidyltransferase activity; P:cellular nitrogen compound metabolic process; P:biosynthetic process
A0A059UQ90	ubiquinol oxidase subunit ii	5	P:generation of precursor metabolites and energy; F:transmembrane transporter activity; F:oxidoreductase activity; F:ion binding; C:plasma membrane
A0A059V0J6	short-chain dehydrogenase	1	F:oxidoreductase activity
A0A059V5I9	30s ribosomal protein s18	4	F:structural constituent of ribosome; C:ribosome; F:rRNA binding; P:translation
A0A059V2B3	phosphomethylpyrimidine kinase	2	F:ion binding; F:kinase activity
A0A059UWK9	ornithine carbamoyltransferase	3	C:cytoplasm; F:ion binding; P:cellular amino acid metabolic process

Anexo B – Tabela contendo ontologia gênica das proteínas *up*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Continuação)

SeqName	Description	#GO	GO Names list
A0A059V3N1	phosphoribosyl-amp cyclohydrolase	6	F:hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds; C:cytoplasm; F:ion binding; P:cellular amino acid metabolic process; P:cellular nitrogen compound metabolic process; P:biosynthetic process
A0A059UUI0	aconitate hydratase	1	F:lyase activity
A0A059UQ63	50s ribosomal protein I27	3	F:structural constituent of ribosome; C:ribosome; P:translation
A0A059UUT5	30s ribosomal protein s12	5	F:structural constituent of ribosome; C:cytosol; C:ribosome; F:rRNA binding; P:translation
A0A059V0U7	nadh dehydrogenase subunit e	2	F:oxidoreductase activity; F:ion binding
A0A059UXF8	aldehyde dehydrogenase	1	F:oxidoreductase activity
A0A059UR31	pyruvate dehydrogenase	1	F:oxidoreductase activity

Anexo B – Tabela contendo ontologia gênica das proteínas *up*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Continuação)

SeqName	Description	#GO	GO Names list
A0A059UPZ4	dihydrolipoamide acetyltransferase	9	P:small molecule metabolic process; P:carbohydrate metabolic process; F:transferase activity, transferring acyl groups; P:generation of precursor metabolites and energy; C:cytoplasm; P:catabolic process; P:cofactor metabolic process; C:protein complex; P:cellular nitrogen compound metabolic process
A0A059V3Z7	succinate dehydrogenase iron-sulfur subunit	4	P:small molecule metabolic process; P:generation of precursor metabolites and energy; F:oxidoreductase activity; F:ion binding
A0A059USQ4	keto-hydroxyglutarate-aldolase keto-deoxy- phosphogluconate aldolase	1	F:lyase activity
A0A059V578	fumarate hydratase	2	P:generation of precursor metabolites and energy; F:lyase activity
A0A059V325	lactoylglutathione lyase	2	F:lyase activity; F:ion binding
A0A059UYY7	y1604_psee4 ame: full=upf0434 protein pseen1604		-
A0A059UU77	membrane protein	2	F:transmembrane transporter activity; C:cellular_component
A0A059V0G0	magnesium transporter	3	F:transmembrane transporter activity; F:ion binding; C:plasma membrane
A0A059USP1	abc transporter		-
Anexo B – Tabela contendo ontologia gênica das proteínas *up*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Conclusão)

SeqName	Description	#GO	GO Names list
A0A059V138	membrane protein	1	C:cellular_component
A0A059UW01	gtp-binding protein	2	F:ion binding; P:ribosome biogenesis
A0A059USH6	magnesium chelatase	2	F:ATPase activity; F:ion binding
A0A059UZR6	isochorismatase	2	P:biological_process; F:molecular_function
A0A059URU4	cytochrome o ubiquinol oxidase subunit i	5	P:generation of precursor metabolites and energy; F:transmembrane transporter activity; F:oxidoreductase activity; F:ion binding; C:plasma membrane
A0A059V078	alkylhydroperoxidase	1	F:oxidoreductase activity
A0A059V2M8	phosphoglycerate kinase	9	P:small molecule metabolic process; P:carbohydrate metabolic process; P:generation of precursor metabolites and energy; C:cytoplasm; P:catabolic process; P:cofactor metabolic process; F:ion binding; P:cellular nitrogen compound metabolic process; F:kinase activity
A0A059V1N6	50s ribosomal protein I13	3	F:structural constituent of ribosome; C:ribosome; P:translation
A0A059V4S5	peptidoglycan-binding protein	2	C:external encapsulating structure; C:plasma membrane

(Continua)				
SeqName	Description	#GO	GO Names list	
E2RXP9	30s ribosomal protein s11	4	F:structural constituent of ribosome; C:ribosome; F:rRNA binding; P:translation	
A0A059UWF6	oxidoreductase	2	F:oxidoreductase activity; F:ion binding	
A0A059V393	carbon storage regulator	3	P:carbohydrate metabolic process; F:RNA binding; P:nucleobase-containing compound catabolic process	
A0A059UVS9	methylcitrate synthase	5	P:small molecule metabolic process; P:carbohydrate metabolic process; F:transferase activity, transferring acyl groups; P:generation of precursor metabolites and energy; C:cytoplasm	
A0A059V6H7	family transcriptional regulator	3	F:DNA binding; P:cellular nitrogen compound metabolic process; P:biosynthetic process	
A0A059V5J0	pantoatebeta-alanine ligase	7	P:small molecule metabolic process; C:cytoplasm; P:cofactor metabolic process; F:ion binding; P:cellular nitrogen compound metabolic process; P:biosynthetic process; F:ligase activity	
A0A059V426	3-methylcrotonyl- carboxylase	2	F:ion binding; F:ligase activity	
A0A059UZ41	rna polymerase sigma factor	5	F:DNA binding; F:nucleic acid binding transcription factor activity; F:transcription factor activity, protein binding; P:cellular nitrogen compound metabolic process; P:biosynthetic process	
A0A059UW04	alcohol dehydrogenase	2	F:oxidoreductase activity; F:ion binding	
A0A059USY7	sugar abc transporter substrate- binding protein		-	

Anexo C – Tabela contendo ontologia gênica das proteínas *down*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Continua)

Anexo C – Tabela contendo ontologia gênica das proteínas *down*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Continuação)

SeqName	Description	#GO	GO Names list
A0A059US53	cold-shock protein	4	F:DNA binding; C:cytoplasm; P:cellular nitrogen compound metabolic process; P:biosynthetic process
A0A059UR44	malate synthase g	6	P:small molecule metabolic process; P:carbohydrate metabolic process; F:transferase activity, transferring acyl groups; P:generation of precursor metabolites and energy; C:cytoplasm; F:ion binding
A0A059UX38	n-acetylglutamate synthase	4	F:transferase activity, transferring acyl groups; C:cytoplasm; P:cellular amino acid metabolic process; P:biosynthetic process
A0A059V4D1	branched-chain alpha-keto acid dehydrogenase subunit e2	1	F:transferase activity, transferring acyl groups
A0A059V6E4	integration host factor	2	F:DNA binding; P:chromosome organization
A0A059UUM7	seryl-trna synthetase	6	C:cytoplasm; F:ion binding; P:tRNA metabolic process; P:cellular amino acid metabolic process; F:ligase activity; P:translation
A0A059UVK5	fad-dependent oxidoreductase	1	F:oxidoreductase activity
A0A059V400	lipid-binding start domain-containing protein	1	F:lipid binding
A0A059V0P2	isovaleryl- dehydrogenase	2	F:oxidoreductase activity; F:ion binding
A0A059UYB7	transferase	2	P:biological_process; F:molecular_function
A0A059V0H8	acetyl- synthetase	6	P:small molecule metabolic process; P:sulfur compound metabolic process; P:cofactor metabolic process; F:ion binding; P:biosynthetic process; F:ligase activity
A0A059UUW5	phosphohydrolase	2	P:biological_process; F:molecular_function

			(COliciusao)
SeqName	Description	#GO	GO Names list
A0A059UWX8	endonuclease exonuclease phosphatase	1	F:nuclease activity
A0A059UUU1	methylcrotonoyl- carboxylase	1	F:ligase activity
A0A059UUI1	peptidoglycan-binding protein		-
A0A059V4M1	2-oxoisovalerate dehydrogenase	2	P:biological_process; F:molecular_function
A0A059V242	family type vi secretion protein		-
A0A059URC5	peroxiredoxin	2	F:oxidoreductase activity; P:response to stress
A0A059V2N9	protein ycei precursor	1	C:cell
A0A059UTF6	cro cl family transcriptional regulator	1	F:DNA binding
A0A059UTQ4	nad binding domain protein	1	F:oxidoreductase activity
A0A059UZM3	gamma-carboxygeranoyl- hydratase	2	P:biological_process; F:molecular_function
A0A059V4R2	rna helicase	2	F:ion binding; F:helicase activity
A0A059UXE8	integral membrane protein ABC transporter	3	F:oxidoreductase activity; F:ion binding; P:cellular amino acid metabolic process

Anexo C – Tabela contendo ontologis gênics das proteínas *down*-reguladas de *P. putida* na pesença de 0,1 mM de hemina. (Conclusão)