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Maura Da Cunha3,4 • Cátia Henriques Callado1,4

Received: 29 January 2016 / Accepted: 25 May 2016 / Published online: 30 July 2016

� Botanical Society of Sao Paulo 2016

Abstract Knowledge about growth rhythm and longevity

of tropical trees is essential to understand life strategies of

native species, and consequently, of forest remnants. This

study aims to investigate the growth dynamics of Cen-

trolobium robustum, a representative species from Atlantic

Forest. For this purpose, radial growth was examined

through tree rings and cambium analysis, from macro-

scopical, anatomical, and ultrastructural perspectives. The

apical and radial stem growth was evaluated through leaf

and cambium phenology, respectively. Leaf and cambium

behaviors were associated with environmental seasonality.

The results showed that the period of cell production and

cambial development occurred in association with leaf

expansion and during the wet, warm, and long-day season.

Seasonality of cambial and leaf phenology in response to

the environment determined the annual formation of tree

rings, and it allowed to evaluate C. robustum growth rates

and longevity. Species seasonality also responded to

abnormal climatic events during the study period, which

shows its sensitivity to environmental changes and repre-

sents a factor to be considered in the forest management

programs.

Keywords Cambial activity � Phenology � Tropical
Forest � Wood production

Introduction

Periodicity of radial growth in tropical trees has been of

increasing interest to researchers from several scientific

fields. Although initial interest focused on economic

management and timber exploitation, current investigations

mainly focus on ecological, climatic, and conservation

issues (e.g., Worbes 1995, 2002; Callado et al. 2001, 2004;

Estrada et al. 2008; Rozendaal and Zuidema 2011; Zui-

dema et al. 2013; Vlam et al. 2014; Venegas-González

et al. 2015).

Phenological behavior is an integrated response of plant

growth and reproduction to environmental conditions and

involves genetic and evolutionary issues (Kozlowski and

Pallardy 1997; Savidge 2001; Groover and Robischon

2006; Elo et al. 2009; Gricar 2012; Rossi et al. 2013). In

plants, apical meristems are responsible for height growth,

while lateral meristems are responsible for radial growth

(Kozlowski and Pallardy 1997; Evert 2013). Thus, inves-

tigations into leaf production in association with cambial

divisions provide information about plant phenology.

Studies of radial growth rhythm are useful for inter-

preting dendrochronological data and determining the age

of trees and the factors that regulate their growth (Marcati

et al. 2008). Variations in abiotic and biotic factors are

recorded in tree rings and may provide information about
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past environmental conditions (Gonçalves 2007; Callado

2010). In tropical species, periodic radial growth may be

associated with periods of drought (Worbes 1989; Ver-

heyden et al. 2004; Costa et al. 2013; Brandes et al. 2015),

flooding (Worbes1989, 1999; Callado et al. 2001), pho-

toperiod (Borchert 1999; Callado et al. 2001, 2004), stem

apical phenology (Borchert 1999; Callado et al.

2001, 2004; Costa et al. 2013), and endogenous rhythms

(Fahn 1995; Callado et al. 2001). Recent revision papers

about cambial activity in South America found that most of

the studied species exhibit periodicity of annual growth

mainly influenced by rainfall seasonality (Callado et al.

2013, 2014).

Previous studies of the genus Centrolobium found cli-

matic influence on the periodicity of annual radial growth

of C. microchaete (Mart. ex Benth.) H. C. Lima and

C. tomentosum Guill. ex Benth from dry forests (Tomazello

Filho et al. 2004; Lisi et al. 2008; López and Villalba

2010), but the growth behavior of species of Centrolobium

in Ombrophylus Dense Forest is unknown. Thus, we

investigated stem growth dynamics of C. robustum (Vell.)

Mart. ex Benth through leaf and cambial phenology aiming

to answer the following questions: (1) Does species show

growth periodicity in humid forest (Ombrophylus Dense

Forest)? (2) Are cambial and leaf phenological rhythms

related? (3) How do environmental factors influence tree

growth? (4) Is there a relationship between tree age and

stem growth?

Materials and methods

Species, sampling, and site

Centrolobium robustum is an important representative in

remnants of Atlantic Forest and has a restricted distribu-

tion, being found only in southeastern Brazil (Lima 1985;

Carvalho 2003). This species is often recommended for

reforestation, urban landscaping, and its wood can be used

in the manufacture of luxury furniture and building con-

struction (Inoue et al. 1984; Carvalho 2003).

The study was conducted at Reserva Biológica do Tin-

guá, in Nova Iguaçu, Rio de Janeiro State, Brazil (228 280–
228 390 S and 438 130–438 340 W), a well-preserved rem-

nants of Atlantic Forest. Observations were made in

2004–2005, 2005–2006, 2009–2010, and 2010–2011, for a

total of four years of study (Table 1). Twelve straight-

boled, emergent, adult trees of C. robustum with heights

exceeding 30 m were selected for dendrochronological

investigation. Ten of the trees were selected for apical

phenological investigation due to their integrity and canopy

visibility. The number of trees used for cambial investi-

gation varied over the study years: in 2004–2005, five trees

were selected; in 2009–2010, five more trees were

observed for phenological investigation; in 2010–2011,

two of these ten trees were monitored for ultrastructural

analysis. Rainfall and temperature data from Nova Iguaçu

were obtained from SOMAR Meteorologia. Photoperiod

data were obtained from the Observatório Nacional do Rio

de Janeiro. A water balance diagram was constructed fol-

lowing the recommendations of Walter et al. (1975). The

photoperiod at the study site varied annually such that the

days were 2:47 h longer in December than in June. The

mean temperature at the study site is 23.4 �C and the mean

annual rainfall is 1551 mm. The dry season occurs from

May to September and the wet season occurs from October

to April. During the study period (2004–2011), the mean

annual rainfall was 1345 mm; however, 2009–2010

showed abnormal rains, with an annual rainfall of about

2000 mm (Fig. 1).

Leaf phenology

Leaf phenology was monitored monthly for three years

(Table 1). For determining phenophases (mature leaves,

senescent leaves, leaf abscission, and leaf flushing), the

Fournieŕs intensity index was used, in which the pheno-

phases were scored from 0 to 4, corresponding to 0, 1–25,

26–50, 51–75, or 76–100 % of leaves (Fournier 1974;

Bencke CSC and Morellato LPC 2002). These indexes

were also used to estimate the total percentage of leaves on

the tree canopy, regardless of their phenophase. The

indexes of leaf flushing, senescent leaves, and leaf

abscission synchrony of the ten trees were calculated using

the equation of Augspurger (1983) for each study year.

Cambial phenology

Stem samples containing cambium and recently formed

xylem and phloem were collected in a non-destructive

method using a saw, chisel, and hammer at a height of

1.30 m above the ground (diameter at breast height -

DBH). Samples were collected quarterly for the three years

of the study (Table 1).

Light and electron microscopy were used to identify the

growth and dormancy periods using the morphology of the

cambium and xylem and phloem cells. The presence of

callose in sieve tubes and the full lignification of xylem

cells were used as proxy for dormancy, while the obser-

vation of cell divisions and lignin gradation indicated

cambial activity. For bright-field and fluorescence micro-

scopy analysis (Table 1), the samples were fixed in for-

malin-acetic acid-50 % ethanol or CRAF III (Sass 1958),

dehydrated in an ascending alcohol series (Johansen 1940)

and embedded in plastic resin (Historesin�). Samples were

sectioned with a rotary microtome at a thickness of 2–5 lm
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along the radial longitudinal and transversal planes. His-

tological sections were stained with toluidine blue O (Feder

and O’Brien 1968) and with the fluorophores Auramine O,

for lignin, and Aniline Blue, for callose (Barros and

Miguens 1998; Ruzin 1999). Analyses with bright-field

microscopy were performed on an Olympus BX 41 light

microscope and images were taken with a Q Color R3

video camera using Image-Pro Express 6.0 software. Flu-

orescence microscopy images were obtained using an

Olympus BX 50 microscope equipped with a Cool Snap-

PRO video camera and Image-Pro Plus 4.0 software. The

fluorescence of the Auramine O fluorophore was observed

with the blue excitation filter (470–490 nm) and yellow

emission filter (515–565 nm) (Barros and Miguens 1998),

and the Aniline Blue fluorochrome was observed with

ultraviolet excitation filter (330–365 nm) and blue emis-

sion filter (455–480 nm) (Ruzin 1999).

For analysis under transmission electron microscopy,

samples were fixed in solution of 2.5 % glutaraldehyde,

4.0 % formaldehyde, and 0.05 M sodium cacodylate buffer

at pH 7.2 (Da Cunha et al. 2000). Subsequently, the sam-

ples were washed in the same buffer, post-fixed in a

solution of 1 % osmium tetroxide, buffered with 0.05 M

sodium cacodylate at room temperature, dehydrated in

acetone, and embedded in epoxy resin (Epon 812

Polybed�, Warrington, USA) (Luft 1961). Some samples

were washed and post-fixed with potassium permanganate

at a concentration of 0.05 mg/mL (Mérida et al. 1981).

Ultra-thin sections of 70–80 nm were collected on

300-mesh copper grids, contrasted with 5 % uranyl acetate

and lead citrate (Reynolds 1963). Images were obtained

using a Zeiss TEM-900, transmission electron microscope

(Oberkochen, Germany) under 80 kV.

Dendrochronology

For tree ring analysis, two to four samples were obtained

from each tree in a non-destructive method using a Pressler

probe at DBH. All the study trees had samples that reached

the pith. Samples were fixed on a timber holder, kept at

room temperature until complete dehydration, and then

polished on the transverse face (Stokes and Smiley 1968)

with successive sandpapers (grit size 36–600 cm-2). Tree

ring boundaries were marked under a Coleman XTB/3AT

stereomicroscope and each sample was scanned at 600 dpi

using an HP Photosmart C4680 flatbed scanner. Tree rings

were measured on the obtained images using Image-Pro

Plus 4.5 software. Measurements of tree ring series within

the same tree were crossdated (Stokes and Smiley 1968)

using visual and statistical techniques with COFECHA

software (Holmes 1983; Grissino-Mayer 2001). For

removing the low-frequency trend of the series (Grissino-

Mayer 2001), we used different spline curves. We tested

spline lengths from 1 to 40 years in order to determine the

spline rigidity that led to the highest interseries correlations

(Brienen and Zuidema 2005). Tree age was estimated

through tree rings counting, and their annual growth rates

were determined from the tree ring width mean. The cor-

relation between the estimated age and stem diameter at

DBH was tested using Spearman’s test (Zar 1999).

Results

Leaf phenology

The studied species exhibited deciduous behavior at the

study site. All trees showed high phenological synchrony in

the first 2 years of the study and lower synchrony in the

third study year (Table 2). Leaf senescence was detected

during the dry and cold periods, followed by leaf abscission

at the end of this period. Leaf flushing occurred during the

onset of the rainy season (Fig. 1). However, in the third

year of the study (2009–2010), we observed the anticipa-

tion of leaf senescence. This phenophase began in the

middle of the rainy season (January) in 50 % of the mon-

itored trees. In the late rainy season (March), 80 % of the

trees showed leaf senescence (Fig. 1). From those late

trees, 60 % had leaf fall and immediate leaf flushing

(March and April). In the other remaining trees, the

senescence period lasted until the beginning of the dry

season (Fig. 1).

Table 1 Periods, years, and months in which leaf and cambial phenology were monitored, and how microscopy techniques were used during

each period

Years of study Leaf phenology Cambial activity Microscopy techniques

Months Winter (DS) Spring (WS) Summer (WS) Autumn (DS)

2004–2005 Jul–Jun July Oct Feb May Bright-field; fluorescence

2005–2006 Jul–Jun – – – – –

2009–2010 Jul–Jun Aug Nov Feb May Bright-field; fluorescence

2010–2011 – Aug Nov Feb May Bright-field; transmission electron

DS Dry season, WS wet season
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Fig. 1 Mean monthly precipitation, temperature, and photoperiod from study period in association with phenological behavior and radial growth

of Centrolobium robustum. a Photoperiod; b Climatic diagram (following the recommendations of Walter et al. 1975). Filled areas show the

periods with water excess; hatched areas show periods with water deficit. c Time course of leaf phenology; d Periods of cambial activity and

dormancy. Arrows indicate the periods when analyses were performed

Table 2 Indexes of synchrony

of leaf phenological behavior

among the studied

Centrolobium robustum trees

Indexes of synchrony

Years/Phenophase Leaf flushing (%) Senescent leaves (%) Leaf abscission (%)

2004–2005 100 91 95

2005–2006 86 94 81

2009–2010 71 79 66
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Cambial phenology

Variation in the number of cell layers and cell anatomy in

the cambial zone revealed an annual period of cambial

dormancy and, consequently, seasonality in cambial

activity, in spite of abnormal leaf phenological behavior in

2009–2010.

The period of cambial dormancy was characterized by

the reduction of cell layers in the cambial zone and by

the thicker walls and wider lumens of these cells

(Figs. 2, 3). Numerous minute vacuoles (Fig. 4), as well

as nuclei in interphase, were observed in the cells of the

cambium zone (Fig. 5). In addition, secondary xylem

cells adjacent to the cambial zone had completely lig-

nified walls (Fig. 6), corresponding to latewood produced

at the end of the period of cambial activity (Fig. 7). In

the phloem adjacent to the cambial zone, callose

blocking the sieve plates of sieve tube elements was

observed (Figs. 8, 9).

In the period of cambial activity, there was an increase

in cells layers in the cambial zone (Figs. 10, 11). During

this period, we observed several cell divisions in the

cambial zone (Fig. 12) and pectin deposition in the middle

lamella occurred irregularly (Fig. 13). The cells of the

cambial zone had narrower and thinner walls (Fig. 14)

compared to those observed during the dormancy period

(Fig. 4). The Auramine O fluorophore highlighted a gra-

dient of cell wall lignification in the secondary xylem

adjacent to the cambial zone (Fig. 15). In the active peri-

ods, there was no callose deposition in the sieve plates of

sieve tube elements near the cambial zone. Furthermore,

narrow bands of parenchyma 3–4 cells wide were formed

during these periods, characterizing the marginal par-

enchyma bands as initial in C. robustum wood.

We observed that new leaf production and cambial

activity occurred in the same period, and they were influ-

enced by environmental factors. The largest number of cell

layers in the cambial zone was observed when the trees

had a high percentage of mature leaves in the canopy,

while cambial dormancy coincided with the period of

senescence and leaf fall (Fig. 1). Moreover, the periods of

both cambial and apical dormancy were observed in the

dry, cold months with shorter days, whereas cambial and

apical activity coincided with warmer, wetter months,

when days were longer (Fig. 1). In 2009–2010, the most

intense cambial activity period (November) coincided with

a high percentage of mature leaves in the canopy. Cambial

activity continued until the subsequent sampling in

February, in spite of the anticipation of leaf senescence

until January of 2010. We point out that although rain

intensity was higher in 2009–2010, the wet season occur-

red during the same months in the three years of study

(Fig. 1).

Dendrochronology

Cambial seasonality indicated the periodicity of wood

production and demonstrated that tree ring formation fol-

lows an annual growth rhythm. According to this seasonal

growth, the species showed distinct tree rings both macro-

and microscopically. Tree rings were marked by thick-

walled and radially flattened fibers in latewood and narrow

initial parenchyma bands (Fig. 7). Vessel elements of

much reduced diameters were also identified in tree ring

boundaries (Fig. 7).

The average intercorrelation among samples within the

same tree was 0.55 and the intercorrelation among all tree

samples was 0.24 (Table 3). The average radial growth rate

was 2.56 (±0.40) mm/year. The youngest tree was 62-year

old, while the oldest was 121 years (Table 3). No rela-

tionship was found between age and stem diameter

(r = 0.300, p = 0.343), since some young trees had

greater diameters than older trees (Table 3).

Discussion

Well-defined phenological behavior may reflect the

responses of plants to environmental periods that are

favorable and unfavorable for growth (Lipschitz and Lev-

Yadun 1986). The analysis of the growth rhythm of C.

robustum corroborated the associations between leaf and

cambial phenology and between plant phenological

behavior and environmental variables. Leaf abscission and

cambial dormancy of all trees occurred in the drier, cooler

periods with shorter days, which allowed us to identify

such periods as being unfavorable for C. robustum growth.

In contrast, an increase in these variables characterized

favorable periods, when all the trees showed apical and

radial growth. Unfavorable environmental periods pro-

moted leaf abscission, and consequently determined cam-

bial dormancy in C. robustum. Similar to our findings,

other studies in tropical environments have shown that leaf

abscission and cambial dormancy are mainly associated

with water deficit and short day length (Worbes 1995;

Borchert 1999; Morellato et al. 2000; Borchert and Rivera

2001, 2005; Marcati et al. 2006; Bianchini et al. 2006;

Callado et al. 2014; Costa et al. 2013.

Aloni (2007) links the production of dormancy callose

to increase in cytokine levels relative to auxin levels, which

are lower due to leaf abscission. In early growth recovery,

the absence of callose plugs in sieve plates of sieve tube

elements near the cambial zone is associated with leaf

flushing. In C. robustum, the formation of callose plugs

was observed only in the phloem-conducting cells near the

dormant cambium. This callose can be attributed to the low

percentage of leaves during this period, whereas its absence
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during cambial activity can be explained by removing it

after the beginning of ethylene production in response to

high levels of auxin produced by buds (Aloni 2007).

Assessment of tree rings found one living tree older than

120 years, revealing the potential longevity of C. robustum

in remnants of Atlantic Forest. Based on tree ring analysis,

Figs. 2–9 Centrolobium robustum during the period of cambial dormancy. 2–3 Cross and longitudinal radial sections, respectively, of the

cambial zone (CZ) and adjacent newly formed xylem (X) and phloem (P). 4 Cross section of a fusiform cell in the cambial zone containing

numerous vacuole formations (dashed arrow), observed under transmission electron microscopy. 5 Interphase nucleus found in a fusiform initial

cell observed by transmission electron microscopy. 6 Cross section of secondary xylem with the cambial zone stained with Auramina O. The

open arrow indicates the complete lignification in the xylem cell walls during this period. 7 Cross section of the wood showing the edge of a tree

ring, the fibrous zone (FZ), the band of initial parenchyma (white arrow), and the vessel elements with very small diameters. 8–9 Cross section of
phloem stained with Aniline Blue 8. Note the presence of callose in the plates of the sieve tube elements near the cambial zone (white arrows). 9
Details of a plate riddled with callose deposition. 2–3, 6 and 8–9 scale bar = 50 lm; 4 scale bar = 2 lm; 5 scale bar = 500 nm; 7 scale

bar = 100 lm
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we also found no relationship between tree age and stem

diameter of C. robustum in the Atlantic Forest. This lack of

relationship was also observed in other studies, and there

has been an indication that this relationship can vary

according to growth site (Brienen and Zuidema 2006;

Shimamoto et al. 2014; Costa et al. 2015). Nonetheless,

studies on forest age structure are generally performed

through evaluating tree diameter (Pires-O’Brien and

O’Brien 1995; Sokpon and Biaou 2002). Therefore, we

suggest that studies of tree age of different populations

should be based on counting the annual tree rings, and that

estimates based just on tree diameter should be avoided.

The anticipation of leaf senescence in 2009–2010 may

have been influenced by the abnormal rainfall rates

observed in this period in the state of Rio de Janeiro, which

was attributed to the El Niño phenomenon (INPE 2009;

Lopes et al. 2011). The Instituto Nacional de Pesquisas

Espaciais report (INPE 2009) points out that 2009 was

marked by abnormal rainfall in southeastern Brazil. The

main weather systems responsible for these anomalies were

Figs. 10–15 Centrolobium robustum during cambial activity. 10–11 Radial and longitudinal sections of the cambial zone (CZ), respectively, and

adjacent tissues in differentiation: xylem (X) and phloem (P). 12 Cross section of a fusiform cell in the cambial zone with newly formed

periclinal walls. 13 Cross section of the cambial zone showing the middle lamella between initial cambial cells with irregular distribution of

pectin (dashed arrows). 14 Initial cross section of fusiform cells in the cambial zone showing periclinal walls (white arrow) that are thinner than

the anticlinal walls (black arrow). 15 Cross section of the secondary xylem near the cambial zone stained with Auramina O. The open arrow

indicates the process of lignification of the cell walls. 10–11 and 15 scale bar = 50 lm; 12 scale bar = 1 lm; 13 scale bar = 2 lm; 14 scale

bar = 8 lm
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the Intertropical Convergence Zone, high temperatures and

high humidity, and the South Atlantic Convergence Zone.

These systems contributed to higher than average rains in

the state of Rio de Janeiro (INPE 2009), which seems to

have caused soil water accumulation and, consequently,

abnormal leaf phenological behavior in C. robustum. Water

saturation leads to soil hypoxia or anoxia because air

spaces are filled with water, which reduces oxygen

absorption by the roots (Kozlowski and Pallardy 1997;

Larcher 2006; Salisbury 2012; Ashraf 2012). The shortage

of oxygen in the roots inhibits ethylene synthesis in this

organ (Jackson 1985), but stimulates its synthesis in leaves

(Salisbury 2012). Ethylene accumulation in large amounts

in leaves induces, among other things, their senescence and

abscission (Jackson 1985; Morgan and Drew 1997; Larcher

2006; Salisbury 2012; Taiz and Zeiger 2013). Immediate

leaf flushing after a period of abnormal rainfall was also

observed by Borchert and Rivera (2001) in deciduous and

brevi-deciduous species.

We point out that trees of Cedrela odorata L. devel-

oping in the same study site during the same period (Costa

et al. 2013) exhibited the same periods of cambial activity

and dormancy as C. robustum, but did not exhibit antici-

pation of leaf senescence in response to the abnormal

rainfall of 2009–2010. The difference in phenological leaf

response between these species may be associated with the

restricted geographical distribution of C. robustum (Pirie

et al. 2009) in relation to C. odorata. This last species has a

widespread distribution and possesses a conservative

growth rhythm, as discussed by Costa et al. (2013). Callado

et al. (2001) also investigated cambial and leaf phenolog-

ical behavior of four species in a swamp in the Atlantic

Forest of the state of Rio de Janeiro. They reported that

only Tabebuia cassinoides (Lam.) DC had an extra period

of leaf shedding due to the El Niño event, and it was the

species with the most restricted distribution among the

species included in their study. Like C. robustum, differ-

ences in secondary xylem formation during the abnormal

period were not observed for T. cassinoides.

In conclusion, results revealed that C robustum (Vell.)

Mart. ex Benth exhibits annual stem growth periodicity in

Ombrophylus Dense Forest. Cambial activity occurred

when the canopy had mature leaves and the days were

warmer, wetter, and longer. The annual growth periodicity

permitted the investigation of tree rings in order to deter-

mine tree age and growth rates. We did not observe a

relationship between tree age and stem diameter. Respon-

ses of species to stochastic climatic events demonstrate that

species with restricted geographical distributions seem to

be more susceptible to environmental changes.
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